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Abstract: Privacy-preserving record linkage (PPRL) determines records representing the same entity
while guaranteeing the privacy of individuals. A common approach is to encode plaintext data of
records into Bloom filters that enable efficient calculation of similarities. A crucial step of PPRL is
the classification of Bloom filter pairs as match or non-match based on computed similarities. In the
context of record linkage, several weighting schemes and classification methods are available. The
majority of weighting methods determine and adapt weights by applying the Fellegi&Sunter model
for each attribute. In the PPRL domain, the attributes of a record are encoded in a joint record-level
Bloom filter to impede cryptanalysis attacks so that the application of existing attribute-wise weighting
approaches is not feasible. We study methods that use attribute-specific weights in record-level
encodings and integrate weight adaptation approaches based on individual value frequencies. The
experiments on real-world datasets show that frequency-dependent weighting schemes improve the
linkage quality as well as the robustness with regard to threshold selection.

Keywords: Privacy-preserving record linkage; Bloom filter; Weighting; Value-specific

1 Introduction

Record linkage is an essential component in many data integration tasks with multiple
data sources. It aims to detect records that belong to the same real-world entity such as a
person. Typically, unique record identifiers are not available which would enable a join-like
operation [Ch12]. Therefore, records are compared pairwise based on their attributes, such as
first name, last name, date of birth and gender. The attribute similarities are used to classify
pairs as match or non-match. Often weights are involved in this step to take the different
discriminatory power and error rates of attributes into account [WT91]. For example, an
equal date of birth is a stronger indicator for a match than an equal gender as there are much
more values (and thus each value occurs less often) for date of birth than for gender.

Simple weight-based classification approaches only use attribute-specific weights that are
equal for all values of a certain attribute. Thus, the very common last name Smith would
result in the same weight as the rarer last name Voigt. Therefore, the use of value-specific
weights based on the frequency of a specific attribute value can increase the linkage
quality [WT91]. For uncertain duplicate candidates, e. g., due to a different address as in the
following example (see Tab. 1 and 2), the likelihood of a match is higher if the agreeing
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attributes – here first and last name – are rare. This is reflected in a higher record similarity
score (weighted average) due to increased weights of those attributes.
Tab. 1: Example of a similarity computation of two records with common first and last name.

First name Last name Date of birth ZIP code City Total
Record a LISA SMITH 23.09.1973 28451 LELAND
Record b LISA SMITH 23.09.1973 28075 HARRISBURG
Similarity 1.0 1.0 1.0 0.4 0.0 0.79
Weight 12 13 15 7 7

Tab. 2: Example of a similarity computation of two records with rare first and last name.

First name Last name Date of birth ZIP code City Total
Record a WYNONA VOIGT 23.09.1973 28451 LELAND
Record b WYNONA VOIGT 23.09.1973 28075 HARRISBURG
Similarity 1.0 1.0 1.0 0.4 0.0 0.85
Weight 20 25 15 7 7

To enable the assignment of globally unique record identifiers multiple data owners share
their respective datasets with a trusted institution, called linkage unit, which is responsible
for the actual linkage and determines pairs of records considered as a match. Using these
identifiers the data owners can combine their respective data on matching entities. The
exchange of sensitive data, such as identifying personal information, between the data
owners or with the linkage unit is, however, restricted by law [CRS20]. Privacy-preserving
record linkage (PPRL) addresses this challenge. It has been an active research subject for
the last decades [VCV13]. To protect the sensitive data, it is encoded before being sent to
the linkage unit which performs the linkage on the encoded data only. A variety of encoding
techniques have been proposed, but the most popular and quasi-standard is based on Bloom
filters [Gk21]. However, the initially proposed attribute-level encoding [SBR09], where
each attribute is encoded in a separate Bloom filter, has been shown to be susceptible to
frequency and pattern mining attacks [Vi22]. Therefore, state-of-the-art techniques combine
multiple or all attributes into a joint record-level encoding to impede those attacks.

In general, Bloom filter based encodings (both attribute-level and record-level) allow for
weighting attributes. Attribute-level encodings are very similar to traditional (plaintext)
record linkage with regard to weighting. The attribute similarities can be aggregated to a
record similarity, for example, by using a weighted average. The only difference effectively
is the use of a similarity function that is suited for the encoded data structure. When using
record-level encodings, the data owners can use different parameters per attribute to change
the attributes’ relative weight in the joint Bloom filter. However, weight adaptation and
application in the PPRL context with record-level encodings differ from traditional record
linkage as they must be applied by the data owners.
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Specifically, we make the following contributions:

• We study the challenges that arise when applying value-specific weighting in the
PPRL context to record-level encodings, e. g., the handling of name variations and
missing values during the encoding phase.

• We modify record-level encoding techniques for PPRL to allow for frequency-
dependent weight adaptation.

• We thoroughly evaluate these techniques and compare them to existing weighting
approaches on attribute-level and record-level encodings. Moreover, we analyze the
effects of using limited information on value frequencies as the complete information
is considered sensitive in the PPRL context.

The paper is structured as follows. In the next section, we discuss Related Work. In Sect. 3
we describe the PPRL encoding and matching process. Then, we discuss weighting-based
classification approaches in the PPRL context (Sect. 4) and present an extensive comparative
evaluation of the different approaches using a real-world dataset (Sect. 5). Finally, we
conclude our work in Sect. 6.

2 Related Work

The idea of assigning weights to different attributes when used for calculating similarities
between records is part of the probabilistic record linkage approach proposed by Fellegi
and Sunter in [FS69]. The weighting of attributes addresses the fact that each attribute
has a different number of (possible) values and these values follow a certain distribution.
Attributes can also be erroneous or out of date, with some attributes being affected more
often than others. Consequently, for each attribute 𝑖 two probabilities, namely the 𝑚- and
𝑢-probability, are determined as

𝑚𝑖 = 𝑃(𝑎𝑖 = 𝑏𝑖 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 |𝑎 ≡ 𝑏)
𝑢𝑖 = 𝑃(𝑎𝑖 = 𝑏𝑖 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 |𝑎 . 𝑏)

where 𝑎 is a record from database 𝐴, 𝑏 is a record from database 𝐵 and 𝑎𝑖 and 𝑏𝑖 are the
values of attribute 𝑖 of record 𝑎 and 𝑏, respectively. With ≡ we denote the equivalence
relation, i. e., both records refer to the same entity. The𝑚-probability specifies the probability
that two records have the same value for attribute 𝑖, given the records refer to the same
entity. Ideally, 𝑚𝑖 = 1 if all true matches agree on attribute 𝑖. This is exactly the case
if attribute 𝑖 does not contain any errors. If, for example, 20% of the duplicates have a
non-equal value, for instance due to a typographical error, then 𝑚 = 0.8. In contrast, the
𝑢-probability specifies the probability that two records have the same value for attribute 𝑖
given the records refer to different entities. The 𝑢-probability is low if the attribute has a
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wide range of possible values. In contrast, if, for example, an attribute has only two possible
and equally likely values, then 𝑢 = 0.5 as the chance that the attribute agrees for two random
records is 50%. 𝑢 is typically frequency-dependent as a random agreement is more likely
for common than for rare values.

