Algorithmen und Datenstrukturen 1

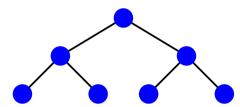
Prof. Dr. E. Rahm

Wintersemester 2001 / 2002

Universität Leipzig

Institut für Informatik

http://dbs.uni-leipzig.de



Leistungsbewertung

Erwerb des Übungsscheins ADS1 (unbenotet)

- Fristgerechte Abgabe der Lösungen zu den gestellten Übungsaufgaben
- Übungsklausur Ende Jan./Anfang Feb.
- Zulassungsvoraussetzung ist korrekte Lösung der meisten Aufgaben und Bearbeitung aller Übungsblätter (bis auf höchstens eines)

Informatiker (Diplom), 3. Semester

- Übungsschein ADS1 zu erwerben (Voraussetzung für Vordiplomsklausur)
- Klausur über Modul ADS (= ADS1+ADS2) im Juli als Teilprüfung zur Vordiploms-Fachprüfung "Praktische Informatik"

Mathematiker / Wirtschaftsinformatiker: Übungsschein ADS1 erforderlich

Magister mit Informatik als 2. Hauptfach

- kein Übungsschein erforderlich
- Prüfungsklausur zu ADS1 + ADS2 im Juli
- Bearbeitung der Übungsaufgaben wird dringend empfohlen

Zur Vorlesung allgemein

Vorlesungsumfang: 2 + 1 SWS

Vorlesungsskript

- im WWW abrufbar (PDF, PS und HTML)
- Adresse http://dbs.uni-leipzig.de
- ersetzt nicht die Vorlesungsteilnahme!
- ersetzt nicht zusätzliche Benutzung von Lehrbüchern

Übungen

- Durchführung in zweiwöchentlichem Abstand
- selbständige Lösung der Übungsaufgaben wesentlich für Lernerfolg
- Übungsblätter im WWW
- praktische Übungen auf Basis von Java
- Rechnerzeiten reserviert im NT-Pool (HG 1-68, Mo-Fr. nachmittags) und Sun-Pool (HG 1-46, vormittags und Mittwoch nachmittags)
- Detail-Informationen siehe WWW

(C) Prof. E. Rahm

Termine Übungsbetrieb

Ausgabe 1. Übungsblatt: Montag, 15. 10. 2001; danach 2-wöchentlich

Abgabe gelöster Übungsaufgaben bis spätestens Montag der übernächsten Woche, 11:15 Uhr

- vor Hörsaal 13 (Abgabemöglichkeit 11:00 11:15 Uhr)
- oder früher im Holz-Postkasten HG 3. Stock, Abt. Datenbanken
- Programmieraufgaben: dokumentierte Listings der Quellprogramme sowie Ausführung

6 Übungsgruppen

Nr.	Termin	Woche	Hörsaal	Beginn	Übungsleiter	#Stud.	Bemerkung
1	Mo, 15:15	В	SG 3-11	29.10.	Sosna	30	
2	Mo, 15:15	A	SG 3-11	5.11.	Sosna	30	Ausweichtermin wegen Dies A.: Di, 4.12., 11:15 Uhr, SG 3-07
3	Di, 11:15	В	SG 3-07	30.10.	Böhme	30	
4	Di, 11:15	A	SG 3-07	6.11.	Böhme	30	
5	Fr, 15.15	В	HS 20	2.11.	Müller	60	
6	Fr, 15.15	A	HS 20	9.11.	Müller	60	
7	Di, 9.15	В	SG 3-05	30.10.	Müller	30	

1 - 4

- Einschreibung über Online-Formular
- Aktuelle Infos siehe WWW

(C) Prof. E. Rahm 1 - 3

Ansprechpartner ADS1

Prof. Dr. E. Rahm

- während/nach der Vorlesung bzw. Sprechstunde (Donn. 14-15 Uhr), HG 3-56
- rahm@informatik.uni-leipzig.de

Wissenschaftliche Mitarbeiter

- Timo Böhme, boehme@informatik.uni-leipzig.de, HG 3-01
- Robert Müller, mueller@informatik.uni-leipzig.de, HG 3-01
- Dr. Dieter Sosna, dieter@informatik.uni-leipzig.de, HG 3-04

Studentische Hilfskräfte

- Tilo Dietrich, TiloDietrich@gmx.de
- Katrin Starke, katrin.starke@gmx.de
- Thomas Tym, mai96iwe@studserv.uni-leipzig.de

Web-Angelegenheiten:

- S. Jusek, juseks@informatik.uni-leipzig.de, HG 3-02

(C) Prof. E. Rahm

1 - 5

Literatur

Das intensive Literaturstudium zur Vertiefung der Vorlesung wird dringend empfohlen. Auch Literatur in englischer Sprache sollte verwendet werden.

T. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen, Reihe Informatik, Band 70, BI-Wissenschaftsverlag, 3. Auflage, Spektrum-Verlag, 1996

M.A. Weiss: Data Structures & Algorithm Analysis in Java. Addison-Wesley 1999, 2. Auflage 2002

Weitere Bücher

- V. Claus, A. Schwill: Duden Informatik, BI-Dudenverlag, 2. Auflage 1993
- D.A. Knuth: The Art of Computer Programming, Vol. 3, Addison-Wesley, 1973
- R. Sedgewick: Algorithmen. Addison-Wesley 1992
- G. Saake, K. Sattler: Algorithmen und Datenstrukturen Eine Einführung mit Java. dpunkt-Verlag. 2002
- A. Solymosi, U. Gude: Grundkurs Algorithmen und Datenstrukturen. Eine Einführung in die praktische Informatik mit Java. Vieweg, 2000, 2. Auflage 2001

Vorläufiges Inhaltsverzeichnis

- 1. Einführung
- Komplexität von Algorithmen
- Bestimmung der Zeitkomplexität
- Das Prinzip "Teile und Herrsche"
- 2. Einfache Suchverfahren (Arrays)
- 3. Verkette Listen, Stacks und Schlangen
- 4. Sortierverfahren
 - Elementare Verfahren
 - Shell-Sort, Heap-Sort, Quick-Sort
 - Externe Sortierverfahren
- 5. Allgemeine Bäume und Binärbäume
 - Orientierte und geordnete Bäume
 - Binärbäume (Darstellung, Traversierung)
- 6. Binäre Suchbäume
- 7. Mehrwegbäume

(C) Prof. E. Rahm

1 - 6

Einführung

Algorithmen stehen im Mittelpunkt der Informatik

Wesentliche Entwurfsziele bei Entwicklung von Algorithmen:

- Korrektheit
- Terminierung
- Effizienz

Wahl der Datenstrukturen v.a. für Effizienz entscheidend

Abstrakte Datentypen (ADTs): Zusammenfassung von Algorithmen und Datenstrukturen

Vorlesungsschwerpunkte:

- Entwurf von effizienten Algorithmen und Datenstrukturen
- Analyse ihres Verhaltens

Komplexität von Algorithmen

funktional gleichwertige Algorithmen weisen oft erhebliche Unterschiede in der Effizienz (Komplexität) auf

Wesentliche Maße:

- Rechenzeitbedarf (Zeitkomplexität)
- Speicherplatzbedarf (Speicherplatzkomplexität)

Programmlaufzeit von zahlreichen Faktoren abhängig

- Eingabe für das Programm
- Qualität des vom Compiler generierten Codes und des gebundenen Objektprogramms
- Leistungsfähigkeit der Maschineninstruktionen, mit deren Hilfe das Programm ausgeführt wird
- Zeitkomplexität des Algorithmus, der durch das ausgeführte Programm verkörpert wird

Bestimmung der Komplexität

- Messungen auf einer bestimmten Maschine
- Aufwandsbestimmungen für idealisierten Modellrechner (Bsp.: Random-Access-Maschine oder RAM)
- Abstraktes Komplexitätsmaß zur asymptotischen Kostenschätzung in Abhängigkeit zur Problemgröße (Eingabegröße) n

(C) Prof. E. Rahm

Asymptotische Kostenmaße

Festlegung der Größenordnung der Komplexität in Abhängigkeit der Eingabegröße: Best Case, Worst Case, Average Case

Meist Abschätzung oberer Schranken (Worst Case): Groß-Oh-Notation

Zeitkomplexität T(n) eines Algorithmus ist von der Größenordnung n, wenn es Konstanten n_0 und c > 0 gibt, so daß für alle Werte von $n > n_0$ gilt

$$T(n) \le c \cdot n$$

man sagt "T(n) ist in O(n)" bzw. "T(n) $\in O(n)$ " oder "T(n) = O(n)"

Allgemeine Definition:

Klasse der Funktionen O(f), die zu einer Funktion (Größenordnung) f gehören ist $O(f) = \{g | \exists c > 0 : \exists n_0 > 0 : \forall n \ge n_0 : g(n) \le c \cdot f(n) \}$

