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Abstract. Entity Resolution is a crucial task to integrate data from dif-
ferent sources to identify records that represent the same entity. Entity
resolution commonly employs supervised learning techniques based on
training data of matching and non-matching pairs of records and their
attribute similarities as represented by similarity vectors. To reduce the
amount of manual labelling to generate suitable training data, we pro-
pose a novel active learning approach that does not require any prior
knowledge about true matches and that is independent of the learning
method used. Our approach successively identifies new training examples
based on an informativeness measure for similarity vectors by considering
their relationship to already classified vectors and the uncertainty in the
similarity vector space covered by the current training set. Experiments
on several data sets show that even for a small labelling effort our ap-
proach achieves comparable results to fully supervised approaches and it
can outperform previous active learning approaches for entity resolution.
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1 Introduction

Entity Resolution (ER) is the task of identifying pairs of records from different
data sources that refer to the same real-world entities [4]. ER is a crucial step for
different application domains such as census analysis, national security, and the
health, life, and social sciences. The quality and usefulness of any data analysis
based on linked data highly depends upon how accurate ER was conducted.

To identify pairs of records that refer to the same entity, the attributes of
records are generally compared using similarity functions such as approximate
string comparators [4]. A crucial part of ER is the classification of two records
as a match (same entity) or non-match (different entities) based on the calcu-
lated similarities between them. Machine learning approaches [13,23] can learn
a classifier over sets of known matching and non-matching record pairs based on
the similarities of their attributes as represented by a similarity or weight vector.
For example, comparing first name, last name, street address, city and zipcode
leads to a five-dimensional similarity vector per compared record pair [4].



To generate a classification model, labelled pairs of records are necessary.
This however might require significant manual labelling efforts [26]. Moreover,
the number of true matches (record pairs that refer to the same entity) is gen-
erally very small compared to the number of non-matching pairs because of the
quadratic nature of the comparison space [4], and therefore the selection of la-
belled pairs is challenging if one wants to learn an unbiased classifier [6]. Active
learning techniques promise to minimise the labelling effort as well as to select
representative pairs that result in a good classifier.

Previous work in active learning for ER [1,2,19,26] has focused on selecting
pairs based on a certain classification model and the resulting decision bound-
ary of the learned classifier. In this paper, we propose a novel active learning
approach for ER that considers the covered similarity vector space and the re-
lationships between similarity vectors.

The main idea of our approach is to search for new unlabelled similarity vec-
tors around informative similarity vectors that already are classified as matches
or non-matches. In this process, we introduce an informativeness measure for a
similarity vector based on the current training data set. The most informative
vectors are then used to define a search space where new vectors are selected.
We specifically make the following contributions:

– We propose an active learning technique for ER that iteratively selects new
similarity vectors for manual classification by an oracle independent of any
classifier using an informativeness measure. This measure is based on in-
formation entropy to characterise the relationship between vectors labelled
as matches as well as non-matches. Moreover, the measure considers uncer-
tainty so that new areas in the similarity vector space are queried.

– Our active learning technique is able to generate training data using a
budget-limited human oracle [26], and it does not require any prior knowl-
edge about true matches and non-matches.

– We evaluate our active learning technique on three data sets from different
application domains. Our results show that our proposed approach outper-
forms a previous budget-limited active learning approach for ER [26] and
achieves classification quality comparable to fully supervised approaches.

In the following we discuss work related to our approach. In Sect. 3 we
formalise the problem that we aim to solve with our approach, which we describe
in detail in Sect. 4. In Sect. 5 we then experimentally evaluate our approach and
compare it with existing active learning as well as supervised methods for ER.

2 Related Work

ER is an essential part of data integration in various domains such as e-commerce,
health and social science research, or national security. As a result, ER has been
intensively studied [4,11,17,18]. One challenge of ER is the quality of the data
sources and their heterogeneity [20]. In order to overcome this problem, super-
vised as well as unsupervised approaches have been proposed [3,13,23]. Unsuper-
vised approaches utilise clustering methods to identify groups of similar records
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Fig. 1: Examples of similarity vectors where the monotonicity assumption does
not hold. The three plots show similarity vectors of the data sets we use in our
evaluation in Sect. 5. If an axis represents more than one similarity, they are
summed and normalised into [0,1].

that refer to the same entity. In contrast, supervised ER approaches require
and use a training data set consisting of verified true matches and true non-
matches to build a classifier. In general, unsupervised methods perform worse
than supervised approaches as shown by extensive studies [12], where super-
vised approaches are able to achieve high ER quality for different domains such
as consumer products, bibliographic records, and census data.