Using the 𝑚- and 𝑢-probabilities the weight 𝑤𝑖 for attribute 𝑖 is calculated as

𝑤𝑖 =


𝑤𝑚 = log2

(
𝑚𝑖

𝑢𝑖

)
if 𝑎𝑖 = 𝑏𝑖

𝑤𝑢 = log2
(
1−𝑚𝑖

1−𝑢𝑖

)
if 𝑎𝑖 ≠ 𝑏𝑖

(1)

The probabilistic record linkage approach by Fellegi and Sunter is the basis for many record
linkage approaches and is still frequently used and adapted [Ch12; HSW07].

Herzog et al. [HSW07] propose a method to adjust match and non-match weights also
based on the frequency of individual attribute values. Consequently, an attribute-specific
and a value-specific weight is used. The authors provide a detailed discussion about the
calculation of these weights. Similarly, Zhu et al. [Zh09] propose a scaling factor that is
applied directly to the attribute weights of the Fellegi-Sunter approach. The scaling factor is
calculated based on the present dataset without an external source of (name) frequencies.

Attribute weighting has been used in the PPRL domain as well. The record linkage and
pseudonymization service Mainzelliste, which supports Bloom filter based matching, only
uses the agreement weights to combine attribute similarity scores to a record similarity using
the weighted average [Ro21]. In [Br17], weights are estimated based on partial agreement
models for each individual attribute of a sensitive dataset. However, this approach can
only be utilized for attribute-level encodings. Ranbaduge et al. proposed decay weights
for record-level encodings based on time distances [RC18]. Value-specific weighting
approaches, however, have received limited attention so far in PPRL. Giersiepen et al.
apply the Fellegi-Sunter approach with frequency-dependent 𝑢-probabilities to encrypted
attribute-level hashes [Gi10]. This approach is the standard procedure used by German
cancer registries. To the best of our knowledge, no prior work has studied value-specific
weight adaptation based on individual value frequencies for record-level encodings so far.

3 Background

The general privacy-preserving record linkage process is shown in Fig. 1. We follow a
three-party protocol that uses a semi-trusted third party, called linkage unit (LU), to conduct
the linkage [CRS20]. The protocol is based on an Honest-But-Curious adversary model
which means that all parties follow the protocol but try to learn as much as possible about
the sensitive data of others. To protect the privacy of individuals, the quasi-identifying
attributes, such as names, dates of birth or addresses, are encoded by the data owners (DO).
Often, a preprocessing step is performed before to reduce data quality problems and to



Value-specific Weighting for Record-level Encodings in PPRL 5

convert the data into a standardized format. Only the encoded quasi-identifiers are then
shared with the LU. The LU compares records pairwise and classifies them as Match or
Non-Match. The following subsections explain the matching and encoding phases in more
detail.

Plain dataset A

Preprocessing

Encoding        

Encoded dataset A

Data Owner A

Plain dataset B

Preprocessing

Encoding        

Encoded dataset B

Data Owner B
Parameters

Comparison          

Classification        

Matching record IDs

Linkage Unit

Blocking / Filtering

Fig. 1: Privacy-preserving record linkage protocol with two data owners and a semi-trusted third party
as the linkage unit.

3.1 Encoding

In the encoding phase the plaintext is transformed into an encoded representation that
cannot be reverted to its original form. An obvious solution is the use of cryptographic
hash functions. However, simple hashes are only suitable for exact matching, as even small
differences in the input result in very distinct hash values. Therefore, similarity-preserving
encodings have been developed to enable approximate matching of records containing errors
or inconsistencies, such as typos or outdated values.

The use of Bloom filters for PPRL has been proposed by Schnell and colleagues [SBR09].
It became the most popular encoding scheme for PPRL in research as well as in real
applications [CRS20]. In general, quasi-identifying attributes are split into 𝑛 substrings of
length 𝑞 (𝑞-grams) to build a set of record features 𝐹 = {𝑒1, . . . , 𝑒𝑛} being represented
in a Bloom filter. The original strings can be surrounded by leading and trailing padding
characters to ensure that all characters are included in the same number of 𝑞-grams, which
has been shown to lead to a higher linkage quality [Fr21]. At first, a bit vector of size 𝑙 is
initialized with each bit set to zero. Moreover, 𝑘 hash functions ℎ1, . . . , ℎ𝑘 are defined and
used to hash (map) the elements of 𝐹 into the bit vector. Therefore, each hash function
is applied on each element of 𝐹 and produces a position in the range [0, 𝑙 − 1] as output.
Finally, the bits at the resulting positions are set to one. Given that identical q-grams are
mapped to the same bit positions, a high overlap of q-grams leads to similar Bloom filters
making them suitable for determining the record similarity.
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However, due to the deterministic encoding, frequent patterns in the plaintext values will
lead to frequently set bit positions in the encoded data and thus enabling frequency attacks.
This is true in particular for attribute-level Bloom filter (ABF) where a separate Bloom filter
is used for each attribute. Consequently, frequently occurring plaintext attribute values can
be aligned with frequently occurring Bloom filters. To hamper such attacks, state-of-the-art
encodings combine multiple or all attributes into a joint Record-level encoding [Vi22]. The
encoding procedure must not be known to the Linkage Unit because otherwise it could
conduct dictionary attacks by encoding possible records, e.g., from a similar public dataset,
in the same way and infer the membership of a possible record in the dataset. Therefore the
encoding output must depend on secrets that are private to the data owners, e.g., by using
keyed hash functions.

3.2 Matching

In the matching phase records are compared pairwise and classified as match or non-match.
To reduce the quadratic complexity of comparing each record of one source with each record
of the other source, blocking or filtering techniques can be used [Ch12]. Records that do
not meet specific pre-defined blocking or filtering criteria are considered a non-match and
thus, are not further compared. Possible blocking keys on plaintext are, for example, year
of birth, geographical data items or phonetic encodings of the name. Blocking techniques
for Bloom filter based PPRL using Locality-sensitive hashing have been proposed and
evaluated [FSR18].