Ein Programm, dessen Laufzeit oder Speicherplatzbedarf O(f(n)) ist, hat demnach die Wachstumsrate f(n)

1 - 11

- Beispiel: $f(n) = n^2$ oder $f(n) = n \cdot \log n$.
- $f(n) = O(n \log n) \rightarrow f(n) = O(n^2)$, jedoch gilt natürlich $O(n \log n) \neq O(n^2)$

Bestimmungsfaktoren der Komplexität

Zeitkomplexität T ist i.a. von "Größe" der Eingabe n abhängig

Beispiel:
$$T(n) = a \cdot n^2 + b \cdot n + c$$

Verkleinern der Konstanten b und c

$$T_1(n) = n^2 + n + 1$$

$$T_2(n) = n^2$$

n	1	2	3	10	20	100	1000
T ₁ (n)	3	7	13	111	421	10101	1001001
T ₂ (n)	1	4	9	100	400	10000	1000000
T_1/T_2	3	1.75	1.44	1.11	1.05	1.01	1.001

Verbessern der Konstanten a nach a'

$$\lim_{n\to\infty} \frac{a\cdot n^2 + b\cdot n + c}{a'\cdot n^2 + b'\cdot n + c'} = \frac{a}{a'}$$

Wesentlich effektiver: Verbesserung im Funktionsverlauf! (Wahl eines anderen Algorithmus mit günstigerer Zeitkomplexität)

(C) Prof. E. Rahm

Asymptotische Kostenmaße (2)

Beispiel: $6n^4 + 3n^3 - 7 n \in O(n^4)$

- zu zeigen: $6n^4 + 3n^3 7 \le c n^4$ für ein c und alle $n > n_0$ $-> 6 + 3/n - 7 / n^4 \le c$
- Wähle also z.B. c = 9, $n_0 = 1$

Groβ-Omega-Notation: $f \in \Omega(g)$ oder $f = \Omega(g)$ drückt aus, daß f mindestens so stark wächst wie g (untere Schranke)

- Definition: $\Omega(g) = \{ h \mid \exists c > 0 : \exists n_0 > 0 : \forall n >= n_0 : h(n) >= c g(n) \}$
- alternative Definition (u.a. Ottmann/Widmayer): $\Omega(g) = \{h \mid \exists c > 0 : \exists \text{ unendlich viele n: } h(n) >= c g(n)\}$

Exakte Schranke: gilt für Funktion f sowohl $f \in O(g)$ als auch $f \in O(g)$, so schreibt man $f = \Theta(g)$

- f aus $\Theta(g)$ bedeutet also: die Funktion g verläuft ab einem Anfangswert n_0 im Bereich $[c_1g,c_2g]$ für geeignete Konstanten c₁, c₂

Wichtige Wachstumsfunktionen

Kostenfunktionen

- O(1) konstante Kosten

- O (log n) logarithmisches Wachstum

- O (n) lineares Wachstum
- O (n log n) n-log n-Wachstum
- O (n²) quadratisches Wachstum
- O (n³) kubisches Wachstum

Wachstumsverhalten

- $O(2^n)$

log n	3	7	10	13	17	20
√n	3	10	30	100	300	1000
n	10	100	1000	104	10 ⁵	10 ⁶
n log n	30	700	10 ⁴	10 ⁵	2 • 10 ⁶	2 • 10 ⁷
n ²	100	10 ⁴	10 ⁶	108	10^{10}	1012
n ³	1000	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
2 ⁿ	1000	10 ³⁰	10 ³⁰⁰	10 ³⁰⁰⁰	10 ³⁰⁰⁰⁰	10 ³⁰⁰⁰⁰⁰

exponentielles Wachstum

(C) Prof. E. Rahm 1 - 13

Leistungsverhalten bei kleiner Eingabegröße

Asymptotische Komplexität gilt vor allem für große n

bei kleineren Probleme haben konstante Parameter wesentliche Einfluß

Verfahren mit besserer (asympt.) Komplexität kann schlechter abschneiden als Verfahren mit schlechter Komplexität

Alg.	T(n)	Bereiche	e von n mit günstigster Zeitkomplexität
A ₁ A ₂	186182 log ₂ n 1000 n	n > 1024≤ n ≤	2048 2048
A ₃	100 n log ₂ n	59 ≤ n ≤	1024
A ₄ A ₅	10 n ² n ³	10 ≤ n ≤ n =	58 10
A ₆	2 ⁿ	2 ≤ n ≤	9

