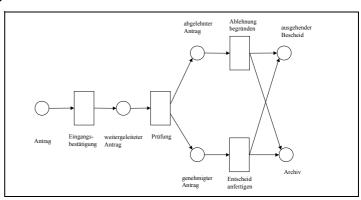
Petri-Netze: Analyse

- Bzgl. der formalen Analyse von Petri-Netzen
 - Erreichbarkeitsanalyse
 - Deadlock-Analyse
 - Lebendigkeit
 - Invarianten

wird verwiesen auf


- Baumgarten, B.: *Petri-Netze: Grundlagen und Anwendungen*. Spektrum Akademischer Verlag, Heidelberg, 1996.
- Reisig, W.: Petrinetze: eine Einführung. Springer, Berlin, 1991.
- Starke, P.: Analyse von Petri-Netz-Modellen. Teubner, Stuttgart, 1990.
- Petri-Netz-Vorlesungen

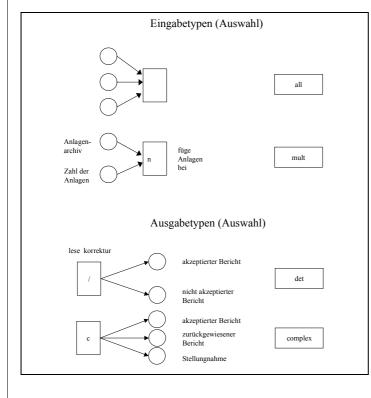
(C) Prof. E. Rahm, R. Müller

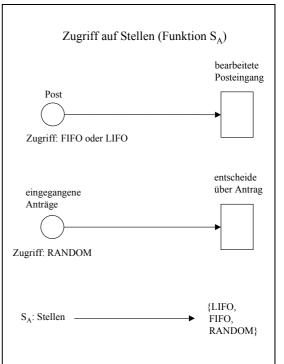
49

Petri-Netze: Bewertung von Prädikat-Transitions-Netzen bzgl. Workflow-Definitionen

- Prädikat-Transitions-Netze (Pr/T) nutzbar für Workflow-Definitionen, da
 - Unterscheidbare Tokens, Kantengewichte
 - Prädikate an Stellen und Transitionen für zusätzliche Steuerung des Schaltverhaltens
- Problematik: Kontrollfluss muss implizit durch Datenfluss spezifiziert werden
- Limitationen von Pr/T-Netzen u.a.
 - Kein Typkonzept für Tokens (im programmiersprachlichen Sinn)
 - Keine Zugriffsstrategien spezifizierbar bzgl. Stellen (FIFO, LIFO, ...)
 - Keine Differenzierung des Schaltverhaltens von Transitionen
 - Keine Spezifikation möglich, ob Arbeitsschritt manuell oder automatisch
 - Keine temporale Unterstützung

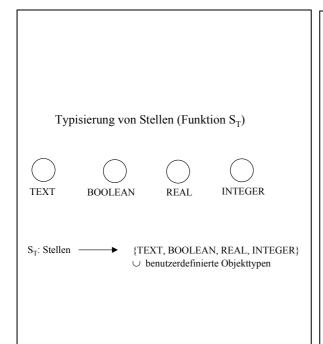
■ Stellvertreter für workflow-orientierte Petri-Netz-Typen: FUNSOFT-Netze


FUNSOFT-Netze: Hauptmerkmale

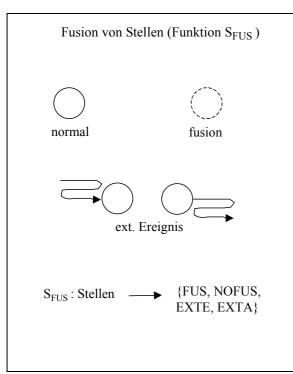

- Beispiel eines workflow-orientierten Petri-Netz-Typs
- Entwickelt von der Fraunhofer-Gesellschaft (Deiters et al.)
- Token-Typisierung möglich
- Unterschiedliche Zugriffsstrategien auf Stellen (Kanäle)
- Unterschiedliches Schaltverhalten von Transitionen spezifizierbar
- Aktivitäten (modelliert durch Transitionen) können Attribute haben wie z.B.
 - Zeitverbrauch
 - Ausführungsmodus (manuell, automatisch)
 - Anzahl simultaner Ausführungen
 - Verfeinerungsmodus
- Formale Semantik durch definierte Abbildung auf Pr/T-Netze
- Werkzeuge CORMAN und LEU