Similarities of Bloom filter encodings can be computed with set similarity measures. In this
work we use the Dice coefficient [Di45] which is defined as 𝐷 (𝑎, 𝑏) = (2 · |𝑎∩𝑏 |)/(|𝑎 | + |𝑏 |)
for Bloom filters 𝑎 and 𝑏 where ∩ denotes the intersection (logical AND) operation and | · |
the hamming weight of a Bloom filter (number of 1-bits). The resulting similarity score is
normalized in the range [0, 1]. When using ABF encodings, the attribute similarity scores
have to be aggregated to a record similarity score, for instance, by computing a weighted
average (see Sec. 4.1). If the record similarity score is above a predefined threshold 𝑡, the
record pair is classified as a match, otherwise as a non-match.

4 Methods

In this section we describe how attribute weights can be applied in the PPRL context,
followed by a discussion of methods to adapt the weights depending on the attribute values
and their frequencies. Furthermore, we describe approaches to estimate weights and the
limitations that arise when transferred to the PPRL domain using record-level encodings.
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4.1 Weight application

Attribute weights can be applied in different ways in the PPRL process depending on
the encoding strategy. If attribute-level Bloom filter (ABF) are used, the linkage unit can
compare record pairs attribute-wise. In the probabilistic record linkage theory of Fellegi
and Sunter [FS69] (positive) agreement and (negative) disagreement weights are assigned
to each attribute depending on whether they are equal or not (see Equation (1)) The total
weight is calculated by adding up the respective weights of all attribute pairs. However, this
approach does not make use of approximate similarity functions.

Another approach is based on normalized attribute similarity scores in the range [0, 1] [Ro21].
Those are aggregated into a single record similarity with a weighted average as follows

sim𝑟𝑒𝑐𝑜𝑟𝑑 =

∑𝑁−1
𝑖=0 𝑤𝑖 · 𝑠𝑖𝑚𝑖∑𝑁−1

𝑖=0 𝑤𝑖

(2)

where 𝑁 is the number of attributes and the index 𝑖 represents attribute 𝑖.

These techniques are equivalent to the application of weights on plaintext data in conventional
record linkage as they can make use of attribute-level comparisons. Weights can be
determined and applied at the linkage unit during the matching phase. When using record-
level encodings, however, attribute weights must be incorporated in the encoding phase at
the data owners.

Record-level Bloom filter (RBF) encodings, proposed by Durham et al. [Du14], use a
sampling based approach. Initially, separate (attribute-level) Bloom filters are generated for
each attribute. Based on the respective weights a proportional number of bits is sampled
from each attribute-level Bloom filter to construct a record-level Bloom filter. Finally, the
bits in the RBF are permuted to ensure that an attacker cannot easily reassign bits of the
Bloom filters to specific attributes.

Following the CLK-RBF approach by Vatsalan et al. [Va14], weights can be reflected in the
number of hash functions 𝑘𝑖 that are used for each attribute 𝑖. The more hash functions are
used for an attribute, the more bits in the final Bloom filter are set based on that attribute.
Consequently, the influence of that attribute on the Bloom filter similarity is stronger. The
number of set bit positions related to a certain attribute also depends on the (average)
attribute length. Shorter values consist of fewer record features and thereby fewer bits are
set. We compute 𝑘𝑖 with the following equation to ensure that the average number of hash
functions of each attribute with respect to the total number of hash functions is proportional
to the relative weight of this attribute.

𝑘𝑖 · 𝑛𝑖
𝑘 ·∑𝑁−1

𝑖=0 𝑛𝑖
=

𝑤𝑖∑𝑁−1
𝑖=0 𝑤𝑖

→ 𝑘𝑖 =
𝑤𝑖 · 𝑘 ·

∑𝑁−1
𝑖=0 𝑛𝑖

𝑛𝑖 ·
∑𝑁−1

𝑖=0 𝑤𝑖

(3)
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where 𝑤𝑖 is the weight, 𝑛𝑖 the average number of features, and 𝑘𝑖 the number of hash
functions for attribute 𝑖. 𝑘 is the reference number of hash functions and determines the
average fill rate (amount of 1-bits relative to the length 𝑙) of the Bloom filters.

#L LI IS SA A# DO

Permutation

RBF

#D NOON VAOV N#AN #5 6#56

1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0

#L LI IS SA A# DO#D NOON VAOV N#AN #5 6#56

0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1

1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0

ABF

CLK-RBF

k=1 k=1 k=3

k=2 k=1 k=3

1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0

Sampling based on weights

Fig. 2: Encoding of an example record using the weighted record-level techniques RBF and CLK-RBF.

4.2 Frequency-depending weight adaptation

In this section we describe methods to determine value-specific weights that reflect the
relative significance of the respective attribute value based on its frequency.

Value frequencies can be incorporated in the Fellegi-Sunter approach by computing a
value-dependent 𝑢-probability with 𝑢𝑖 = 𝑓𝑖/𝑇, where 𝑓𝑖 is the absolute frequency of value 𝑖
and 𝑇 is the total number of values. Consider, for example, an attribute with three possible
values ’A’, ’B’ and ’C’ and their respective frequencies in the dataset are 100, 50 and 2 then
𝑢𝐴 = 100/152 ≈ 0.66 and 𝑢𝐶 = 2/152 ≈ 0.01. The likelihood that two random records agree
on this attribute is much larger for the most frequent value ’A’ than for the rarest value ’C’.
Hence, the weights 𝑤𝑚 and 𝑤𝑢 are 0.45 and −1.77 for value ’A’ and 6.10 and −3.30 for
value ’C’ (see Equation (1), assuming a constant 𝑚 = 0.9).

Another approach to modify attribute-level weights is a value-dependent scaling factor 𝑆,
so that 𝑤′ = 𝑆 · 𝑤. This approach is independent of the method used to determine default
weights. Furthermore, it is applicable to other parameters such as the number of hash
functions 𝑘 in CLK-RBF encodings. We therefore focus on this weight adaptation method.

Zhu et al. [Zh09] proposed a scaling factor defined as

𝑆Zhu,𝑖 =

√︄
𝑇

𝑄 · 𝑓𝑖
(4)
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where 𝑇 is the total number of values, 𝑄 is the number of unique values and 𝑓𝑖 is the
absolute frequency of the value 𝑖. For values that are more common than the average, 𝑆Zhu
is in [0, 1) and for rare values the factor is larger than 1. In our previous example we
would compute 𝑆𝐴 =

√︁
152/(3·100) ≈ 0.71 and 𝑆𝐶 =

√︁
152/(3·2) ≈ 5.03. Zhu’s scaling factor

has, however, two unfavorable properties: (1) The reference for 𝑆 = 1 is fixed to the mean
frequency. Since value frequency distributions, e. g., of names, typically have few very
common values and many rare values, this reference can be quite low leading to 𝑆 < 1 for
many mid-common values. (2) The values of the scale factor are biased towards the lower
bound. As a consequence, the scale factors are low for values that are not very common.