A crucial part of supervised approaches is the amount and quality of data
available for training, because a non-informative or not representative training
data set can result in biased, over-fitted, or inaccurate classifiers.

To overcome such issues, active learning techniques [1,2,19,26] have been
applied to minimise the labelling effort and to select representative record pairs
for manual classification. An active learning approach is an iterative process [5]
where in each iteration a number of informative and unlabelled training instances
are selected that are then manually classified by a human oracle. Many active
learning approaches determine informative instances using the distance between
instances [25] or their entropy [21] according to a certain classification model.

Previous work in active learning for ER [1,2] allows to specify a minimum
required precision threshold, where the aim of these approaches is to then max-
imise the recall of the resulting classifier based on the selected record pairs.
However, these approaches have the underlying assumption of monotonicity of
precision which implies that a record pair with higher similarity is more likely
to be a match than a pair with a lower similarity.

Recent work by Wang et al. [26] however has shown that the assumption of
monotonicity does not generally hold. We validate this in Fig. 1 which shows
the distribution of true matches and non-matches for three data sets according
to their similarities. As can be seen, in each data set there are clear examples
that violate the monotonicity assumption. Therefore, Wang et al. proposed a
cluster based active learning approach that iteratively selects record pairs from
a cluster. In each iteration, a cluster is processed by selecting a set of record pairs



to be labelled by a human oracle. The labelled vectors are then added to the
final training data set if the purity of the current cluster is above a user defined
threshold. Otherwise, the cluster is split into two by classifying the unlabelled
vectors of the current cluster based on the current classifier. The authors showed
that their approach requires less examples than earlier active learning approaches
for ER while achieving similar classification accuracy.

In comparison to our proposed approach, the selected examples by Wang
et al. [26], and thus the resulting training data set, depend upon the applied
classification model, and therefore the resulting ER quality can vary depending
upon the classifier employed in this active learning approach.

Ngonga-Ngomo et al. [19] proposed a generation method of link specifications
representing a complex match rule using genetic programming by iteratively
improving a set of determined link specifications representing match rules. In
each iteration, new examples are selected based on the disagreement according
to the current link specification (for example, if 5 of 10 specifications classify
a match for a record pair the disagreement is high). A disadvantage of this
approach is that the generation of link specifications is not deterministic.

Related to active learning is crowd-sourced based ER [8,16,24,27], where
ambiguous or controversial matches are resolved by evaluating votes from a
crowd of human evaluators. Mozafari et al. [16] proposed two such approaches,
named Uncertainty and MinExpError, being applicable for applications beyond
ER. The main idea of these approaches is to use non-parametric bootstraping
to estimate the uncertainty of classifiers. However, crowd-sourcing techniques
that rely on a large number of human resources (often non-experts) cannot be
used for sensitive data, such as personal health, financial, crime, or government
records, where only a small number of experts have access to the data.

In contrast to previous work, our approach is independent of the classifica-
tion model used to determine informative examples, because we characterise the
informativeness of similarity vectors by considering the relationships between
vectors within the vector space, as well as the relationships between unlabelled
and already labelled vectors. Moreover, our work does not rely upon the mono-
tonicity assumption that does not hold for many ER problems [26].

3 Problem Definition

Active learning approaches aim to reduce the manual efforts required for se-
lecting training data, while keeping the quality of ER classification at a high
level [1,2,26]. In general, the goal of ER is to identify matches mi ∈M for a set
of records R from one or multiple data sources, where each mi = (rx, ry), with
rx, ry ∈ R and rx 6= ry. To determine a match for a record pair (rx, ry), the set of
attributes A = {A1, ..., An} characterising these records is used to calculate sim-
ilarities s1, ..., sn between attribute values. Similarity functions fj(rx.Aj , ry.Aj),
with 1 ≤ j ≤ n, are used to measure how similar the values in attribute Aj

are. We assume each similarity function fj maps into [0, 1], where 1 means two
attribute values are the same and 0 means they are completely different [4].