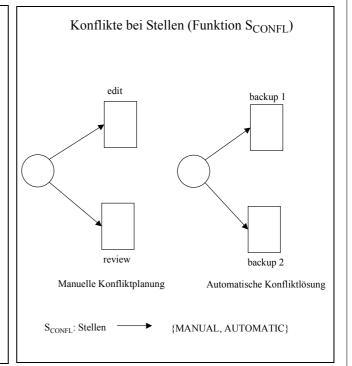
(C) Prof. E. Rahm, R. Müller

51


FUNSOFT-Netze: Schaltverhalten und Stellenzugriff

FUNSOFT-Netze: Typisierung von Stellen und Tokens (Objekten)


```
Benutzerdefinierte Typen wie z.B.:

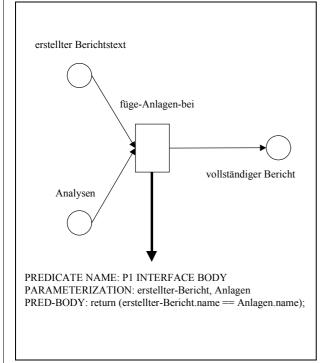

OBJECT-TYPE-NAME = BERICHT
struct{
    string name;
    string titel;
    string autor;
    date datum-der-erstellung;
    TEXT inhalt;
    text glossar;
}
```

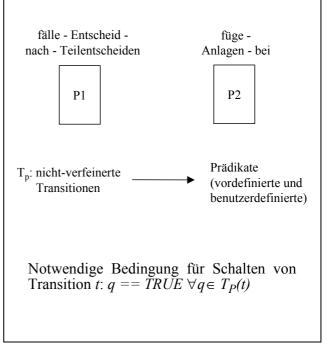
(C) Prof. E. Rahm, R. Müller

53

FUNSOFT-Netze: Stellenfusion und Konfliktlösung

FUNSOFT-Netze: Stellen (Zusammenfassung)


Funktion	Bedeutung	Domain	Wertebereich
S_A		Stellen	{LIFO, FIFO, RANDOM}
S_{T}		Stellen	Typen
S_{FUS}		Stellen	{FUS, NOFUS, EXTE, EXTA}
S _{CONFL}		Stellen	{MANUAL, AUTOMATIC}


(C) Prof. E. Rahm, R. Müller

55

bearbeitete Antrag verbessere - Bericht verfeinert nicht verfeinert T_{DEC}: Transitionen → {DEC, NODEC}