To address these issues, we propose an alternative scaling factor based on the inverse
document frequency (idf) which is defined as idf = log2 (𝑇/ 𝑓𝑖). To achieve 𝑆 = 1 for a
desired reference frequency 𝑓ref, we define the scaling factor as

𝑆idf = 1 + idf( 𝑓𝑖) − idf( 𝑓ref) (5)

Moreover, we define 𝑓ref as the frequency of the median attribute value, which is the value in
the middle of the ordered list of values with repetition according to the respective frequency.
For example, if we have a frequency distribution [{𝐴, 4}, {𝐵, 3}, {𝐶, 1}, {𝐷, 1}, {𝐸, 1}],
then the (lower) middle of the list [𝐴, 𝐴, 𝐴, 𝐴,B, 𝐵, 𝐵, 𝐶, 𝐷, 𝐸] is position 5 or value 𝐵.
This results in 𝑆idf < 1 for values that are more frequent than 3. For 𝑆Zhu the reference
(mean) frequency is (4 + 3 + 1 + 1 + 1)/5 = 2. The median-based approach results in half of
the values having a scale factor of below 1 and half above 1.

In practice, the scaling factor 𝑆Zhu can be unreasonably low or high. For instance, in one of
the datasets used in our evaluation, we have 𝑇 = 200 000 records with 𝑄 = 20 060 unique
first names. For the most common name ’James’ ( 𝑓𝑖 = 3401 (1.7%)) we get 𝑆Zhu = 0.05
and for the rarest names with 𝑓𝑖 = 1 we get 𝑆Zhu = 3.2. This very large weight reduction
for the name ’James’ would result in an almost complete disregard of this attribute in the
classification which is not desirable. 𝑆idf can even be negative for common values which
makes normalization inevitable. Therefore, we normalize and restrict the scales as follows:
(1) The scaling factor is normalized to the interval [0, 2]. We use a separate min-max
normalization for scaling factors below and above 1 to ensure that this value is not modified.
(2) 𝑆 is restricted to a more narrow interval [𝑆min, 𝑆max], e. g., [0.75, 1.5], to constrain the
effect of the weight adaptation.

𝑆lowest = min(𝑆𝑖) (6)
𝑆highest = max(𝑆𝑖) (7)

𝑆norm,𝑖 =

{
𝑆𝑖−𝑆lowest
1−𝑆lowest for 𝑆𝑖 < 1
1 + 𝑆𝑖−1

𝑆highest−1 for 𝑆𝑖 ≥ 1
(8)

𝑆restricted,𝑖 =

{
𝑆min + 𝑆norm,𝑖 · (1 − 𝑆min) for 𝑆norm,𝑖 < 1
1 + (𝑆norm,𝑖 − 1) · (𝑆max − 1) for 𝑆norm,𝑖 ≥ 1

(9)
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ALGORITHM 1: Computation of value-specific scale factors
Input: AF: Lookup table for attribute value frequencies

𝐴𝑖 : Attribute value i
Output: scale𝑖 : Scale factor for value i

1 if 𝐴𝑖 is in AF then
2 freq𝑖 ← GetFrequency(AF, 𝐴𝑖);
3 scale𝑖 ← ComputeScale(freq𝑖); /* Eq. (4) (Zhu) or Eq. (5) (idf) */

4 scale𝑖 ← MinMaxNormalize(scale𝑖); /* Equation (8) */

5 scale𝑖 ← RescaleToBoundaries(scale𝑖); /* Equation (9) */

6 else
7 scale𝑖 ← 1.0;

The scale factor is applied to weights at the linkage unit for ABF (see Algorithm 2) and at
the data owner for RBF (see Algorithm 3) whereas in CLK-RBF the scale factor is applied
to the number of hash functions 𝑘 (see Algorithm 4). The weight adaptation technique based
on a scaling factor requires only a few simple computations as can be seen in Algorithm
1. Therefore, it can be easily integrated into existing frameworks that already support
(attribute-level) weighted Bloom filter encodings.

4.3 Weight estimation

In this section we describe how weights can be estimated and the issues that arise when
applying these methods in the PPRL domain. As described in Sect. 2, a popular method
to determine weights is based on the probabilistic approach of Fellegi and Sunter. The
computation of the weights requires estimates of the 𝑚- and 𝑢-probabilities for the attributes.
Given ground truth data, we can calculate 𝑚 = 1 − 𝑒 where 𝑒 is the error rate, i. e., the
share of true duplicates with a different value for that attribute. In real-world use cases the
error rate must be estimated based on expert and domain knowledge or be determined in a
pre-study with a clerical review.

A naive approach to estimate attribute-specific 𝑢-probabilities is 𝑢 = 1/#uniqueValues, which
means that the probability that two attribute values agree by chance is equal to the
average relative frequency. We use a different approach which is sensitive to the frequency
distribution by setting 𝑢 =

∑𝑄−1
𝑖=0 𝑝2

𝑖
, where 𝑄 is the number of distinct values and 𝑝𝑖 the

relative frequency of the 𝑖-th value. As an example, consider the attribute gender that can
take the values ’female’, ’male’ and ’undesignated’. The first two values are nearly equally
frequent (𝑝 = 0.48), the last value, however, is far less common (𝑝 = 0.04). The estimated
probability that the values of two random records agree is 1/3 in the naive approach, but
46% when considering the frequency distribution.
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ALGORITHM 2: Linkage with attribute-level similarities and value-specific weighting
Input: R: Dataset with attribute-level encoded records

wdefault: Default attribute-specific weights
t: threshold

Output: M: Matching record pairs
1 Candidates← GenerateRecordPairsWithStandardBlocking(R);
2 M← [];
3 for Candidate ∈ Candidates do
4 AP← GenerateAttributePairs(Candidate);
5 AS← ComputeAttributeSimilarities(AP);
6 w← wdefault;
7 for sim𝑖 ∈ AS do
8 if sim𝑖 = 1 then /* Adapt only if attributes are equal */

9 scale← GetScale(AP𝑖); /* Algorithm 1 */

10 𝑤𝑖 ← 𝑤default,𝑖 · scale;

11 RS← ComputeWeightedRecordSimilarity(w, AS); /* Equation (2) */

12 if RS > t then M.append (Candidate) ;

ALGORITHM 3: Record-level Bloom filter (RBF) encoding with value-specific weighting
Input: 𝑅: Plaintext record

wdefault: Default attribute-specific weights
𝑙RBF , 𝑙ABF : Length of the record-level / attribute-level Bloom filter
kABF : Attribute-level number of hash functions

Output: RBF: Encoded Bloom filter record
1 B← []; w← wdefault;
2 for 𝐴𝑖 ∈ 𝑅 do
3 ABF𝑖 ← GenerateBloomFilter (𝐴𝑖 , 𝑙ABF , 𝑘ABF,𝑖);
4 scale← GetScale(𝐴𝑖); /* Algorithm 1 */

