
 14

Receive
Purchase

Order

Initiate
Price

Calculation

Complete
Price

Calculation

Initiate
Production
Scheduling

Complete
Production
Scheduling

Decide
On

Shipper

Arrange
Logistics

Invoice
Processing

The WSDL portType offered by the service to its customers (purchaseOrderPT) is shown in
the following WSDL document. Other WSDL definitions required by the business process are
included in the same WSDL document for simplicity; in particular, the portTypes for the Web
Services providing price calculation, shipping selection and scheduling, and production
scheduling functions are also defined there. Observe that there are no bindings or service
elements in the WSDL document. A BPEL4WS process is defined "in the abstract" by
referencing only the portTypes of the services involved in the process, and not their possible
deployments. Defining business processes in this way allows the reuse of business process
definitions over multiple deployments of compatible services.

The service link types included at the bottom of the WSDL document represent the
interaction between the purchase order service and each of the parties with which it
interacts (see Service Linking, Partners, and Service References). Service link types can be
used to represent dependencies between services, regardless of whether a BPEL4WS
business process is defined for one or more of those services. Each service link type defines
up to two "role" names, and lists the portTypes that each role must support for the
interaction to be carried out successfully. In this example, two link types, "purchaseLT" and
"schedulingLT", list a single role because, in the corresponding service interactions, one of
the parties provides all the invoked operations: The "purchaseLT" service link represents the
connection between the process and the requesting customer, where only the purchase
order service needs to offers a service operation ("sendPurchaseOrder"); the "schedulingLT"
service link represents the interaction between the purchase order service and the
scheduling service, in which only operations of the latter are invoked. The two other service
link types, "invoiceLT" and "shippingLT", define two roles because both the user of the
invoice calculation and the user of the shipping service (the invoice or the shipping

 15

schedule) must provide callback operations to enable asynchronous notifications to be
asynchronously sent ("invoiceCallbackPT" and "shippingCallbackPT" portTypes).

<definitions targetNamespace="http://manufacturing.org/wsdl/purchase"

 xmlns:sns="http://manufacturing.org/xsd/purchase"

 xmlns:pos="http://manufacturing.org/wsdl/purchase"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:slnk="http://schemas.xmlsoap.org/ws/2003/03/service-link/">

<import namespace="http://manufacturing.org/xsd/purchase"

 location="http://manufacturing.org/xsd/purchase.xsd"/>

<message name="POMessage">

 <part name="customerInfo" type="sns:customerInfo"/>

 <part name="purchaseOrder" type="sns:purchaseOrder"/>

</message>

<message name="InvMessage">

 <part name="IVC" type="sns:Invoice"/>

</message>

<message name="orderFaultType">

 <part name="problemInfo" type="xsd:string"/>

</message>

<message name="shippingRequestMessage">

 <part name="customerInfo" type="sns:customerInfo"/>

</message>

<message name="shippingInfoMessage">

 <part name="shippingInfo" type="sns:shippingInfo"/>

</message>

<message name="scheduleMessage">

 <part name="schedule" type="sns:scheduleInfo"/>

</message>

<!-- portTypes supported by the purchase order process -->

<portType name="purchaseOrderPT">

 <operation name="sendPurchaseOrder">

 <input message="pos:POMessage"/>

 16

 <output message="pos:InvMessage"/>

 <fault name="cannotCompleteOrder"

 message="pos:orderFaultType"/>

 </operation>

</portType>

<portType name="invoiceCallbackPT">

 <operation name="sendInvoice">

 <input message="pos:InvMessage"/>

 </operation>

</portType>

<portType name="shippingCallbackPT">

 <operation name="sendSchedule">

 <input message="pos:scheduleMessage"/>

 </operation>

</portType>

<!-- portType supported by the invoice services -->

<portType name="computePricePT">

 <operation name="initiatePriceCalculation">

 <input message="pos:POMessage"/>

 </operation>

 <operation name="sendShippingPrice">

 <input message="pos:shippingInfoMessage"/>

 </operation>

</portType>

<!-- portType supported by the shipping service -->

<portType name="shippingPT">

 <operation name="requestShipping">

 <input message="pos:shippingRequestMessage"/>

 <output message="pos:shippingInfoMessage"/>

 <fault name="cannotCompleteOrder"