FUNSOFT-Netze: Transitions-Prädikate

(C) Prof. E. Rahm, R. Müller

3/

FUNSOFT-Netze: Zeitverbrauch und Automation

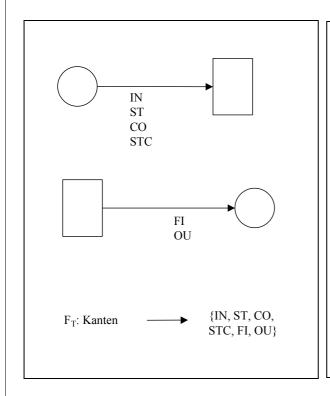
backup edit discuss

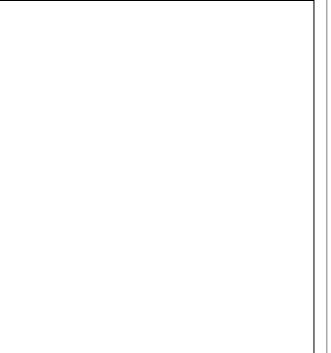
T_{MAN}: nicht-verfeinerte
Transitionen

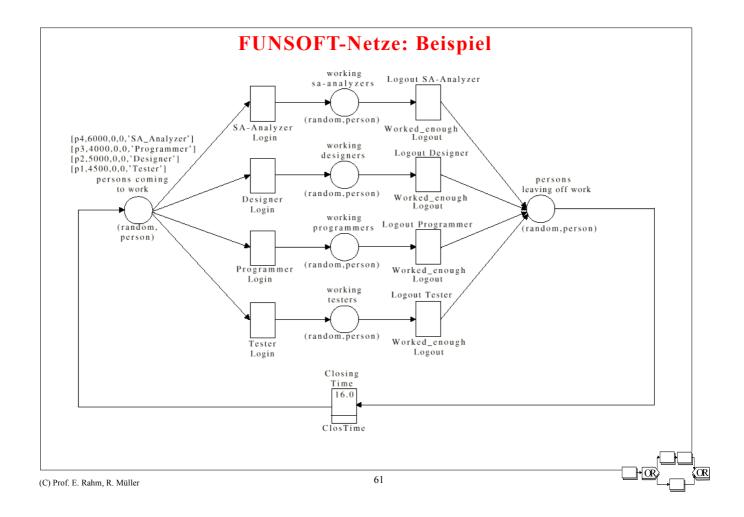
Transitionen

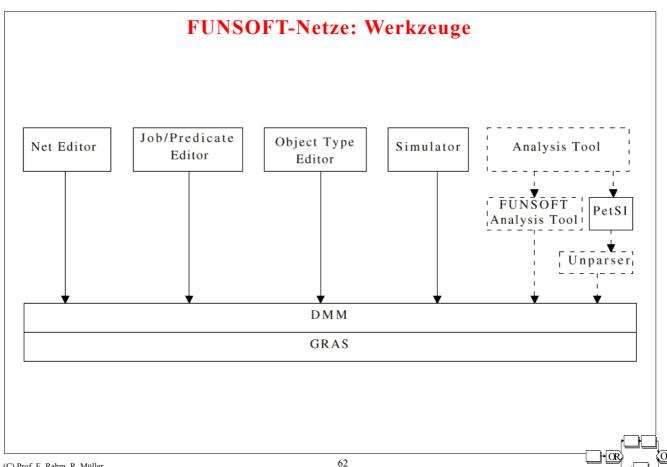
Transitionen

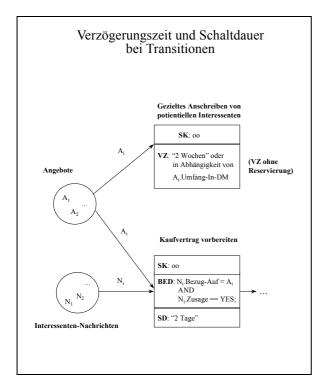
Transitionen

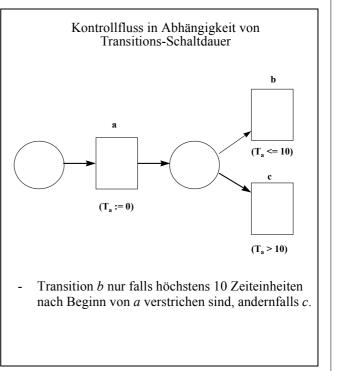

Transitionen


FUNSOFT-Netze: Transitionen (Zusammenfassung)


Funktion	Bedeutung	Domain	Wertebereich
T _{DEC}		Transitionen	{DEC, NODEC}
T_{J}		nicht-ver- feinerte Transi- tionen	Jobs
Тр		nicht-ver- feinerte Transi- tionen	Prädikate
T _T		nicht-ver- feinerte Transi- tionen	R^+_{0}
T _{MAN}		nicht-ver- feinerte Transi- tionen	{AUTO, MAN, MANY}


(C) Prof. E. Rahm, R. Müller


Zeitorientierte Petri-Netze (1)


- Explizite Modellierung von temporalen Aspekten
- Mindestverweildauer von Tokens in Stellen
 - Reservierung eines Tokens durch aktivierte Transition t (Schaltung von t garantiert, aber Verzögerung von t um Mindestverweildauer bzgl. Stelle)
 - Keine Reservierung von Tokens; nach Ablauf der Mindestverweildauer steht Token allen nachgeschalteten Transitionen zur Verfügung
- Schaltzeitpunkt und -dauer sowie Verzögerungszeit bei Transitionen
 - Während Verz.-Zeit Reservierung der benötigten Tokens oder "Wegschnappen" durch andere Transitionen
 - Dynamisches Setzen von Zeitwerten in Abhängigkeit von Token-Ausprägungen oder der Zeitwerte vorangegangener Transitionen
- Schaltkapazitäten: Wie oft kann eine Transition parallel schalten?
- Relative oder absolute Zeitspezifikationen; Zeitpunkt- oder Intervallbasiert
- Wahrscheinlichkeitsverteilungen bei Zeitpkt. und Intervallen (stochastische Netze)
 - Beispiel: Schaltdauer einer Transition normalverteilt mit Erwartungswert 2h
- Für Workfl. i. allg. relevant: nicht-stoch. Zeitspezifikationen von Transitionen

(C) Prof. E. Rahm, R. Müller

63

Zeitorientierte Petri-Netze (2)