A similarity or weight vector w ∈ [0, 1]n consists of the calculated n similar-
ities between the attributes in A. For example, the two records r1 and r2 charac-
terised by the attributes A = {surname, address} with r1.surname=“ashworth”,
r1.address=“fern hill” and r2.surname=“ashwort”, r2.address=“fearn hill” might
results in a similarity vector w = 〈0.74, 0.78〉 when using approximate string
comparison functions such as edit distance [4].

The goal of an active learning approach is to identify a set of classified simi-
larity vectors T ⊂W for a given set of unclassified vectors W, where T consists
of matches and non-matches and is used as training data to learn a classifier.
Our approach considers a predefined budget b of the total number of similarity
vectors that can be labelled by a human oracle. The approach selects in each
iteration a predefined number k of vectors where the selection depends on the
informativeness of each vector in T and the vector space covered by T.

As detailed below, to measure the informativeness info(wi,T), of a vector
wi, we consider the relationship of wi to vectors wk ∈ T\{wi}, where we cal-
culate the similarity between two vectors wi and wk using the Cosine similarity
defined as sim(wi,wk) = wi·wk

||wi||·||wk|| . We assume that the area around a vector

wi consists of more informative vectors than for a vector wk, if info(wi,T) >
info(wk,T). The area S(wi) around wi represents the search space for selecting
new unclassified vectors, where S(wi) consists of similarity vectors w ∈W and
where the similarity sim(wi,w) is above a certain threshold that is dynamically
calculated according to the current training data set T.

4 Informativeness-Aware Active Learning

In this section, we describe our active learning approach beginning with a high-
level description. Algorithm 1 describes our informativeness-aware active learn-
ing approach for generating a training data set T. This training data set is
generated by selecting a number of similarity vectors from the set of all similar-
ity vectors W, where a total budget b is available for manual labelling of selected
similarity vectors. The set of all (unlabelled) vectors W is generated by com-
paring record pairs based on the set of attributes A and appropriate similarity
functions [4]. Initially, we select a number of similarity vectors k > 1 from W
based on selection strategies such as stratified sampling or farthest first (line 1).

Throughout the learning process, we identify in each iteration a set of infor-
mative vectors I ⊆ T according to the current training data set T. The vectors
in I are used to determine a search space for selecting k new vectors from W
that are to be labelled by the oracle in the current iteration.

To identify the set I, we characterise the informativeness of a vector con-
sidering its relationship to all vectors already in T (line 4). In particular, the
informativeness info(w,T) of a vector w ∈ T is calculated using an entropy-
based measure considering the similarities to vectors of both the same and the
other class. Moreover, info(w,T) considers the potential search space around
w with respect to the labelled vectors from T. We describe the calculation of
informativeness for similarity vectors and their selection in Sect. 4.2 below.



Algorithm 1: Informativeness-Aware Active Learning Approach

Input:
- W: Unlabelled similarity vectors
- b: Total manual labelling budget
- k: Number of similarity vectors to select in each iteration
Output:
- T: Training data set in the form of labelled similarity vectors

1 T←initialSelect (W, k) // Select initial training data set
2 while |T| < b do
3 // Identify informative similarity vectors of the current training data set
4 I←identifyInformativeVectors (T)
5 // Select unlabelled similarity vectors around informative vectors
6 Wo ←selectVectors (I,W, k,T)
7 T′ ←manualClassify (Wo) // Use oracle to classify selected vectors
8 T← T ∪T′ // Add newly classified vectors to the overall training data set
9 W←W \Wo // Remove classified vectors from set of unlabelled vectors

10 return T

For each similarity vector in I, we determine a search space based on its
location in the similarity vector space and the location of the closest similarity
vector in the opposite class as determined by the Cosine similarity. We consider
each unlabelled vector contained in the search space as a candidate (line 6). The
idea of the selection process is to identify similarity vectors in uncertain areas
that are close to the boundary of matches and non-matches. The identified set
of similarity vectors Wo is then manually classified by the oracle and added as
T′ to the total training data set T (lines 7 and 8). The approach terminates
once the number of classified similarity vectors reaches the total budget b. In
the following, we describe the initial selection strategies, the computation of
informativeness, and the identification of new training vectors in more detail.

4.1 Initial Selection

Initially, we select a set of similarity vectors from the set of all unclassified vectors
W. We propose two strategies: stratified sampling and farthest first [26].