5 𝑤𝑖 ← 𝑤default,𝑖 · scale;

6 share← ComputeProportionalNumbersOfBits(w, 𝑙RBF);
7 for ABF𝑖 ∈ ABF do B.append (SampleBits(ABF𝑖 , sharei) ;
8 RBF ← Permute(B);

ALGORITHM 4: CLK-RBF encoding with value-specific weighting
Input: 𝑅: Plaintext record

kdefault: Default attribute-specific number of hash functions
𝑙: Length of the record-level Bloom filter

Output: RBF: Encoded Bloom filter record
1 RBF = InitializeEmptyBloomFilter (𝑙);
2 for 𝐴𝑖 ∈ 𝑅 do
3 scale← GetScale(A𝑖); /* Algorithm 1 */

4 𝑘𝑖 ← 𝑘default,𝑖 · scale;
5 BFi ← GenerateBloomFilter (𝐴𝑖 , 𝑙, 𝑘𝑖);
6 RBF ← RBF ∪ BFi;
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The application of this approach in the PPRL domain comes with additional challenges,
for attribute-specific weights as well as for frequency-dependent value-specific weights.
The estimation of 𝑢-probabilities and the computation of weight scale factors are based on
frequency distributions which are not readily available for the datasets to be linked as this
information is considered sensitive. We discuss this restriction in Sect. 4.4.

Furthermore, in PPRL with record-level encodings, weights cannot be chosen depending on
the agreement/disagreement of attributes. This is because weights must be applied at the
data owners where the comparison result is not known yet. Therefore, the two weights of
the Fellegi-Sunter model have to be combined into a single weight. Durham et al. [Du14]
proposed the range 𝑤 = 𝑤𝑚 − 𝑤𝑢. The combined weight, however, can be dominated by
𝑤𝑚 if the attributes have a large variety of values which is typically the case for names. As
a consequence, we normalize 𝑤𝑚 and 𝑤𝑢 with respect to the maximum/minimum value
across all attributes.

𝑤𝑚𝑖,𝑛𝑜𝑟𝑚 =
𝑤𝑚𝑖

𝑚𝑎𝑥(𝑤𝑚)
(10)

𝑤𝑢𝑖,𝑛𝑜𝑟𝑚 =
𝑤𝑢𝑖

𝑚𝑖𝑛(𝑤𝑢)
(11)

𝑤𝑖,𝑛𝑜𝑟𝑚 = 𝑚𝑎𝑥(𝑤) · (𝑤𝑚𝑖,𝑛𝑜𝑟𝑚 − 𝑤𝑢𝑖,𝑛𝑜𝑟𝑚) (12)

4.4 Limited frequency information

Accurate global frequency distributions of attributes across all linked datasets are not readily
available in the PPRL context. This information is considered sensitive as it could be used to
perform frequency attacks on Bloom filter encodings. In the following, we discuss possible
solutions to deal with this limitation.

Frequency distributions can be gathered from an external source on similar datasets, e. g.,
statistical data from a census of the same geographical region or be computed for the data
to be linked. While the first approach is especially useful for smaller datasets where the
calculated value counts may not represent the real-world frequency distribution well, the
latter ensures that the used frequencies correspond to the actual properties of the dataset.

Each data owner could determine its own source-specific frequency distribution and compute
weights based on it. This will result in different weights for identical values. We discuss
these effects in Sect. 4.5.

Data owners cannot exchange the complete frequency information as this would leak
information on rare values. However, the data owners might be willing and allowed to
exchange and combine the relative frequencies of their most common values. While this can
increase the linkage quality, it does not affect the privacy as the linkage unit does not learn
this information. For 𝑆idf a different reference frequency must be used as the median cannot
be determined for an incomplete frequency distribution. We therefore propose using the
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least frequent value in the list of most common attribute values as the reference. The scaling
factor for this value as well as values not in the list is 1. For values on the list, it is below 1.

The limitation of frequency-dependent weight adjustments to common values will likely
lead to smaller effects on the linkage result. Additionally, the weight application can be
restricted to certain attributes, e. g. first and last name, because frequency information on
other attributes is missing. However, it still could be beneficial with respect to the precision.
We experimentally evaluate this effect in Sect. 5.

4.5 Effects of attribute differences in duplicates

Real-world data often contains typographical errors. Besides, names can have natural
variations, for instance, the German last name ’Schmidt’ with its variants ’Schmid’ or
’Schmitt’. These varying values occur with different frequencies which leads to different
frequency-dependent weights. The consequences of varying weights depend on the weight
application technique that is used.

For the RBF approach a single different attribute weight changes the proportions of the
weights and hence the sampling rates for all other attribute-level Bloom filters. If these
Bloom filters have equal fill rates, the fill rate of the RBF does not change for different
weights.

Using CLK-RBF with weight adaption, as described in Algorithm 4, the scaling factor of an
attribute 𝑖 is applied by changing the number of hash functions 𝑘𝑖 for that attribute only.
This does not affect the number of hash functions for the other attributes. Nevertheless, the
fill rate of the final Bloom filter is changed as the total number of hash functions is modified.

In Tab. 3, we illustrate the effect of changing a single weight using the two encoding methods.
Based on the default weights and the average number of features per attribute, we compute
the sampling rates for RBF and the number of hash functions 𝑘 for the CLK-RBF approach
for an example record 𝑎, that has 𝑆 = 1 for all attributes. Record 𝑏 has the same last name
and year of birth, but a different and very common first name. Therefore, we set the scaling
factor 𝑆𝑏 (FN) = 0.5. The sampling rates for all attributes of record 𝑏 are changed due to
the decreased sum of all weights. For CLK-RBF, however, only 𝑘𝑏 (FN) is adapted. As a
consequence, the generated Bloom filter encodings based on the RBF method are more
affected by weight variations compared to the CLK-RBF approach.

The same applies if we compute a different scaling factor 𝑆′
𝑏
(FN) = 0.67 based on a

different frequency information, e. g., when using source-specific frequency distributions
(as described in the previous section) where in each distribution the name ’Lisa’ occurs
often, but with different relative frequencies. If two sources encode the same record 𝑏 based
on their respective scaling factors 𝑆𝑏 and 𝑆′𝑏, the resulting Bloom filters are different. In
contrast, using the CLK-RBF approach, this affects only a few hash functions and thus the
difference between the Bloom filters is lower.
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Tab. 3: Example of a variation of a single weight on record-level encodings (𝑙 = 1024) based on RBF
(𝑙𝐴𝐵𝐹 = 256) and CLK-RBF (𝑘 = 20).

