
SQL:1999, formerly known as SQL3

Andrew Eisenberg
Sybase, Concord, MA 01742

andrew.eisenberg@sybase.com

Jim Melton
Sandy, UT 84093

jim.melton@acm.org

Background
For several years now, you’ve been hearing and
reading about an emerging standard that everybody
has been calling SQL3. Intended as a major
enhancement of the current second generation SQL
standard, commonly called SQL-92 because of the
year it was published, SQL3 was originally planned
to be issued in about 1996…but things didn’t go as
planned.

As you may be aware, SQL3 has been
characterized as “object-oriented SQL” and is the
foundation for several object-relational database
management systems (including Oracle’s ORACLE8,
Informix’ Universal Server, IBM’s DB2 Universal
Database, and Cloudscape’s Cloudscape, among
others). This is widely viewed as a “good thing”, but
it has had a downside, too: it took nearly 7 years to
develop, instead of the planned 3 or 4.

As we shall show, SQL:1999 is much more
than merely SQL-92 plus object technology. It
involves additional features that we consider to fall
into SQL’s relational heritage, as well as a total
restructuring of the standards documents themselves
with an eye towards more effective standards
progression in the future.

Standards Development
Process
The two de jure organizations actively involved in
SQL standardization, and therefore in the
development of SQL:1999, are ANSI and ISO.

More specifically, the international
community works through ISO/IEC JTC1 (Joint
Technical Committee 1), a committee formed by the
International Organization for Standardization in
conjunction with the International Electrotechnical
Commission. JTC1’s responsibility is to develop and
maintain standards related to Information
Technology. Within JTC1, Subcommittee SC32,
titled Data Management and Interchange, was
recently formed to take over standardization of
several standards related to database and metadata
that had been developed by other organizations (such
as the now-disbanded SC21). SC32, in turn, formed a

number of Working Groups to actually do the
technical work—WG3 (Database Languages) is
responsible for the SQL standard, while WG4 is
progressing the SQL/MM (SQL MultiMedia, a suite
of standards that specify type libraries using SQL’s
object-oriented facilities).

In the United States, IT standards are
handled by the American National Standards
Institute’s Accredited Standards Development
Committee NCITS (National Committee for
Information Technology Standardization, formerly
known more simply as “X3”). NCITS Technical
Committee H2 (formerly “X3H2”) is responsible for
several data management-related standards, including
SQL and SQL/MM.

When the first generation of SQL was
developed (SQL-86 and its minor enhancement SQL-
89), much—perhaps most—of the development work
was done in the USA by X3H2 and other nations
participated largely in the mode of reviewing and
critiquing the work ANSI proposed. By the time
SQL-89 was published, the international community
was becoming very active in writing proposals for the
specification that became SQL-92; that has not
changed while SQL:1999 was being developed, nor
do we believe it’s likely to change in the future—
SQL is truly an international collaborative effort.

A work of explanation is in order about the
informal names we’re using for various editions of
the SQL standard. The first versions of the standard
are widely known as SQL-86 (or SQL-87, since the
ISO version wasn’t published until early 1987), SQL-
89, and SQL-92, while the version just now being
finalized should become known as SQL:1999. Why
the difference…why not “SQL-99”? Well, simply
because we have to start thinking about what the next
generation will be called, and “SQL-02” seemed
more likely to be confused with “SQL2” (which was
the project name under which SQL-92 was
developed)…not to mention the fact that “02” isn’t
really greater than “99”. In other words, we don’t
want even the name of the SQL standard to suffer
from the year 2000 problem!

Contents of SQL:1999
With that background under our belts, it’s time to
take a survey of the actual contents of SQL:1999.

While we recognize that most readers of this column
will not know the precise contents of even SQL-92,
space limitations prohibit our presenting the complete
feature set of SQL:1999. Consequently, we’re going
to restrict our overview to just those features that are
new to this most recent generation of the SQL
standard.