Stratified sampling splits the set of similarity vectors W into several par-
titions {P1, ..,Px}. To determine an appropriate number of partitions, x, we
apply canopy clustering [15] on the unlabelled similarity vectors W. The gener-
ated partitions are used to determine the set of k initial similarity vectors. We
iteratively select similarity vectors over the x partitions, where in each iteration
we select the vector wi of partition Pi that is the closest vector to its cluster
centroid, and add wi to T. After that, we remove wi from partition Pi. The
process terminates once the number of selected similarity vectors is k.

On the other hand, the farthest first method [26] initially selects a similarity
vector at random from W and adds it to T. After that, we iteratively add
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Fig. 2: Examples of initial selection strategies for k = 6. The grey circles represent
the selected similarity vectors while squares show the centroids of each partition.

another similarity vector to T that has the maximum distance to all vectors
already in T. We repeat this process until T contains k similarity vectors.

For example, in Fig. 2a, stratified sampling selects the similarity vectors w1,
w2, w3, w5, w6 and w7. The vector space is initially split into x = 3 partitions.
After that, for each centroid (blue squares) of a partition we select the closest
two similarity vectors. In Fig. 2b, the farthest first approach randomly selects,
for example, w6 as the first similarity vector and adds it to T. After that, w8 is
selected since it is the vector farthest away from w6. The next selected vectors
are w9, w10, w20, and w16, following the same process.

4.2 Informativeness of Similarity Vectors

In order to generate a representative training data set, we propose a selection
approach that considers the informativeness of similarity vectors w ∈ T. The
goal is to determine informative classified vectors that can be used to select
unclassified vectors from W. We describe the informativeness of a similarity
vector by considering its location with respect to the vectors of the same as well
as vectors from the other class in the vector space. The intuition is that we look
for new vectors in the areas of classified vectors that are not outliers (i.e. are
not surrounded only by vectors from the other class) but are also not easy to
classify vectors (i.e. are not surrounded only by vectors from the same class).

To determine informative vectors of the current training data set T, we define
the following measure info(wj ,T), as shown in Eqn. (1), for a classified vector
wj ∈ T, where sim is the Cosine similarity as described in Sect. 3. This measure
is based on the entropy of a vector wj according to all vectors in T and the
uncertainty of a vector wj Entropy and uncertainty are equally weighted when
α = 0.5.

info(wj ,T) = α · entropy(wj ,T) + (1− α) · uncertainty(wj ,T) (1)
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Fig. 3: Two examples for determining the informativeness of similarity vectors
w5 and w7 of T={w1, w2, w3, w5, w6, w7}, based on the location in the vector
space and the search spaces S(w5) and S(w7) for w5 and w7, as represented by
the circles. Red coloured circles represent classified non-match similarity vectors
while green coloured circles represent classified match vectors.

Information entropy [22] can be used to describe how balanced a data set is.
In our case, the entropy of a vector wj is high if it is close to vectors represent-
ing both matches as well as non matches. To determine the entropy of wj , we
compute the aggregated similarities between wj and each vector wk of T

wj

S and
T

wj

O , where T
wj

S and T
wj

O consist of vectors that are assigned to the same class
and the other class, respectively, according to wj , as shown in Eqn. (2).

entropy(wj ,T) = −
[∑

wk∈T
wj
S

sim(wj ,wk)

|T|−1 · log(

∑
wk∈T

wj
S

sim(wj ,wk)

|T|−1 )

+

∑
wk∈T

wj
O

sim(wj ,wk)

|T| · log(

∑
wk∈T

wj
O

sim(wj ,wk)

|T| )
]

(2)

The uncertainty of a vector wj is determined by the reciprocal of the intersection
between the current training data set T and the search space determined as the
area between wj and the closest vector of the opposite class as shown in Eqn. (3).

uncertainty(wj ,T) =
1

1 + |T ∩ S(wj)|
(3)

For example, the entropy of w7 in Fig. 3 is 0.68 calculated by Eqn. (2)
utilising the aggregated similarity to vectors of the same class (w6 and w5) as
0.65 + 0.4 = 1.05, as well as to vectors of the other class (w1, w3 and w2) as
0.73 + 0.91 + 0.78 = 2.42. The intersection between the search space S(w7) and
the current training data set T is empty and therefore uncertainty(w7) = 1.
Consequently, info(w7) is equal to 0.5 ·0.68+0.5 ·1 = 0.84. The informativeness
for w5 is calculated similarly where its entropy is 0.697 and its uncertainty is
0.5 since S(w5) ∩ T = {w6} , and therefore info(w5,T) = 0.6.