First name Last name Year of birth
Record a LISE DONOVAN 1956
Record b LISA DONOVAN 1956
n (avg. #features) 7 8 5
wdefault 12 11 14
Sb 0.5 1 1
S′b 0.67 1 1

RBF
wa (= wdefault) 12 11 14
wb 6 11 14
w′b 8 11 14
% of sampling for a (wa) 12/37 = 32% 11/37 = 30% 14/37 = 38%
% of sampling for b (wb) 6/31 = 19% 11/31 = 36% 14/31 = 45%
% of sampling for b (w′b) 8/33 = 24% 11/33 = 33% 14/33 = 43%

CLK-RBF
ka (for S = 1) 18 15 30
kb (for Sb) 9 15 30
k′b (for S′b) 12 15 30

To avoid different weights for attribute variations, such as ’Lisa’ and ’Lise’, we consider the
use of frequency distributions based on generalizations of the plaintext values, e. g., using
the Soundex phonetic encoding function [OR18]. Consequently, the weight for each value is
computed based on the frequency of its generalized value (Soundex code). For example, the
Soundex code for both ’Lisa’ and ’Lise’ is ’L200’, and thus, the same weights are computed,
although the values might have different frequencies.

4.6 Handling missing values

Apart from erroneous attributes, missing values often occur in real-world datasets and a
strategy is needed to handle them. When working with plaintext or attribute-level encodings,
the linkage unit can detect missing values. Multiple strategies can be used, e. g., ignoring
the attribute in the similarity score aggregation or setting its similarity score to 0. When
working with record-level encodings the linkage unit cannot detect missing values. If a
data owner detects a missing value during the encoding phase the respective weight could
be redistributed to the other attributes. However, as the missingness is source-specific, a
true match with that value set would be encoded with different weights for all attributes.
This would in turn lead to differences in the resulting Bloom filters and thus likely to
misclassifications. We therefore do not adapt weights of missing values and simply treat
them as empty attributes.
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5 Evaluation

We evaluate the methods described in the previous section with respect to the linkage quality,
while focusing on the following aspects: (1) Quantification of the effects of frequency-
dependent weight adaptation. (2) Comparison of weight application approaches in PPRL.
(3) Investigation of the effects of limited information on frequency distributions.

5.1 Datasets

To study the effects on real-world data, we use a dataset based on the North Carolina Voter
Registration (NCVR) database (https://www.ncsbe.gov/) provided by Panse et al. [Pa21].
This dataset contains over 120 million historic voter records with person-related attributes
such as first name (FN), middle name (MN), last name (LN), year of birth (YOB), place of
birth (POB), city, ZIP code and sex. From that dataset we extracted a subset, tagged F, by

(1) Sampling 80 000 individual records (singletons) contained in the snapshot from ’2021-
01-01’ into set 𝐴𝑆 and 𝐵𝑆 each, ensuring that 𝐴𝑆 ∩ 𝐵𝑆 = ∅.

(2) Sampling 20 000 pairs of records 𝑎, 𝑏 (duplicates) into sets 𝐴𝐷 and 𝐵𝐷 respectively,
where 𝑎 is from any snapshot between ’2008-01-01’ (inclusive) and ’2021-01-01’
(exclusive), and 𝑏 is from snapshot ’2021-01-01’. Moreover, ∀𝑎, 𝑏 : (YOB(𝑎) =

YOB(𝑏)) ∧ ∃attr ∈ {FN,MN,LN, POB, SEX} : attr(𝑎) ≠ attr(𝑏).

(3) Constructing the final subsets as F𝐴 = 𝐴𝑆 ∪ 𝐴𝐷 and F𝐵 = 𝐵𝑆 ∪ 𝐵𝐷 respectively.

Based on F (‘Full‘) we derive another dataset, tagged R (‘Reduced‘), where we removed
the attributes middle name and place of birth, thus, making the dataset more challenging to
match, see also Tab. 4.

Tab. 4: Description of used datasets.

Name |A | |B | |A ∩ B | Attributes
F 100k 100k 20k FN, MN, LN, YOB, POB, CITY, ZIP
R 100k 100k 20k FN, LN, YOB, CITY, ZIP

For our evaluations with external statistical information we use frequencies of first and last
names from the 1990 US Census.2

5.2 Encoding

We set a fixed length of 𝑙 = 256 for the attribute-level Bloom filter. The plaintext attributes
are preprocessed by removing leading and trailing whitespace, conversion to lowercase

2 https://www.census.gov/topics/population/genealogy/data/1990_census.html

https://www.ncsbe.gov/
https://www.census.gov/topics/population/genealogy/data/1990_census.html
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and removal of diacritics before being split into overlapping bigrams using padding. The
number of hash functions 𝑘𝑖 is selected based on the average length of each attribute to
achieve a unified average fill rate of the respective Bloom filter of approximately 40%. RBF
encodings are based on the same ABF parameters. We set the length of the record-level
Bloom filter to 𝑙 = 1024. For the computation of attribute-specific 𝑘𝑖 in the CLK-RBF
encoding we use the reference number of hash function 𝑘 = 12 (F) and 𝑘 = 15 (R) which
results in an average Bloom filter fill rate of approximately 40%.
Tab. 5: Attribute properties (availability, average length ∅𝑙, 𝑚- and 𝑢-probability, normalized weight)
and derived encoding parameters for Attribute-level Bloom filter (number of of hash functions 𝑘),
Record-Level Bloom filter (share of each attribute) and CLK-RBF (number of hash functions 𝑘 .)

Attr. Properties ABF RBF CLK-RBF
Avail. ∅l m-prob u-prob wnorm k %(F) %(R) k(F) k(R)

FN 99.99% 6 0.9300 0.0027 12.83 18 19.95 24.07 15 18
MN 92.16% 5.1 0.4380 0.0037 7.43 21 11.55 – 12 –
LN 100% 6.4 0.7187 0.0010 11.14 17 17.32 20.90 11 15
YOB 100% 4 0.9900 0.0135 14.44 26 22.45 27.09 24 29
CITY 99.97% 8.9 0.6507 0.0193 6.63 13 10.31 12.44 6 7
ZIP 99.89% 5 0.5318 0.0031 8.27 21 12.86 15.51 11 14
POB 79.13% 2 0.6436 0.1513 3.57 43 5.55 – 10 –

5.3 Matching

In this work, we focus on the evaluation of comparison and classification rather than
techniques to improve scalability. However, to run the experiments in a reasonable time, we
use standard blocking to reduce the number of comparisons that need to be computed. To
ensure the comparability of the results, we use the same blocking keys independent of the
encoding method. For each record we generate blocking keys at the data owners based on
the plaintext attribute combinations FN+YOB, LN+YOB and Soundex(FN)+Soundex(LN)
and encode them using a cryptographic one-way hash function. These hashed blocking keys
are transmitted together with the encoded records to enable blocking at the linkage unit.
Additionally, we add a blocking key of the global record id that is unique for each duplicate
pair based on the ground truth. This blocking key is used to ensure that no true duplicates
are excluded from the comparison.