The features of SQL:1999 can be crudely
partitioned into its “relational features” and its
“object-oriented features”. We’ll cover them in that
sequence for convenience.

Relational Features
Although we call this category of features
“relational”, you’ll quickly recognize that it’s more
appropriately categorized as “features that relate to
SQL’s traditional role and data model”…a somewhat
less pithy phrase. The features here are not strictly
limited to the relational model, but are also unrelated
to object orientation.

These features are often divided into about
five groups: new data types, new predicates,
enhanced semantics, additional security, and active
database. We’ll look at each in turn.

New Data Types
SQL:1999 has four new data types (although

one of them has some identifiable variants). The first
of these types is the LARGE OBJECT, or LOB, type.
This is the type with variants: CHARACTER
LARGE OBJECT (CLOB) and BINARY LARGE
OBJECT (BLOB). CLOBs behave a lot like character
strings, but have restrictions that disallow their use in
PRIMARY KEYs or UNIQUE predicates, in
FOREIGN KEYs, and in comparisons other than
purely equality or inequality tests. BLOBs have
similar restrictions. (By implication, LOBs cannot be
used in GROUP BY or ORDER BY clauses, either.)
Applications would typically not transfer entire LOB
values to and from the database (after initial storage,
that is), but would manipulate LOB values through a
special client-side type called a LOB locator. In
SQL:1999, a locator is a unique binary value that acts
as a sort of surrogate for a value held within the
database; locators can be used in operations (such as
SUBSTRING) without the overhead of transferring
an entire LOB value across the client-server
interface.

Another new data type is the BOOLEAN
type, which allows SQL to directly record truth
values true, false, and unknown. Complex
combinations of predicates can also be expressed in
ways that are somewhat more user-friendly than the
usual sort of restructuring might make them:

WHERE COL1 > COL2 AND
 COL3 = COL4 OR
 UNIQUE(COL6) IS NOT FALSE

SQL:1999 also has two new composite
types: ARRAY and ROW. The ARRAY type allows
one to store collections of values directly in a column
of a database table. For example:

WEEKDAYS VARCHAR(10) ARRAY[7]

would allow one to store the names of all seven
weekdays directly in a single row in the database.
Does this mean that SQL:1999 allows databases that
do not satisfy first normal form? Indeed, it does, in
the sense that it allows “repeating groups”, which
first normal form prohibits. (However, some have
argued that SQL:1999’s ARRAY type merely allows
storage of information that can be decomposed, much
as the SUBSTRING function can decompose
character strings—and therefore doesn’t truly violate
the spirit of first normal form.)

The ROW type in SQL:1999 is an extension
of the (anonymous) row type that SQL has always
had and depended on having. It gives database
designers the additional power of storing structured
values in single columns of the database:

CREATE TABLE employee (
 EMP_ID INTEGER,
 NAME ROW (
 GIVEN VARCHAR(30),
 FAMILY VARCHAR(30)),
 ADDRESS ROW (
 STREET VARCHAR(50),
 CITY VARCHAR(30),
 STATE CHAR(2))
 SALARY REAL)

SELECT E.NAME.FAMILY
FROM employee E

While you might argue that this also violates first
normal form, most observers recognize it as just
another “decomposable” data type.

SQL:1999 adds yet another data type-related
facility, called “distinct types”. Recognizing that it’s
generally unlikely that an application would want,
say to directly compare an employee’s shoe size with
his or her IQ, the language allows programmers to
declare SHOE_SIZE and IQ to each be “based on”
INTEGER, but prohibit direct mixing of those two
types in expressions. Thus, an expression like:

WHERE MY_SHOE_SIZE > MY_IQ

(where the variable name implies its data type) would
be recognized as a syntax error. Each of those two
types may be “represented” as an INTEGER, but the
SQL system doesn’t allow them to be mixed in
expressions—nor for either to be, say, multiplied by
an INTEGER:

SET MY_IQ = MY_IQ * 2

Instead, programs have to explicitly express their
deliberate intent when doing such mixing:

WHERE MY_SHOE_SIZE >
 CAST (MY_IQ AS SHOE_SIZE)

SET MY_IQ =
 MY_IQ * CAST(2 AS IQ)

In addition to these types, SQL:1999 has
also introduced user-defined types, but they fall into
the object-oriented feature list.