Algorithm 2: Selection Method of New Similarity Vectors

Input:
- I: Set of informative similarity vectors
- T Current classified training data set
- W: Set of unlabelled similarity vectors
- k: Number of similarity vectors to be selected
Output:
- Wo: Similarity vectors selected for manual classification by oracle

1 C = ∅ // Initialise empty set of candidates
2 foreach wj ∈ I do
3 // Determine vector being closest to wj from the opposite class
4 wc ← getClosest (wj ,T)
5 δ ← sim(wj ,wc) // Calculate threshold representing the search space of wj

6 foreach wu ∈W do
7 // Add unlabelled vector if its similarity is above the threshold δ
8 if sim(wu,wj) > δ then
9 C← C ∪ {wu}

10 // Identify the k most diverse vectors from candidate set
11 Wo ← farthestFirstSelection (C, k)
12 return Wo

We add a vector wj to I if info(wj ,T) is above the mean according to the
info measure for the vectors of the current training data set T. In our running
example, the mean of info according to the current training data set is 0.61, and
so we add w7 (info = 0.84) to I, but not w5. The set I of informative vectors is
then used to select vectors of W to be manually classified and added to T.

4.3 Training Data Selection

The selection method shown in Algo. 2 determines for each similarity vector of I
a set of unlabelled vectors from W. For this, we identify for each vector wj ∈ I a
search space S(wj) determined by the closest vector wc from the opposite class.
For example, in Fig. 4 the closest vector from the other class for w7 is w3.

The objective is to identify new vectors in uncertain areas so that in each
iteration an increasingly more representative training data set T is generated. A
vector wu ∈W is added to the set C of candidates if it is contained in the search
space S(wj) consisting of vectors wu where the similarity sim(wj ,wu) is larger
than sim(wj ,wc) (line 9). At the end of the selection method, we determine the
most k-diverse vectors of C by applying a farthest first approach (line 11).

Fig. 4 shows an example for selecting vectors based on w3 and w7. The
selection method selects all vectors as candidates into C that are in the search
spaces S(w7) and S(w3), shown as circles around w3 and w7. Consequently, the
combined candidate set, C, based on w7 and w3 consists of the similarity vectors
w9, w11, w16, w18, w19 and w20.
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Fig. 4: Two examples of selecting new similarity vectors according to the search
spaces S(w3) and S(w7) represented as circles, where w3 and w7 are the in-
formative vectors. Red and green coloured circles represent classified vectors.

The identified set of similarity vectors Wo are then manually classified by an
oracle and added to T (Algo. 1, line 8). The updated training data set is used
in the next iteration to identify a new set of informative vectors. This loop ends
once the number of manually classified similarity vectors reaches the budget b.

4.4 Complexity Analysis

We now briefly discuss the complexity of our proposed approach. Because of
the independence of our approach with regard to the actual classification model
used, its complexity only depends upon the number of unlabelled similarity
vectors, W, the total budget b, and the number k of similarity vectors to be
selected in each iteration. In each iteration, we compute the similarities between
all pairs of vectors in the current training data set, T, resulting in a complexity
of O(|T|2). Moreover, we identify for each informative similarity vector of I the
closest unlabelled similarity vectors in W, a process which requires |W| · |I|
comparisons where |I| ≤ |T| holds. At the end of each iteration, we determine
the k most diverse similarity vectors of C, where |C| ≤ |W|, resulting in a
complexity O(k · |C|). Overall, the complexity to determine similarity vectors
for one iteration is O(|T|2 + |W| · |I| + k · |C|), with |I| ≤ |T| and |C| ≤ |W|.
The number of iterations is bound by k and b as b/k.

5 Experiments and Results

We evaluated our active learning approach using three data sets as summarised
in Table 1. The Cora and Google Scholar (GS) [12] data sets contain publica-
tion records that are to be linked, where the GS data set consists of matches



Table 1: Overview of evaluated data sets.