For attribute-level encodings, attribute pairs with one or both values missing in essential
attributes (first name, last name and year of birth) are assigned a similarity score of 0. Other
missing attributes are ignored in the weighted average aggregation.

We conduct additional experiments where a post-processing routine on the set of matches
is applied, using a symmetric best match strategy (Max1-both) to restrict the result to 1:1
links. In many practical use cases this is reasonable when the sources can be considered
duplicate-free and therefore each record of a database has at most one duplicate in the other
database [Fr18].
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5.4 Evaluation measures

We use the standard measures recall, precision and F1-score to evaluate linkage quality.
Recall measures the proportion of found true matches from all true matches. Precision
measures the proportion of found true matches from all found matches. The F1-score is the
harmonic mean of these two measures.

Rec. =
#TruePos.

#TruePos. + #FalseNeg. , Prec. =
#TruePos.

#TruePos. + #FalsePos. , F1 =
2 · Rec. · Prec.
Rec. + Prec.

We evaluate these measures for similarity thresholds 𝑡 in the range of [0.7, 1.0] in steps
of 0.01. In practical record linkage, however, ground truth data is not available and the
used thresholds are rarely optimal. For a high linkage quality in real-world applications the
results should be stable for a broader range of thresholds. We therefore introduce a loss
measure 𝐿𝑑

𝑀
for the linkage quality that describes the maximal loss of measure 𝑀 in the

threshold range [𝑡opt − 𝑑, 𝑡opt + 𝑑]. Furthermore, we report the area under the curve (AUC)
of precision-over-recall as a threshold-independent measure.

5.5 Results

The threshold-dependent quality measures are reported for the classification thresholds 𝑡opt
that are optimal for this linkage configuration and used dataset with respect to the F1-score.
First, we evaluate different weight adaptation methods based on the scaling factors 𝑆Zhu and
𝑆idf (see Tab. 6). We use ABF encodings as described in Algorithm 2 and the full frequency
distribution computed for the respective datasets and test multiple scale factor intervals.

Tab. 6: Comparison of weight adaptation methods on Attribute-level Bloom filter.

DS S Smin Smax AUC topt Rec. Pre. F1 L0.01
F1 L0.03

F1 L0.05
F1

R

– – – 0.841 0.85 0.786 0.787 0.787 0.029 0.089 0.180

Zhu
0.5 2.0 0.869 0.82 0.813 0.813 0.813 0.032 0.094 0.189
0.5 1.5 0.867 0.82 0.810 0.812 0.811 0.031 0.093 0.188
0.75 1.5 0.856 0.84 0.786 0.817 0.801 0.022 0.080 0.160

idf
0.5 2.0 0.884 0.84 0.830 0.839 0.835 0.030 0.091 0.184
0.5 1.5 0.877 0.84 0.817 0.839 0.828 0.024 0.083 0.174
0.75 1.5 0.866 0.85 0.795 0.837 0.815 0.019 0.087 0.156

F

– – – 0.918 0.83 0.809 0.914 0.859 0.008 0.050 0.151

Zhu
0.5 2.0 0.933 0.79 0.853 0.904 0.878 0.019 0.080 0.210
0.5 1.5 0.932 0.79 0.849 0.904 0.875 0.017 0.078 0.208
0.75 1.5 0.927 0.81 0.834 0.906 0.868 0.014 0.066 0.185

idf
0.5 2.0 0.940 0.81 0.863 0.913 0.887 0.017 0.072 0.191
0.5 1.5 0.937 0.81 0.851 0.916 0.882 0.014 0.064 0.180
0.75 1.5 0.931 0.82 0.838 0.914 0.875 0.012 0.058 0.167

All weight adaption configurations improve the linkage quality compared to static weights.
However, the 𝑆idf-based approaches generally show a higher rise of the AUC than the
𝑆Zhu-based with a maximum improvement by 0.043 (R) and 0.022 (F) each with a constraint
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Tab. 7: Comparison of averaging, attribute-specific and value-specific weighting (𝑆idf [0.5,2]) for
different encoding methods.

DS Enc. Weighting AUC topt Rec. Pre. F1 L0.01
F1 L0.03

F1 L0.05
F1

R

ABF
– 0.777 0.86 0.609 0.803 0.693 0.015 0.045 0.052
Attribute-specific 0.841 0.85 0.786 0.787 0.787 0.029 0.089 0.180
Value-specific 0.884 0.84 0.830 0.839 0.835 0.030 0.091 0.184

CLK-
RBF

– 0.749 0.85 0.580 0.806 0.674 0.014 0.047 0.078
Attribute-specific 0.837 0.83 0.782 0.767 0.775 0.028 0.093 0.221
Value-specific 0.875 0.81 0.804 0.849 0.826 0.015 0.070 0.189

RBF
– 0.787 0.86 0.605 0.828 0.699 0.007 0.024 0.043
Attribute-specific 0.845 0.85 0.770 0.806 0.788 0.015 0.074 0.179
Value-specific 0.675 0.76 0.373 0.973 0.539 0.001 0.001 0.001

F

ABF
– 0.900 0.80 0.808 0.857 0.832 0.009 0.046 0.134
Attribute-specific 0.918 0.83 0.809 0.914 0.859 0.008 0.050 0.151
Value-specific 0.940 0.81 0.863 0.913 0.887 0.017 0.072 0.191

CLK-
RBF

– 0.845 0.77 0.714 0.804 0.756 0.009 0.034 0.067
Attribute-specific 0.917 0.80 0.824 0.903 0.861 0.019 0.079 0.192
Value-specific 0.938 0.77 0.866 0.917 0.891 0.019 0.072 0.185

RBF
– 0.874 0.77 0.793 0.815 0.804 0.020 0.120 0.291
Attribute-specific 0.920 0.81 0.834 0.905 0.868 0.024 0.099 0.248
Value-specific 0.801 0.77 0.677 0.958 0.793 0.005 0.023 0.054

interval of [0.5, 2.0]. The optimal F1-scores show similar increases by 0.048 (R) and
0.028 (F). Therefore, we use that weight adaption strategy for the following experiments.