New Predicates
SQL:1999 has three new predicates, one of which
we’ll consider along with the object-oriented
features. The other two are the SIMILAR predicate
and the DISTINCT predicate.

Since the first version of the SQL standard,
character string searching has been limited to very
simple comparisons (like =, >, or <>) and the rather
rudimentary pattern matching capabilities of the
LIKE predicate:

WHERE NAME LIKE '%SMIT_'

which matches NAME values that have zero or more
characters preceding the four characters ‘SMIT’ and
exactly one character after them (such as SMITH or
HAMMERSMITS).

Recognizing that applications often require
more sophisticated capabilities that are still short of
full text operations, SQL:1999 has introduced the
SIMILAR predicate that gives programs UNIX-like
regular expressions for use in pattern matching. For
example:

WHERE NAME SIMILAR TO
'(SQL-(86|89|92|99))|(SQL(1|2|3))'

(which would match the various names given to the
SQL standard over the years). It’s slightly
unfortunate that the syntax of the regular expressions
used in the SIMILAR predicate doesn’t quite match
the syntax of UNIX’s regular expressions, but some

of UNIX’s characters were already in use for other
purposes in SQL.

The other new predicate, DISTINCT, is very
similar in operation to SQL’s ordinary UNIQUE
predicate; the important difference is that two null
values are considered not equal to one another and
would thus satisfy the UNIQUE predicate, but not all
applications want that to be the case. The DISTINCT
predicate considers two null values to be not distinct
from one another (even though they are neither equal
to nor not equal to one another) and thus those two
null values would cause a DISTINCT predicate not to
be satisfied.

SQL:1999’s New Semantics
It’s difficult to know exactly where to draw the line
when talking about new semantics in SQL:1999, but
we’ll give a short list of what we believe to be the
most important new behavioral aspects of the
language.

A long-standing demand of application
writers is the ability to update broader classes of
views. Many environments use views heavily as a
security mechanism and/or as a simplifier of an
applications view of the database. However, if most
views are not updatable, then those applications often
have to “escape” from the view mechanism and rely
on directly updating the underlying base tables; this
is a most unsatisfactory situation.

SQL:1999 has significantly increased the
range of views that can be updated directly, using
only the facilities provided in the standard. It depends
heavily on functional dependencies for determining
what additional views can be updated, and how to
make changes to the underlying base table data to
effect those updates.

Another widely-decried shortcoming of SQL
has been its inability to perform recursion for
applications such as bill-of-material processing. Well,
SQL:1999 has provided a facility called recursive
query to satisfy just this sort of requirement. Writing
a recursive query involves writing the query
expression that you want to recurse and giving it a
name, then using that name in an associated query
expression:

WITH RECURSIVE
 Q1 AS SELECT...FROM...WHERE...,
 Q2 AS SELECT...FROM...WHERE...
SELECT...FROM Q1, Q2 WHERE...

We’ve already mentioned locators as a
client-side value that can represent a LOB value
stored on the server side. Locators can be used in the
same way to represent ARRAY values, accepting the

fact that (like LOBs) ARRAYs can often be too large
to conveniently pass between an application and the
database. Locators can also be used to represent user-
defined type values—discussed later in this
column—which also have the potential to be large
and unwieldy.

Finally, SQL:1999 has added the notion of
savepoints, widely implemented in products. A
savepoint is a bit like a subtransaction in that an
application can undo the actions performed after the
beginning of a savepoint without undoing all of the
actions of an entire transaction. SQL:1999 allows
ROLLBACK TO SAVEPOINT and RELEASE
SAVEPOINT, which acts a lot like committing the
subtransaction.