 message="pos:orderFaultType"/>

 </operation>

</portType>

 17

<!-- portType supported by the production scheduling process -->

<portType name="schedulingPT">

 <operation name="requestProductionScheduling">

 <input message="pos:POMessage"/>

 </operation>

 <operation name="sendShipingSchedule">

 <input message="pos:scheduleMessage"/>

 </operation>

</portType>

<slnk:serviceLinkType name="purchaseLT">

 <slnk:role name="purchaseService">

 <slnk:portType name="pos:purchaseOrderPT"/>

 </slnk:role>

</slnk:serviceLinkType>

<slnk:serviceLinkType name="invoiceLT">

 <slnk:role name="invoiceService">

 <slnk:portType name="pos:computePricePT"/>

 </slnk:role>

 <slnk:role name="invoiceRequester">

 <portType name="pos:invoiceCallbackPT"/>

 </slnk:role>

</slnk:serviceLinkType>

<slnk:serviceLinkType name="shippingLT">

 <slnk:role name="shippingService">

 <slnk:portType name="pos:shippingPT"/>

 </slnk:role>

 <slnk:role name="shippingRequester">

 <portType name="pos:shippingCallbackPT"/>

 </slnk:role>

</slnk:serviceLinkType>

<slnk:serviceLinkType name="schedulingLT">

 <slnk:role name="schedulingService">

 <slnk:portType name="pos:schedulingPT"/>

 18

 </slnk:role>

</slnk:serviceLinkType>

</definitions>

The business process for the order service is defined next. There are four major sections in
this process definition:

• The <variables> section defines the data variables used by the process, providing their
definitions in terms of WSDL message types. Variables allow processes to maintain state
data and process history based on messages exchanged.

• The <partners> section defines the different parties that interact with the business
process in the course of processing the order. The four partners shown here correspond
to the sender of the order (customer), as well as the providers of price (invoiceProvider),
shipment (shippingProvider), and manufacturing scheduling services
(schedulingProvider). Each partner is characterized by a service link type and a role
name. This information identifies the functionality that must be provided by the business
process and by the partner for the relationship to succeed, that is, the portTypes that
the purchase order process and the partner need to implement.

• The <faultHandlers> section contains fault handlers defining the activities that must be
performed in response to faults resulting from the invocation of the assessment and
approval services. In BPEL4WS, all faults, whether internal or resulting from a service
invocation, are identified by a qualified name. In particular, each WSDL fault is identified
in BPEL4WS by a qualified name formed by the target namespace of the WSDL
document in which the relevant portType and fault are defined, and the ncname of the
fault. It is important to note, however, that because WSDL 1.1 does not require that
fault names be unique within the namespace where the operation is defined, all faults
sharing a common name and defined in the same namespace are indistinguishable. In
spite of this serious WSDL limitation, BPEL4WS provides a uniform naming model for
faults, in the expectation that future versions of WSDL will provide a better fault-naming
model.

• The rest of the process definition contains the description of the normal behavior for
handling a purchase request. The major elements of this description are explained in the
section following the process definition.

<process name="purchaseOrderProcess"

 targetNamespace="http://acme.com/ws-bp/purchase"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:lns="http://manufacturing.org/wsdl/purchase">

 <partners>

 <partner name="customer"

 serviceLinkType="lns:purchaseLT"

 myRole="purchaseService"/>

 19

 <partner name="invoiceProvider"

 serviceLinkType="lns:invoiceLT"

 myRole="invoiceRequester"

 partnerRole="invoiceService"/>

 <partner name="shippingProvider"

 serviceLinkType="lns:shippingLT"

 myRole="shippingRequester"

 partnerRole="shippingService"/>

 <partner name="schedulingProvider"

 serviceLinkType="lns:schedulingLT"

 partnerRole="schedulingService"/>

 </partners>

 <variables>

 <variable name="PO" messageType="lns:POMessage"/>

 <variable name="Invoice"

 messageType="lns:InvMessage"/>

 <variable name="POFault"

 messageType="lns:orderFaultType"/>

 <variable name="shippingRequest"

 messageType="lns:shippingRequestMessage"/>

 <variable name="shippingInfo"

 messageType="lns:shippingInfoMessage"/>

 <variable name="shippingSchedule"

 messageType="lns:scheduleMessage"/>

 </variables>

 <faultHandlers>

 <catch faultName="lns:cannotCompleteOrder"

 faultVariable="POFault">

 <reply partner="customer"