Data set Number of records |W| Match:Non-match Attributes n = |w|

Cora 1,295 286,141 1:16 Title, authors, year, venue 4
Google Scholar 2,616 / 64,263 472,790 1:89 Title, authors, year,venue 6
Music 19,375 251,715 1:16 Title, artist, album, year, 7

language, number

between DBLP and GS. The Music data set contains records from the Music-
Brainz database3. This data set is corrupted [10] and consists of five sources
with duplicates for 50% of the original records. To avoid the comparison of the
full Cartesian product of vectors, we applied blocking [4] and filtering [14].

The ratios between matches and non-matches (with blocking and filtering
applied) shown in Table 1 highlight the imbalance of these data sets and empha-
sise the challenges of selecting a representative training data set. The similarity
vectors (of dimension n) were calculated using string comparison functions on
the different attributes shown in Table 1, such as q-gram based Jaccard and
Soft-TF/IDF [4]. To classify the similarity vectors as matches and non-matches,
we used the decision tree classifier implemented in the Weka toolkit [7].

Our proposed active learning approach is implemented in Java 1.8 and we
ran all experiments on a desktop machine equipped with an Intel Core i7-4470
CPU with 8x3.40 GHz CPUs, and 32 GBytes of main memory. To facilitate
repeatability, both code and data sets are available from the authors.

We evaluated different parameter settings for our approach. As initialisa-
tion method we used farthest first, stratified sampling and random selection, set
α = [0.3, 0.4, 0.5, 0.6, 0.7] to weight the entropy and uncertainty in Eqn. (1)
when determining informative similarity vectors, set the number of selected
vectors in each iteration as k = [30, 35, 40, 45, 50], and the total budget b =
[200, 500, 1000, 2000, 5000]. We set default values as α = 0.5, k = 30, b = 1000
and farthest first as the initialisation method, because we obtained good results
with these settings for all three data sets based on preliminary experiments.

We compared our approach with the two basic active learning approaches
Smallest Margin [25] and Entropy [21], the Uncertainty selection approach [16],
as well as the only budget limited active learning approach for ER we are aware of
(named Clu-AL) [26]. We do not compare our approach with MinExpError [16]
because this approach does not scale well for large budgets. Furthermore, we
compared our approach with both fully supervised decision tree and support
vector machine (using RBF and linear kernels) classifiers, as also used for com-
parison in previous work on active learning for ER [26].

To allow a comparative evaluation of our proposed approach with these earlier
approaches we use the F-measure [9]. We acknowledge that there are issues when
this measure is used to comparatively evaluate different ER classifiers, however
there is currently no accepted alternative to the F-measure we are aware of.

3 Available at: https://musicbrainz.org

https://musicbrainz.org
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Fig. 5: Classification F-measure results for (a) different initialisation methods,
(b) different values for weight parameter α of info, (c) different numbers of
similarity vectors per iteration k, (d) different total budgets b, and (e) runtime
for different total budgets b.



5.1 Parameter Evaluation

Figure 5a shows the obtained ER classification quality for different initialisation
methods averaged over different iteration sizes k. Farthest first slightly outper-
forms stratified sampling and random selection by 0.75% and 0.95%, respectively,
for the Cora data set, and by 3.1% and 1.8% for Google Scholar. On the other
hand, Farthest first achieves a lower F-Measure by 1.17% compared to strati-
fied sampling for the Music data set. The small differences in F-measure results
for the different initial selection strategies show that our main selection strategy
based on the search space of informative vectors performs effectively independent
of the initial set of similarity vectors.

As can be seen in Fig. 5b, changes for the weight parameter α only slightly
influence the ER classification quality, between 2% to 4%, for the three data
sets. For the Cora data set we observe a decreasing quality for α > 0.5. With an
α weight over 0.5 our approach prioritises the entropy of a vector more than the
uncertainty, and therefore the approach mainly selects vectors as informative
that are located in-between true matches and non-matches.

For all three data sets, the F-measure slightly decreases with a higher number
of selected similarity vectors, k, per iteration as shown in Fig. 5c. This indicates
that a higher number of selected similarity vectors increases the probability
for selecting non-informative vectors. An increasing budget generally leads to an
improvement of F-measure results as shown in Fig. 5d. Even for a small budget of
b = 200, for all three data sets our approach achieves F-measure results of above
80%, with an increase up to 97% for the Music data set as more informative
vectors are added to the training set. The runtime scales quadratically with
respect to the total budget as shown in Fig. 5e, however, all runtimes are below
200 seconds for budgets up to b = 1, 000.