Enhanced Security
SQL:1999’s new security facility is found in its role
capability. Privileges can be granted to roles just as
they can be to individual authorization identifiers,
and roles can be granted to authorization identifiers
and to other roles. This nested structure can
enormously simplify the often difficult job of
managing security in a database environment.

Roles have been widely implemented by
SQL products for several years (though occasionally
under different names); the standard has finally
caught up.

Active Database
SQL:1999 recognizes the notion of active database,
albeit some years after implementations did. This
facility is provided through a feature known as
triggers. A trigger, as many readers know, is a
facility that allows database designers to instruct the
database system to perform certain operations each
and every time an application performs specified
operations on particular tables.

For example, triggers could be used to log
all operations that change salaries in an employee
table:

CREATE TRIGGER log_salupdate
 BEFORE UPDATE OF salary
 ON employees
 REFERENCING OLD ROW as oldrow
 NEW ROW as newrow
 FOR EACH ROW
 INSERT INTO log_table
 VALUES (CURRENT_USER,
 oldrow.salary,
 newrow.salary)

Triggers can be used for many purposes, not just
logging. For example, you can write triggers that

keep a budget balanced by reducing monies set aside
for capital purchases whenever new employees are
hired…and raising an exception if insufficient money
is available to do so.

Object Orientation
In addition to the more traditional SQL features
discussed so far, SQL:1999’s development was
focussed largely—some observers would say too
much—on adding support for object-oriented
concepts to the language.

Some of the features that fall into this
category were first defined in the SQL/PSM standard
published in late 1996—specifically, support for
functions and procedures invocable from SQL
statements. SQL:1999 enhances that capability,
called SQL-invoked routines, by adding a third class
of routine known as methods, which we’ll get to
shortly. We won’t delve into SQL-invoked functions
and procedures in this column, but refer you to an
earlier issue of the SIGMOD Record [6].

Structured User-Defined Types
The most fundamental facility in SQL:1999 that
supports object orientation is the structured user-
defined type; the word “structured” distinguishes this
feature from distinct types (which are also “user-
defined” types, but are limited in SQL:1999 to being
based on SQL’s built-in types and thus don’t have
structure associated with them).

Structured types have a number of
characteristics, the most important of which are:
– They may be defined to have one or more

attributes, each of which can be any SQL type,
including built-in types like INTEGER,
collection types like ARRAY, or other structured
types (nested as deeply as desired).

– All aspects of their behaviors are provided
through methods, functions, and procedures.

– Their attributes are encapsulated through the use
of system-generated observer and mutator
functions (“get” and “set” functions) that provide
the only access to their values. However, these
system-generated functions cannot be
overloaded; all other functions and methods can
be overloaded.

– Comparisons of their values are done only
through user-defined functions.

– They may participate in type hierarchies, in
which more specialized types (subtypes) have all
attributes of and use all routines associate with
the more generalized types (supertypes), but may
add new attributes and routines.

Let’s look at an example of a structured type
definition:

CREATE TYPE emp_type
 UNDER person_type
AS (EMP_ID INTEGER,
 SALARY REAL)
INSTANTIABLE
NOT FINAL
REF (EMP_ID)
INSTANCE METHOD
 GIVE_RAISE
 (ABS_OR_PCT BOOLEAN,
 AMOUNT REAL)
 RETURNS REAL

This new type is a subtype of another
structured type that might be used to describe persons
in general, including such common attributes as name
and address; the new emp_type attributes include
things that “plain old persons” don’t have, like an
employee ID and a salary. We’ve declared this type
to be instantiable and permitted it to have subtypes
defined (NOT FINAL). In addition, we’ve said that
any references to this type (see the discussion on REF
types below) are derived from the employee ID
value. Finally, we’ve defined a method (more on this
later) that can be applied to instances of this type.