Objekt-orientierte Petri-Netze

■ Anwendung objekt-orientierter Konzepte auf Petri-Netz-Konstrukte

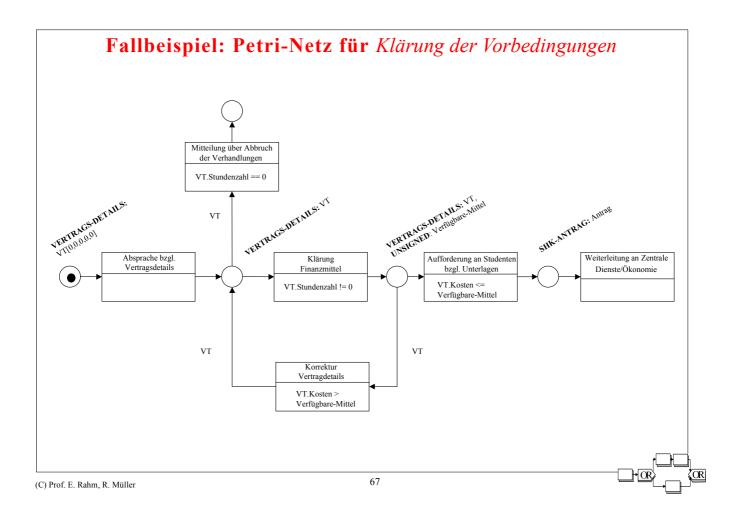
Objekt-orientierte Tokens

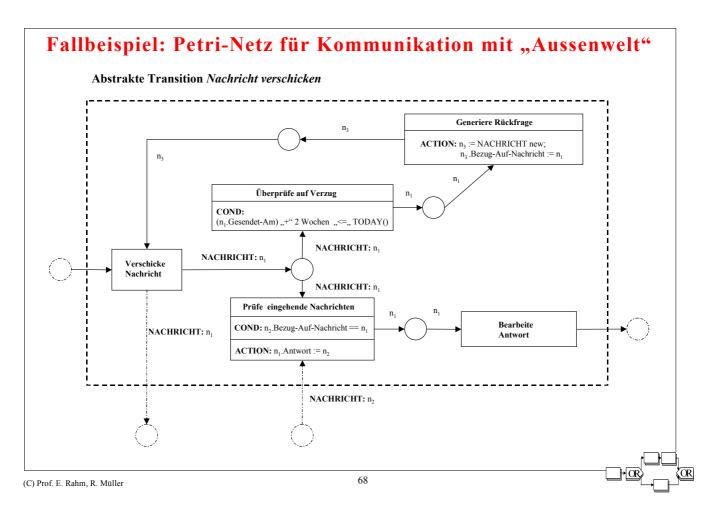
- Organisation von Token-Typen in Vererbungshierarchien (z.B. Hierarchie von Dokument-Typen)
- Falls Tokens vom Typ T in Stelle s möglich, so auch Tokens vom Typ T' < T (< Untertyp-Relation)
- Tokens als Referenz auf Objekte in OODBMS oder ORDBMS

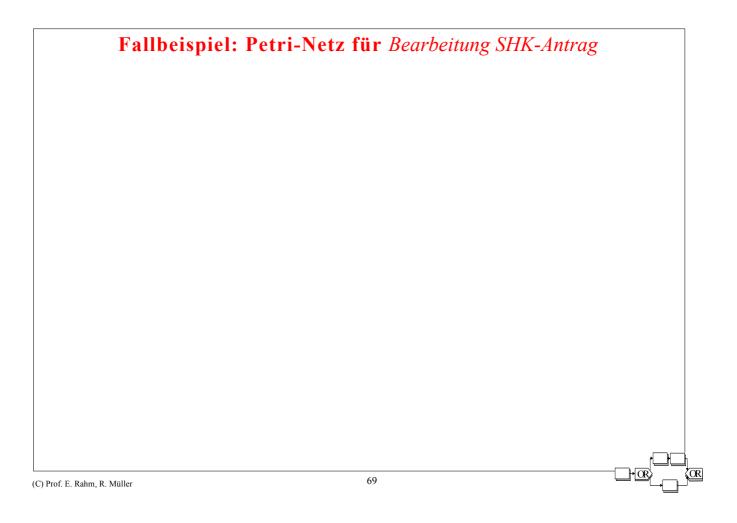
■ Objekt-orientierte Stellen und Transitionen