We compare the results of the value-specific weight adaptation strategy for the encoding
techniques ABF, CLK-RBF and RBF (see Tab. 7). We report two baselines, with and
without attribute-specific weights. The latter is implemented by using the arithmetic mean
of the attribute similarity scores (ABF), equal number of hash functions 𝑘 for all attributes
(CLK-RBF) and by sampling equal shares from each attribute (RBF). The value-specific
weighting scheme achieves AUC improvements for CLK-RBF comparable to those of the
attribute-level application despite the missing restriction of weight adjustments to equal
attributes: +0.038 (R) and +0.021 (F) with respect to the attribute-specific weight baseline
and +0.126 (R) and +0.093 (F) to the averaging baseline. However, with the sampling-based
approach (RBF) AUC decreases for value-specific weighting. As we discussed in Sect. 4.5,
this is because even a single different weight, e. g., due to a typo, leads to considerably
dissimilar Bloom filters. Even with a low threshold of 0.76 the recall is as low as 0.373 (for
R). Thus, we subsequently focus on the CLK-RBF encoding.

In general, we observe that weight adaptation methods lead to lowered optimal thresholds
with increases in recall as well as in precision. While the first is expected when lowering
the threshold, the rise of precision suggests that non-match candidates with comparatively
high similarity due to common values are less often wrongly classified as matches as these
attributes are weighted lower. Moreover, we note that the improved results are also equally
or more stable regarding the threshold selection. For R with an increase of the F1-score by
0.051, 𝐿𝑑

𝐹1 is reduced from 0.028 to 0.015 in 𝑑 = 0.01 and decreases by 0.023 in 𝑑 = 0.03,
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Fig. 3: Comparison of quality measures for
attribute- and value-specific weighting on CLK-
RBF for R.

which indicates that a higher linkage quality can
be achieved in real-world applications with non-
optimal threshold selection (see also Fig. 3).

As explained above, the restriction of the link-
age result to 1:1 links is reasonable in some ap-
plications and enhances the linkage quality. In
order to study whether weight adaption further
improves the results, we evaluate the weighting
methods for CLK-RBF where the links have
been post-processed before the linkage quality
assessment (see Tab. 8). The results show in-
creases of AUC, +0.026 (R) and +0.011 (F),
indicating that the weight adjustment technique
is beneficial under these conditions as well.

Tab. 8: Comparison of attribute-specific and value-specific weighting (𝑆idf [0.5,2]) for CLK-RBF
where the found matches have been restricted to 1:1 links in a postprocessing step (PP).

DS PP Weighting AUC topt Rec. Pre. F1 L0.01
F1 L0.03

F1 L0.05
F1

R
yes

Attribute-specific 0.867 0.81 0.833 0.799 0.816 0.016 0.058 0.117
Value-specific 0.893 0.80 0.820 0.876 0.847 0.007 0.038 0.093

F Attribute-specific 0.936 0.79 0.848 0.915 0.880 0.007 0.032 0.077
Value-specific 0.947 0.76 0.881 0.927 0.904 0.012 0.045 0.101

Finally, we study how variations of available frequency information affect the results
(see Tab. 9). Again, we report two baselines, with and without value-specific weight
adaption, to allow for a comparison with the current state-of-the-art of attribute-specific
weights and with value-specific weights under ideal conditions. The results with frequency
distributions based on Soundex encodings instead of plaintext values show lower linkage
quality, because weights of rare values can be decreased in this setting if these values
share the encoding with a common value. Using source-specific frequency distributions
the results are almost equal to those with access to the overall frequency information as
the distributions are similar. When linking smaller datasets, the distributions will have
larger differences, in particular for rare values. We therefore conduct additional experiments
where we limit the available frequency information to the most frequent values, as described
in Sect. 4.4. The results show that even with a limitation on the 20 most frequent values
AUC increases by 0.027 (R) and 0.014 (F) compared to attribute-specific weights. However,
when using external statistical data on the 100 most frequent first and last names only, the
linkage quality improvements are comparatively low. The inclusion of information on the
frequencies of additional (geographical) attributes could potentially improve the results.

Generally, we see that the quality improvements for F are lower than for R because the
inclusion of information on value frequencies is more relevant in linkage scenarios where
fewer attributes are available.
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Tab. 9: Comparison of weighting methods with limited frequency information based on CLK-RBF.

DS Weighting limitation AUC topt Rec. Pre. F1 L0.01
F1 L0.03

F1 L0.05
F1

R

Attribute-specific 0.837 0.83 0.782 0.767 0.775 0.028 0.093 0.221
Value-specific 0.875 0.81 0.804 0.849 0.826 0.015 0.070 0.189
⊢ Soundex-based 0.858 0.82 0.788 0.832 0.809 0.016 0.075 0.207
⊢ Source-specific 0.875 0.81 0.791 0.864 0.826 0.009 0.058 0.171
⊢ Top 10 0.858 0.83 0.789 0.836 0.811 0.014 0.077 0.218
⊢ Top 20 0.864 0.82 0.825 0.813 0.819 0.032 0.117 0.286
⌞ Top 100 Names (Census) 0.851 0.82 0.802 0.769 0.785 0.025 0.082 0.195

F

Attribute-specific 0.917 0.80 0.824 0.903 0.861 0.019 0.079 0.192
Value-specific 0.938 0.77 0.866 0.917 0.891 0.019 0.072 0.185
⊢ Soundex-based 0.930 0.78 0.852 0.915 0.882 0.016 0.073 0.197
⊢ Source-specific 0.938 0.77 0.858 0.924 0.890 0.013 0.062 0.168
⊢ Top 10 0.928 0.79 0.845 0.913 0.877 0.018 0.080 0.212
⊢ Top 20 0.931 0.79 0.844 0.924 0.882 0.013 0.065 0.183
⌞ Top 100 Names (Census) 0.929 0.79 0.841 0.906 0.872 0.016 0.067 0.168

6 Conclusion

Privacy-preserving record linkage enables the integration of sensitive data and thus, its
comprehensive analysis. A main challenge is the classification of record pairs as match or
non-match based on computed similarities between quasi-identifying attributes of these
records. Several studies focus on attribute- and value-specific weightingmethods for plaintext
data. Nevertheless, only few works adapt these methods in the context of PPRL.

In this work, we apply existing record-level Bloom filter encodings and combine them
with frequency-dependent weight adaptation approaches. We extensively evaluate our
adapted encoding schemes and compare them with attribute- and record-level Bloom filter
encodings. The results show that the modified CLK-RBF encoding outperforms the existing
(record-level) methods and achieves comparable results to attribute-level weight application
techniques regarding linkage quality and robustness. However, the latter require attribute-
level encodings, which are susceptible to cryptanalysis and thus not secure in practical
applications. While the weight adaptation disturbs certain frequent bit patterns in the
record-level Bloom filters due to the reduced number of hash functions for frequent values,
it introduces other frequent patterns in the encoded data as lower weights systematically
result in lower fill rates.

In future work, we therefore plan to integrate Bloom filter hardening techniques in our
approach to further improve the resistance against cryptanalysis. Furthermore, we will study
approaches to estimate attribute-specific weights with limited information on frequency
distributions and error rates.
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