SQL:1999, after an extensive flirtation with
multiple inheritance (in which subtypes were allowed
to have more than one immediate supertype), now
provides a type model closely aligned with Java’s—
single inheritance. Type definers are allowed to
specify that a given type is either instantiable (in
other words, values of that specific type can be
created) or not instantiable (analogous to abstract
types on other programming languages). And,
naturally, any place—such as a column—where a
value of some structured type is permitted, a value of
any of its subtypes can appear; this provides exactly
the sort of substitutability that object-oriented
programs depend on.

By the way, some object-oriented
programming languages, such as C++, allow type
definers to specify the degree to which types are
encapsulated: an encapsulation level of PUBLIC
applied to an attribute means that any user of the type
can access the attribute, PRIVATE means that no
code other than that used to implement the type’s
methods can access the attribute, and PROTECTED
means that only the type’s methods and methods of
any subtypes of the type can access the attribute.
SQL:1999 does not have this mechanism, although
attempts were made to define it; we anticipate it to be
proposed for a future revision of the standard.

Functions vs Methods
SQL:1999 makes an important distinction between
“ordinary” SQL-invoked functions and SQL-invoked
methods. In brief, a method is a function with several
restrictions and enhancements. Let’s summarize the
differences between the two types of routine:
– Methods are tightly bound to a single user-

defined type; functions are not.
– The user-defined type to which a method is

bound is the data type of a distinguished
argument to the method (the first, undeclared
argument); no argument of a function is
distinguished in this sense.

– Functions may be polymorphic (overloaded), but
a specific function is chosen at compile time by
examining the declared types of each argument
of a function invocation and choosing the “best
match” among candidate functions (having the
same name and number of parameters); methods
may also be polymorphic, but the most specific
type of their distinguished argument, determined
at runtime, allows selection of the exact method
to be invoked to be deferred until execution; all
other arguments are resolved at compile time
based on the arguments’ declared types.

– Methods must be stored in the same schema in
which the definition of their tightly-bound
structured type is stored; functions are not
limited to a specific schema.

Both functions and methods can be written
in SQL (using SQL/PSM’s computationally-complete
statements) or in any of several more traditional
programming languages, including Java.

Functional and Dot Notations
Access to the attributes of user-defined types can be
done using either of two notations. In many
situations, applications may seem more natural when
they use “dot notation”:

WHERE emp.salary > 10000

while in other situations, a functional notation may be
more natural:

WHERE salary(emp) > 10000

SQL:1999 supports both notations; in fact,
they are defined to be syntactic variations of the same
thing—as long as “emp” is a storage entity (like a
column or variable) whose declared type is some
structured type with an attribute named
“salary”…or there exists a function named

“salary” with a single argument whose data type is
the (appropriate) structured type of emp.

Methods are slightly less flexible than
functions in this case: Only dot notation can be used
for method invocations—at least for the purposes of
specifying the distinguished argument. If salary
were a method whose closely bound type were, say,
employee, which was in turn the declared type of a
column named emp, then that method could be
invoked only using:

emp.salary

A different method, say give_raise, can
combine dot notation and functional notation:

emp.give_raise(amount)

Objects…Finally
Careful readers will have observed that we have
avoided the use of the word “object” so far in our
description of structured types. That’s because, in
spite of certain characteristics like type hierarchies,
encapsulation, and so forth, instances of SQL:1999’s
structured types are simply values, just like instances
of the language’s build-in types. Sure, an employee
value is rather more complex (in appearance, as well
as in behavior) than an instance of INTEGER, but it’s
still a value without any identity other than that
provided by its value.