1 - 15

Problemgröße bei vorgegebener Zeit

Komplexität	1 sec	1 min	1 h
log ₂ n	21000	2^{60000}	-
n	1000	60000	3600000
n log ₂ n	140	4893	20000
n ²	31	244	1897
n ³	10	39	153
2 ⁿ	9	15	21

Größe des größten Problems, das in 1 Stunde gelöst werden kann:

Problemkomplexität	aktuelle Rechner	Rechner 100x schneller	1000x schneller
n	N ₁	100 N ₁	1000 N ₁
n ²	N ₁	10 N ₂	32 N ₂
n ³	N ₃	4.6 N ₃	10 N ₃
n ⁵	N ₄	2.5 N ₄	4 N ₄
2 ⁿ	N ₅	N ₁ + 7	N ₁ + 10
3 ⁿ	N ₆	N ₆ + 4	N ₆ + 6

(C) Prof. E. Rahm 1 - 14

Zeitkomplexitätsklassen

Drei zentrale Zeitkomplexitätsklassen werden unterschieden

Algorithmus A mit Zeitkomplexität T(n) heißt:

 $\label{eq:total_continuous} \begin{array}{ll} linear-zeitbeschränkt & T(n) \in O\left(\,n\,\right) \\ \\ polynomial-zeitbeschränkt & \exists_{\, k \in \,} N, so \; daß \; T(n) \in O\left(\,n^k\,\right) \end{array}$

exponentiell-zeitbeschränkt $\exists_k \in N$, so daß $T(n) \in O(k^n)$

exponentiell-zeitbeschränkte Algorizhmen im allgemeinen (größere n) nicht nutzbar

Probleme, für die kein polynomial-zeitbeschränkter Algorithmus existiert, gelten als unlösbar (intractable)

Berechnung der (Worst-Case-) Zeitkomplexität

elementare Operationen (Zuweisung, Ein-/Ausgabe): O(1)

Summenregel:

- $T_1(n)$ und $T_2(n)$ seien die Laufzeiten zweier Programmfragmente P_1 und P_2 ; es gelte $T_1(n) \in O(f(n))$ und $T_2(n) \in O(g(n))$.
- Für die Hintereinanderausführung von P_1 und P_2 ist dann

```
T_1(n) + T_2(n) \in O(\max(f(n), g(n)))
```

Produktregel, z.B. für geschachtelte Schleifenausführung von P₁ und P₂:

$$\mathrm{T}_1(n)\cdot\mathrm{T}_2(n)\in\mathrm{O}(\mathrm{f}(n)\cdot\mathrm{g}(n))$$

Weitere Konstrukte

- Fallunterscheidung: Kosten der Bedingungsanweisung (= O(1)) + Kosten der längsten Alternative
- Schleife: Produkt aus Anzahl der Schleifendurchläufe mit Kosten der teuersten Schleifenausführung
- rekursive Prozeduraufrufe: Produkt aus Anzahl der rekursiven Aufrufe mit Kosten der teuersten Prozedurausführung

(C) Prof. E. Rahm 1 - 17

Beispiel: Berechnung der maximalen Teilsumme

Gegeben: Folge F von n ganzen Zahlen. Gesucht: Teilfolge von 0 <= i <= n aufeinander folgenden Zahlen in F, deren Summe maximal ist

Anwendungsbeispiel: Entwicklung von Aktienkursen (tägliche Änderung des Kurses). Maximale Teilsumme bestimmt optimales Ergebnis

Tag	1	2	3	4	5	6	7	8	9	10
Gewinn/Verlust (Folge)	+5	-6	+4	+2	-5	+7	-2	-7	+3	+5

1 - 19

Lösungsmöglichkeit 1:

```
\begin{split} & \text{int maxSubSum1( int [ ] a) } \{ \\ & \text{int maxSum} = 0; // \, | \text{leere Folge} \\ & \text{for ( int } i = 0; \, i < \text{a.length; } i ++) \\ & \text{for ( int } j = i; \, j < \text{a.length; } j ++) \, \{ \\ & \text{int thisSum} = 0; \\ & \text{for ( int } k = i; \, k <= j; \, k ++) \\ & \text{thisSum} + \text{a} [ k ]; \\ & \text{if ( thisSum} > \text{maxSum ) maxSum} = \text{thisSum; } \\ & \} \\ & \text{return maxSum; } \end{split}
```