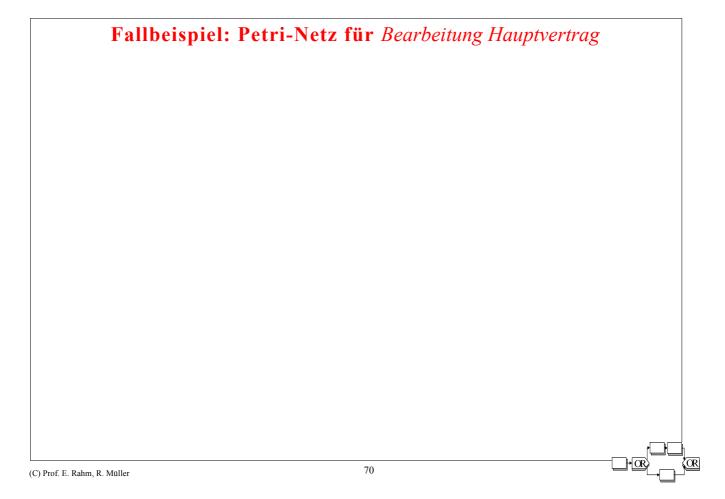
- Kapselung von Stellen als abstrakte Datentypen; Schnittstelle zu Datenressourcen
- Transitionen als abstrakte Datentypen; Schnittstelle zu Applikationen
- Ein Petri-Netz ist ein "Objekt" (mit Methoden etc.)

■ Integration mit Middleware-Schichten in verteilten Umgebungen


- Tokens, Stellen und Transitionen sind miteinander kommunizierende CORBA/DCOM/JAVA-Objekte
- Petri-Netz spezifiziert Kontroll- und Datenfluss zwischen diesen CORBA/DCOM/JAVA-Objekten


(C) Prof. E. Rahm, R. Müller


65


Fallbeispiel: Token-Typen

Token-Typ	Attribut-Typ	Attribut-Name
VERTRAGS-	UNSIGNED	Stundenzahl
DETAILS	DATE	Beginn
	DATE	Ende
	LIST <string></string>	Tätigkeitsfelder
	UNSIGNED	Kosten
SHK-ANTRAG	VERTRAGS-DETAILS	Details
	DOKUMENT	Lohnsteuerkarte
	DOKUMENT	Lebenslauf
	DOKUMENT	Immatrikulationsbes- cheinigung
NACHRICHT	NACHRICHT	Bezug-Auf-Nachricht
	DATE	Gesendet-Am
	STRING	Inhalt
	NACHRICHT	Antwort
	UNSIGNED	Verfügbare-Mittel

Petri-Netz-orientiertes Workflow-Management: Produkte und Forschungsgruppen

Produkte u.a.

- Income (Promatis Software)
- Cosa / Transflow
- IBaan (Baan)

Forschungsgruppen u.a.

- van der Aalst et al. (Universität Eindhoven; http://tmitwww.tm.tue.nl/staff/wvdaalst/)
- Oberweis et al. (Universität Frankfurt; http://www.wiwi.uni-frankfurt.de/~oberweis/): Petri-Netz-Modellierung mit (NF)²-Relationen
- Stefanelli et al. (Universität Pavia): Workflows in der Medizin
- Rahm, Müller et al. (Universität Leipzig; http://dbs.uni-leipzig.de/de/Research/workflow.html): Petri-Netz-basiertes Workflow-Management in der verteilten Hämato-Onkologie

(C) Prof. E. Rahm, R. Müller

71

Petri-Netze und Workflows: Zusammenfassung

- Mächtiges formales Modell für die Beschreibung von Kontroll- und Datenflüssen
- Relevante Netztypen u.a.: Pr/T-Netze, FUNSOFT-Netze, zeitorientierte Netze
 - Getypte Tokens
 - Hierarchische Petri-Netze
 - Aktivitätsorientiertes Zugriffs- und Schaltverhalten bzgl. Stellen und Transitionen
 - Manuelle und maschinelle Aktivitäten
 - Temporale Unterstützung

■ Elegante Integration von

- Workflows im engeren Sinn (z.B. eine Menge von Personen und Applikationen bearbeitet ein Dokument oder Werkstück bis zur Fertigstellung) und
- Datenverteilungs- und Kommunikationsprozessen (welches Dokument oder welche Nachricht ist wo im System mit welchem Bezug eingegangen)
- Datenzustand eines Petri-Netzes explizit (Datenzustand = Netz-Markierung)

Nachteile":

- Kontrollfluss wird "gesteuert" vom Datenfluss (d.h. Tokenfluss)
- Für Anwender schwer zu verstehen (vor allem wegen Dualismus Stelle ↔Transition)