In order to gain the last little bit of
characteristic that allows SQL to provide objects,
there has to be some sense of identity that can be
referenced in a variety of situations. In SQL:1999,
that capability is supplied by allowing database
designers to specify that certain tables are defined to
be “typed tables”…that is, their column definitions
are derived from the attributes of a structured type:

CREATE TABLE empls OF employee

Such tables have one column for each
attribute of the underlying structured type. The
functions, methods, and procedures defined to
operate on instances of the type now operate on rows
of the table! The rows of the table, then, are values
of—or instances of—the type. Each row is given a
unique identity that behaves just like a OID (object
identifier) behaves…it is unique in space (that is,
within the database) and time (the life of the
database).

SQL:1999 provides a special type, called a
REF type, whose values are those unique identifiers.
A given REF type is always associated with a
specified structured type. For example, if we were to

define a table containing a column named “manager”
whose values were references to rows in a typed table
of employees, it would look something like this:

manager REF(emp_type)

A value of a REF type either identifies a row
in a typed table (of the specified structured type, of
course) or it doesn’t identify anything at all—which
could mean that it’s a “dangling reference” left over
after the row that it once identified was deleted.

All REF types are “scoped” so that the table
that they reference is known at compilation time.
During the development of SQL:1999, there were
efforts made to allow REF types to be more general
than that (for example, any of several tables could be
in the scope, or any table at all of the appropriate
structured type would be in the scope even if the
table were created after the REF type was created);
however, several problems were encountered that
could not be resolved without further delaying
publication of the standard, so this restriction was
adopted. One side effect of the restriction, possibly a
beneficial effect, is that REF types now behave very
much like referential integrity, possibly easing the
task of implementing this facility in some products!

Using REF Types
You shouldn’t be surprised to learn that REF types
can be used in ways a little more sophisticated than
merely storing and retrieving them.

SQL:1999 provides syntax for “following a
reference” to access attributes of a structured type
value:

SELECT emps.manager->last_name

The “pointer” notation (->) is applied to a
value of some REF type and is then “followed” into
the identified value of the associated structured
type—which, of course, is really a row of the typed
table that is the scope of the REF type. That
structured type is both the type associated with the
REF type of the manager column in the emps table
and the type of that other table (whose name is
neither required nor apparent in this expression).
However, that structured type must have an attribute
named last_name, and the typed table thus has a
column of that name.

Schedules and Futures
SQL:1999 is not yet a standard, although it’s well on
its way to becoming one. Last year, what is called the
Final Committee Draft (FCD) ballot was held for

four parts of the SQL specifications (see references
[1], [2], [4], and [5]). In November, 1998, the final
round of the Editing Meeting was held for those
parts. The changes to the specifications have been
applied by the Editor (Jim Melton) and are now being
reviewed by Editing Meeting participants. When
those reviews are completed, those four
specifications will be submitted for one last ballot
(called a Final Draft International Standard, or FDIS,
ballot), the result of which is either “approve and
publish without change” or “disapprove and go back
to FCD status”. All participants currently anticipate
that the result will be to approve and publish,
resulting in a revised standard sometime in mid-1999.

Another part of SQL, SQL/CLI (see
reference [3]), is also being revised and has just
undergone an FCD ballot. It is expected that it will be
published later in 1999 as a revision of the CLI-95
standard.

It’s hard to know what the future will bring,
but both the ANSI and ISO groups are committed to
avoiding the lengthy process that resulted in
SQL:1999. We all believe that 6 years is simply too
long, especially with the world working in “web
time” more and more. Instead, plans are being
developed that will result in revisions being issued
roughly every three years, even if the technical
enhancements are somewhat more modest than those
in SQL:1999.

In addition to evolving the principle parts of
the SQL:1999 standard, additional parts of SQL are
being developed to address such issues as temporal
data, the relationship with Java (explored in the
previous issue of the SIGMOD Record), and
management of external data along with SQL data.