 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder"

 variable="POFault"

 faultName="cannotCompleteOrder"/>

 </catch>

 </faultHandlers>

 20

 <sequence>

 <receive partner="customer"

 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder"

 variable="PO">

 </receive>

 <flow>

 <links>

 <link name="ship-to-invoice"/>

 <link name="ship-to-scheduling"/>

 </links>

 <sequence>

 <assign>

 <copy>

 <from variable="PO" part="customerInfo"/>

 <to variable="shippingRequest"

 part="customerInfo"/>

 </copy>

 </assign>

 <invoke partner="shippingProvider"

 portType="lns:shippingPT"

 operation="requestShipping"

 inputVariable="shippingRequest"

 outputVariable="shippingInfo">

 <source linkName="ship-to-invoice"/>

 </invoke>

 <receive partner="shippingProvider"

 portType="lns:shippingCallbackPT"

 operation="sendSchedule"

 variable="shippingSchedule">

 <source linkName="ship-to-scheduling"/>

 </receive>

 21

 </sequence>

 <sequence>

 <invoke partner="invoiceProvider"

 portType="lns:computePricePT"

 operation="initiatePriceCalculation"

 inputVariable="PO">

 </invoke>

 <invoke partner="invoiceProvider"

 portType="lns:computePricePT"

 operation="sendShippingPrice"

 inputVariable="shippingInfo">

 <target linkName="ship-to-invoice"/>

 </invoke>

 <receive partner="invoiceProvider"

 portType="lns:invoiceCallbackPT"

 operation="sendInvoice"

 variable="Invoice"/>

 </sequence>

 <sequence>

 <invoke partner="schedulingProvider"

 portType="lns:schedulingPT"

 operation="requestProductionScheduling"

 inputVariable="PO">

 </invoke>

 <invoke partner="schedulingProvider"

 portType="lns:schedulingPT"

 operation="sendShippingSchedule"

 inputVariable="shippingSchedule">

 <target linkName="ship-to-scheduling"/>

 </invoke>

 </sequence>

 </flow>

 22

 <reply partner="customer"

 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder"

 variable="Invoice"/>

 </sequence>

</process>

The structure of the main processing section is defined by the outer <sequence> element,
which states that the three activities contained inside are performed in order. The customer
request is received (<receive> element), then processed (inside a <flow> section that
enables concurrent behavior), and a reply message with the final approval status of the
request is sent back to the customer (<reply>). Note that the <receive> and <reply>
elements are matched respectively to the <input> and <output> messages of the
"sendPurchaseOrder" operation invoked by the customer, while the activities performed by
the process between these elements represent the actions taken in response to the
customer request, from the time the request is received to the time the response is sent
back (reply).

The example makes the implicit assumption that the customer request can be processed in
a reasonable amount of time, justifying the requirement that the invoker wait for a
synchronous response (because this service is offered as a request-response operation).
When that assumption does not hold, the interaction with the customer is better modeled as
a pair of asynchronous message exchanges. In that case, the "sendPurchaseOrder"
operation is a one-way operation and the asynchronous response is sent by invoking a
second one-way operation on a customer "callback" interface. In addition to changing the
signature of "sendPurchaseOrder" and defining a new portType to represent the customer
callback interface, two modifications need to be made in the preceding example to support
an asynchronous response to the customer. First, the service link type "purchaseLT" that
represents the process-customer connection needs to include a second role ("customer")
listing the customer callback portType. Second, the <reply> activity in the process needs to
be replaced by an <invoke> on the customer callback operation.

The processing taking place inside the <flow> element consists of three <sequence> blocks
running concurrently. The synchronization dependencies between activities in the three
concurrent sequences are expressed by using "links" to connect them. The links are defined
inside the flow and are used to connect a source activity to a target activity. (Note that each
activity declares itself as the source or target of a link by using the nested <source> and
<target> elements.) In the absence of links, the activities nested directly inside a flow
proceed concurrently. In the example, however, the presence of two links introduces control
dependencies between the activities performed inside each sequence. For example, while
the price calculation can be started immediately after the request is received, shipping price
can only be added to the invoice after the shipper information has been obtained; this
dependency is represented by the link (named "ship-to-invoice") that connects the first call
on the shipping provider ("requestShipping") with sending shipping information to the price
calculation service ("sendShippingPrice"). Likewise, shipping scheduling information can only
be sent to the manufacturing scheduling service after it has been received from the shipper
service; thus the need for the second link ("ship-to-scheduling").

