Dr. Victor Christen
- Seit Oktober 2014 wissenschaftlicher Mitarbeiter
- September 2014: M. Sc. in Informatik an der Universität Leipzig
Kontakt
E-Mail: christen at informatik.uni-leipzig.de
Büro: Augustusplatz 10 (Paulinum Raum P425), 04109, Leipzig
Telefon: +49 341 - 97 322 27
Publikationen
|
|
|
|
|
| | Lin, Ying-Chi ; Christen, Victor; Groß, Anika; Kirsten, Toralf; Domingos Cardoso, Silvio; Pruski, Cédric; Da Silveira, Marcos; Rahm, Erhard Evaluating Cross-lingual Semantic Annotation for Medical Forms Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5 HEALTHINF: HEALTHINF, 145-155, 2020, Valletta, Malta. DOI: 10.5220/0008979901450155 2020-02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Supervision of Thesis
Running:
- Master Thesis: Robert Weiske, Cluster Quality Prediction for Entity Resolution, 2021
- Master Thesis: Tim Matzeck, Attacks on PPRL using node embedding techniques, 2021
Finished:
- Bachelor Thesis: Nico Duldhardt, Tree-based Learning Methods for Match Classification with Apache Flink, 2018
- Bachelor Thesis: David Geistert, Visualisierung von Annotation-Mappings für klinische Formulare, 2018
- Bachelor Thesis: Michael Koch, Integration von EAGLE in FAMER, 2019
- Bachelor Thesis: Steve Lehmann, Evaluierungstool für Entity-Resolution Links, 2019
- Bachelor Thesis: Jan Buchholz, Datenerfassung für die Untersuchung von Primaten (Kooperation MPI),2019
- Bachelor Thesis: Marcus Stelzer, Realisierung eines Frameworks zur forensischen Gutachtenerstellung und Auswertung der Browser-Historie, 2020
- Master Thesis: Jonas Kreusch, Parallelisierung von Meta-Blocking Ansätzen in FAMER, 2020
- Bachelor Thesis: Robert Weiske, Incremental Entity-Resolution using cluster vector representations, 2020
- Bachelor Thesis: Bingqing Hu, Postprocessing mit Knotenembeddings, 2020
- Bachelor Thesis: Tim Häntschel, Hardening Bloom-Filters with Autoencoders, 2021
- Master Thesis: Leonie Preker, Evaluating embedding methods for genomic data, 2022
- Master Thesis: Daniel Alker, Establishment of a Machine Learning Pipeline for Battery Electric Trucks Mission Profiles, 2022
Teaching
Lectures:
- DBS2: 2019
- Data Wrangling: SoSe2022
Tutorials:
Seminars:
Labs:
- Data-Warehouse: WS 2019, WS 2018, WS 2017, WS 2016, WS 2014
- Relational Databases: SS 2019, SS 2018, SS 2017, SS 2016, SS 2015
- Big Data: SS 2019, SS 2018, SS 2017,WS 2016, SS 2016
|