Recognition of Individual
Contributors
There have been many, many people involved in the
development of SQL:1999 over the years its
development occupied. While we don’t have the
space to mention everybody who participated in the
committees during its development, we do think it
appropriate to mention at least the names of people
who wrote significant numbers of change proposals
or simply wrote significant proposals.
– Mihnea Andrei (France; Sybase)
– Jon Bauer (USA; Digital and Oracle)
– David Beech (USA; Oracle)
– Ames Carlson (USA; HP and Sybase)
– Stephen Cannan (Netherlands; DCE Nederland

and James Martin Consulting)
– Paul Cotton (Canada; IBM)
– Hugh Darwen (UK; IBM)
– Linda deMichael (USA; IBM)

– Judy Dillman (USA; CA)
– R diger Eisele (Germany; Digital and

independent consultant)
– Andrew Eisenberg (USA; Digital, Oracle, and

Sybase)
– Chris Farrar (USA; Teradata and Compaq)
– Len Gallagher (USA; NIST)
– Luigi Giuri (Italy; Fondazione ugo Bordoni)
– Keith Hare (USA; JCC)
– Bruce Horowitz (USA; Bellcore)
– Bill Kelly (USA; UniSQL)
– Bill Kent (USA; HP)
– Krishna Kulkarni (USA; Tandem, Informix, and

IBM)
– Nelson Mattos (USA; IBM)
– Jim Melton (USA; Digital and Sybase)
– Frank Pellow (Canada; IBM and USA;

Microsoft)
– Baba Piprani (Canada; independent consultant)
– Peter Pistor (Germany; IBM)
– Mike Pizzo (USA; Microsoft)
– Jeff Richie (USA; Sybase and IBM)
– Phil Shaw (USA; IBM, Oracle, and Sybase)
– Kohji Shibano (Japan; Tokyo International

University and Tokyo University of Foreign
Studies)

– Masashi Tsuchida (Japan; Hitachi)
– Mike Ubell (USA; Digital, Illustra, and

Informix)
– Murali Venkatrao (USA; Microsoft)
– Fred Zemke (USA; Oracle)

Each of these people contributed in some
significant way. Some of them designed major
aspects of the architecture of SQL:1999, others
focussed on specific technologies like the call-level
interface (SQL/CLI), while others worked on very
focussed issues, such as security. They are all—as are
other contributors not mentioned here—to be
congratulated on a large job well done.

References
[1] ISO/IEC 9075:1999,Information technology—

Database languages—SQL—Part 1: Framework
(SQL/Framework), will be published in 1999.

[2] ISO/IEC 9075:1999,Information technology—
Database languages—SQL—Part 2: Foundation
(SQL/Foundation), will be published in 1999.

[3] ISO/IEC 9075:1999,Information technology—
Database languages—SQL—Part 3: Call-Level
Interface (SQL/CLI), will be published in 1999.

[4] ISO/IEC 9075:1999,Information technology—
Database languages—SQL—Part 4: Persistent
Stored Modules (SQL/PSM), will be published in
1999.

[5] ISO/IEC 9075:1999,Information technology—
Database languages—SQL—Part 5: Host
Language Bindings (SQL/Bindings), will be
published in 1999.

[6] New Standard for Stored Procedures in SQL,
Andrew Eisenberg, SIGMOD Record, Dec.1996

The SQL specifications will be available in the
United States from:

American National Standards Institute
Attn: Customer Service
11 West 42nd Street
New York, NY 10036
USA

Phone: +1.212.642.4980

It will be available internationally from the
designated National Body in each country or from:

International Organization for Standardization
1, rue de Varemb

 Case postale 56
 CH-1211 Gen ve 20
 Switzerland

 Phone: +41.22.749.0111

Web References
American National Standards Institute (ANSI)

http://web.ansi.org

International Organization for Standardization (ISO)
http://www.iso.ch

JTC1 SC32 – Data Management and Interchange
http://bwonotes5.wdc.pnl.gov/SC32/JTC1SC32.nsf

National Committee for Information Technology
Standards (NCITS)

http://www.ncits.org

NCITS H2 – Database
http://www.ncits.org/tc_home/h2.htm