Beispiel zur Bestimmung der Zeitkomplexität

(C) Prof. E. Rahm

Komplexitätsbestimmung

Anzahl Durchläufe der äussersten Schleife: n

mittlere Schleife: berücksichtigt alle Teilfolgen beginnend ab Position i

- Anzahl: n, n-1, n-2, ... 1
- Mittel: n+1/2

Anzahl Teilfolgen: $\sum i = (n^2 + n)/2$

innerste Schleife: Addition aller Werte pro Teilfolge

#Additionen:
$$\sum i(n+1-i) = \sum i n + \sum i - \sum i^2$$

= $n (n^2+n)/2 + (n^2+n)/2 - n/6 (n+1) (2n+1)$
= $n^3/6 + n^2/2 + n/3$

Zeitkomplexität:

(C) Prof. E. Rahm

1 - 2

Maximale Teilsumme (2)

Lösungsmöglichkeit 2:

```
\begin{split} & \text{int maxSubSum2 (int [ ] a ) } \{ \\ & \text{int maxSum = 0; // leere Folge} \\ & \text{for (int } i = 0; i < a.length; i++) } \{ \\ & \text{int thisSum = 0;} \\ & \text{for (int } j = i; j < a.length; j++) } \{ \\ & \text{thisSum += a[ j ];} \\ & \text{if (thisSum > maxSum ) maxSum = thisSum;} \\ & \} \\ & \text{return maxSum;} \\ \} \end{split}
```

Zeitkomplexität:

(C) Prof. E. Rahm

Rekursion vs. Iteration

für viele Probleme gibt es sowohl rekursive als auch iterative Lösungsmöglichkeiten

Unterschiede bezüglich

- Einfachheit, Verständlichkeit
- Zeitkomplexität
- Speicherkomplexität

Beispiel: Berechnung der Fakultät n!

```
\label{eq:continuous_section} \begin{array}{ll} \text{int fakRekursiv (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{if (n } <= 1) \text{ return 1;} \\ & \text{else return n * fakRekursiv (n-1);} \\ \\ \} & \text{int fakIterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \{ \text{ $/\!/$ erfordert n } > 0 \\ & \text{int fak Iterativ (int n) } \} \} \}
```

1 - 23

- Zeitkomplexität
- Speicherkomplexität

Maximale Teilsumme (3)

Lösungsmöglichkeit 3:

```
 \begin{array}{l} int \; maxSubSum3 \; (\; int \; [\; ] \; a \; ) \; \{ \\ int \; maxSum = 0; \\ int \; thisSum = 0; \\ for(\; int \; i = 0, \; j = 0; \; j < a.length; \; j++ \; ) \; \{ \\ thisSum += a[\; j \; ]; \\ if(\; thisSum > maxSum \; ) \; maxSum = thisSum; \\ else \; if(\; thisSum < 0 \; ) \; \{ \\ i = j + 1; \\ thisSum = 0; \\ \} \\ return \; maxSum; \\ \} \\ \end{array}
```

Zeitkomplexität:

gibt es Lösungen mit besserer Komplexität?

(C) Prof. E. Rahm

1 - 23

1 - 24

Berechnung der Fibonacci-Zahlen

Definition

```
- F_0 = 0
```

 $- F_1 = 1$

- $F_n = F_{n-1} + F_{n-2}$ für $n \ge 2$

rekursive Lösung verursacht exponentiellen Aufwand

iterative Lösung mit linearem Aufwand möglich

- z.B. Speichern der bereits berechneten Fibonacci-Zahlen in Array
- Alternative fibIterativ

(C) Prof. E. Rahm

Das Prinzip "Teile und Herrsche" (Divide and Conquer)

Komplexität eines Algorithmus läßt sich vielfach durch Zerlegung in kleinere Teilprobleme verbessern

Lösungsschema

- Divide: Teile das Problem der Größe n in (wenigstens) zwei annähernd gleich große Teilprobleme, wenn n > 1 ist: sonst löse das Problem der Größe 1 direkt.
- 2. Conquer: Löse die Teilprobleme auf dieselbe Art (rekursiv).
- 3. Merge: Füge die Teillösungen zur Gesamtlösung zusammen.