5.2 Comparison with Existing Approaches

We compare our active learning approach, named InfoSpace-AL, with the ac-
tive learning approaches Smallest Margin, Entropy, and Uncertainty, as well as
the clustering based active learning approach Clu-AL [26]. We also compare our
approach with supervised approaches using fully supervised SVM and decision
tree classifiers. To compare the different active learning approaches, we exper-
imentally determined a suitable number of similarity vectors to select in each
iteration, k, for each approach separately over all data sets. We use the following
values for k: Smallest Margin: 45, Entropy : 50, Uncertainty : 45, and InfoSpace-
AL: 30. The Clu-AL approach follows an adaptive strategy for determining the
number of similarity vectors it selects in each iteration.

Figure 6 shows the F-Measure of the considered approaches according to
different budgets b. InfoSpace-AL is the only approach that, for a small budget,
achieves an F-Measure above 80% for all three data sets. Smallest Margin and
Uncertainty result in a high variance with an increasing budget, where the F-
Measure achieved by Uncertainty is reduced by up to 8.7% from a budget of b =
200 to b = 500. In contrast, InfoSpace-AL achieves more stable F-Measure results
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Fig. 6: F-measure results of our approach (named InfoSpace-AL, InfSp) as com-
pared with the other active learning approaches Entropy (Entr) [21], Smallest
Margin (SmaMa) [25], Clu-AL [26] and Uncertainty (Unce) [16].

Table 2: F-measure results of our approach (InfoSpace-AL) as compared with
fully supervised classifiers (SVM and DTree) for a budget of b = 1, 000.

Data set Dtree SVM InfoSpace-AL

Google Scholar 88.63% 91.44% 91.21%
Cora 84.09% 82.22% 89.80%
Music 96.80% 96.90% 95.30%

compared to Uncertainty even for small budgets of 200 ≤ b ≤ 1, 000. InfoSpace-
AL and Clu-AL both achieve high F-Measure results for each data set for small
budgets of b = 500 and b = 1, 000. However, we observe that Uncertainty achieves
high F-Measure values above 90% for each data set if the budget is above b =
2, 000. To summarise, our approach achieves results comparable to Clu-AL and
Uncertainty, and it is one of the best performing approaches for small budgets
of up-to b = 1, 000.

To evaluate the two supervised approaches, we applied 10-fold cross valida-
tion. Our approach achieves comparable results compared to the fully supervised
approaches as shown in Table 2. Our informativeness-based active learning ap-
proach outperforms the supervised approaches by around 5.7% in F-Measure for
the Cora data set. On the other hand, the supervised approaches achieve higher
F-Measure results for the Google Scholar and Music data sets compared to our
active learning approach. However, we emphasise that our approach achieves
these comparable results with a moderate manual classification effort, so that
the labelling effort is reduced by around 99% compared to a fully supervised
classifier that requires much larger training data sets which are commonly not
available in real-world ER applications.



6 Conclusions and Future Work

We have proposed an active learning approach for entity resolution (ER) that
iteratively selects similarity vectors into a training data set based on the in-
formativeness of vectors for a current training data set. Unlike with existing
active learning approaches for ER, the main advantage of our approach is that
it is independent of any intermediate classification results since it determines the
search space for new vectors based on a defined informativeness measure consid-
ering the location of vectors in the vector space, as well as the uncertainty of the
search space. In each iteration, our approach selects new vectors according to the
most informative vectors. The evaluation showed that our approach can achieve
results comparable to fully supervised approaches where much larger training
data sets are required to achieve a high ER quality compared to our budget
limited approach. Moreover, our approach outperforms a previous state-of-art
active learning method for ER that is also based on a limited budget for the
number of manual classifications possible. Furthermore, our approach does also
not rely on the assumption of monotonicity of precision [26].

For future work we aim to investigate adaptive methods for determining an
optimal number k of selected similarity vectors in each iteration such that the
probability for selecting non-informative similarity vectors is minimised. We also
plan to investigate filtering methods that initially reduce the set of vectors W
to avoid the selection of non-informative vectors. Moreover, we like to integrate
metric space approaches to improve the efficiency of the approach for determining
new unlabelled similarity vectors.
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