(C) Prof. E. Rahm

Beispiel 2: Maximale Teilsumme

1 - 25

rechtes Randmaximum einer Folge

- rechte Randfolge von F = Teilfolge von F, die bis zum rechten Rand (Ende) von F reicht
- rechtes Randmaximum von F: maximale Summe aller rechten Randfolgen
- analog: linke Randfolge, linkes Randmaximum

Beispiel: F = (+3, -2, +5, -20, +3, +3)

rekursiver (Divide-and-Conquer-) Algorithmus für maximale Teilsumme

- falls Eingabefolge F nur aus einer Zahl z besteht, nimm Maximum von z und 0
- falls F wenigstens 2 Elemente umfasst:
 - zerlege F in etwa zwei gleich große Hälften links und rechts

1 - 27

- bestimme maximale Teilsumme, ml, sowie rechtes Randmaximum, rR, von links
- bestimme maximale Teilsumme, mr, sowie linkes Randmaximum, lR, von rechts
- das Maximum der drei Zahlen ml, rR+lR, und mr ist die maximale Teilsumme von F

Beispiel: Sortieren einer Liste mit n Elementen

einfache Sortierverfahren: O (n²)

Divide-and-Conquer-Strategie:

```
Modul Sortiere (Liste)(* Sortiert Liste von n Elementen *)
Falls n > 1 dann
Sortiere (erste Listenhälfte)
Sortiere (zweite Listenhälfte)
Mische beide Hälften zusammen.
```

Kosten
$$T(n) = 2 \cdot T(n/2) + c \cdot n$$
 $T(1) = d$

Diese rekursives Gleichungssystem (Rekurrenzrelation) hat geschlossene Lösung $T(n) = c \cdot n \cdot \log_2 n + d \cdot n$

 \Rightarrow Sortieralgorithmus in $O(n \log n)$

(C) Prof. E. Rahm

1 - 20

Multiplikation zweier n-stelliger Zahlen

Standardverfahren aus der Schule: $O(n^2)$

Verbesserung: Rückführung auf Multiplikation von 2-stelligen Zahlen

$$AC = 54 \cdot 19 = 1026$$

 $(A + B) \cdot (C + D) - AC - BD = 86 \cdot 114 - 1026 - 3040 = 5738$
 $BD = 32 \cdot 95 = 3040$
 10836840

Multiplikation (2)

Prinzip auf n-stellige Zahlen verallgemeinerbar

Kosten

- drei Multiplikationen von Zahlen mit halber Länge
- Aufwand für Addition und Subtraktion proportional zu n:

$$T(n) = 3T(n/2) + c \cdot n$$
 $T(1) = d$

- Die Lösung der Rekurrenzrelation ergibt sich zu

$$T(n) = (2c+d)n^{\log 3} - n$$

- Kosten proportional zu n^{log3} (O(n^{1.59}))

(C) Prof. E. Rahm 1 - 29

Zusammenfassung

Komplexität / Effizienz wesentliche Eigenschaft von Algorithmen

meist asymptotische Worst-Case-Abschätzung in Bezug auf Problemgröße n

- Unabhängigkeit von konkreten Umgebungsparametern (Hardware, Betriebsystem, ...)
- asymptotisch "schlechte" Verfahren können bei kleiner Problemgröße ausreichen

wichtige Klassen: O(1), O(log n), O (n), O (n log n), O (n²), ... O(2ⁿ)

zu gegebener Problemstellung gibt es oft Algorithmen mit stark unterschiedlicher Komplexität

- unterschiedliche Lösungsstrategien
- Raum vs. Zeit: Zwischenspeichern von Ergebnissen statt mehrfacher Berechnung
- Iteration vs. Rekursion

Bestimmung der Komplexität aus Programmfragmenten

allgemeine Lösungsstrategie: Divide-and-Conquer (Teile und Herrsche)

(C) Prof. E. Rahm 1 - 31

Problemkomplexität

Komplexität eines Problems: Komplexität des besten Algorithmus'

Aufwand typischer Problemklassen

Komplexität	Beispiele
O(1)	einige Suchverfahren (Hashing)
O(log n)	allgemeinere Suchverfahren (Binärsuche, Baum-Suchverfahren)
O(n)	sequentielle Suche, Suche in Texten; maximale Teilsumme einer Folge, Fakultät, Fibonacci-Zahlen
O(n log n)	Sortieren
O(n ²)	einige dynamische Optimierungsverfahren (z.B. optimale Suchbäume), Multiplikation Matrix-Vektor (einfach)
O(n ³)	Matrizen-Multiplikation (einfach)
O(2 ⁿ)	viele Optimierungsprobleme, Türme von Hanoi, Acht-Damen-Problem

theoretisch nicht lösbare algorithmische Probleme: Halteproblem, Gleichwertigkeit von Algorithmen

nicht-algorithmische Probleme

(C) Prof. E. Rahm 1 - 30