
SQL Standardization: The Next Steps

Andrew Eisenberg
Progress, Bedford, MA 01730

andrew.eisenberg@progress.com

Jim Melton
Oracle, Sandy, UT 84093

jim.melton@acm.org

SQL Standards To Date
In the last few months, we have spent the majority of
this column reviewing the meaning of the word
"standard", updating you on the status of the long-
awaited third-generation of the SQL standard
(formerly known as SQL3 and now known as
SQL: 1999), and introducing you to two of the three
parts of the SQLJ specifications.

This month, we're going to look a bit further
into the future by surveying some of the new
components of the SQL standard that are currently
under development.

Before we do that, however, one last word
on SQL:1999's availability: In March, 1999, we told
you (see reference [1]) the titles of the parts of the
SQL standard that would be published in 1999 and
gave you the addresses of organizations from which
you could purchase the documents. Sadly, there was
a minor, but possibly important, typographical error
in each of the titles, so we correct that error in
references [2] through [6]. Furthermore, we now have
more information about how you can acquire copies
of the documents.

Many of you have no doubt discovered in
the past that standards were available for purchase
only if you were willing to go through the tedium of
navigating the bureaucracies owning them and to pay
the seemingly exorbitant prices being charged. For
example, the SQL-92 standard can still be purchased
(in hardcopy form) for a mere US$220! That
probably seems like a tot of money, particularly if
you're a student or just individually interested in the
subject.

Well, you'll be happy to learn that you can
now download the five volumes of the SQL: 1999
standard from ANSI's Electronic Standards Store
(Web Reference [1]) for US$20/volume and also
from NCITS' Electronic Store (Web Reference [2])
for US$20/volume. Those prices are an order of
magnitude better than the cost of hardcopy would
have been...but note that only electronic (PDF)
format is available. (Hardcopy is available--from
NCITS, but not from ANSI--at a "slightly higher
price"...about US$540 for the five volumes!)

One more note: ANSI approved adoption of
those ISO/IEC documents in late t999 and they have
been given ANSI/ISO/IEC designations, too.

Coming Attractions
SQL standardization has been under way for about 15
or 16 years. In that period, three major editions of the
SQL standard (and one minor edition, plus two
incremental parts) were published: SQL-86, SQL-89,
SQL-92, CLI-95, PSM-96, and now SQL:1999.

The emergence of incremental parts (such as
References [3] and [4]) signaled a sea change in the
way that further standardization of SQL language
would be conducted. Instead of feeling forced to
periodically republish the entire (monolithic) SQL
standard every few years, we are now able to enhance
the language in smaller increments and on more
reasonable schedules. Naturally, that doesn't mean
that the entire standard won't be revised and
republished, but it does mean that there are
alternatives to doing so when specific new
capabilities can be isolated and standardized.

As we write this column, incremental parts
are being developed that cover several widely
divergent facilities for the SQL language. The parts
that are closest to completion and publication are Part
9, SQL/MED (Management of External Data) and
Part 10, SQL/OLB (Object Language Bindings).

In addition to incremental parts, it is
possible to amend a published standard to add new
facilities to it. The text of an amendment reads very
much like the text of an incremental part, but there is
a presumption that an amendment will be folded into
the text of the document (or documents) that it
amends when it is (or they are) next published. (By
contrast, the expectation for incremental parts is that
they will remain separate documents under predicted
circumstances.) The first amendment for SQL: 1999 is
currently in preparation and is called SQL/OLAP
(On-Line Analytical Processing).

Let's take a look at each of these three
documents in turn.

Object Language Bindings
By the time you read these words, work will be
complete on Part 10, SQL/OLB (Object Language

SIGMOD Record, Vol. 29, No. 1, March 2000 63

Bindings). SQL/OLB corresponds to SQLJ Part 0,
about which we wrote in late 1998 (Reference [7]). A
version of this specification aligned with SQL-92 was
adopted as a new incremental part of the ANSI SQL
standard (Reference [8]) in late 1998. More or less
simultaneously, a Final Committee Draft ballot was
initiated internationally in pursuit of a new
incremental part of the ISO SQL standard. That FCD
ballot closed in early 1999 with a substantial number
of comments, the great majority of which essentially
requested that the documer~t be aligned instead with
SQL:1999 as well as with JDBC TM 2.0, whose
publication was then imminent.

The committee responsible for SQL
standardization (ISO/IEC JTC1/SC32/WG3) has held
three Editing Meetings to resolve those comments,
the final one in January, 2000 in Santa Fe, NM, USA.
At that meeting, the last comments were successfully
resolved and the group recommended that the
document be progressed to Final Draft International
Standard ballot. That FDIS ballot should complete in
June or July of this year, with the resulting new Part
being published as ISO/IEC 9075-10:2000.

Reference [7] detailed the technical content
of the specification that became the ANSI SQL/OLB
standard. The principle technical differences between
that document and the ISO OLB:2000 standard
derive entirely from new SQL: 1999 capabilities and
JDBC2.0 features. Principle among these are:
• Support for scrollable and holdable cursors
• Support for user-defined types
• Support for updatable result sets and batch

updates
• Enhanced connection and transaction facilities

In addition to those technical enhancements,
considerable improvements were made in the
editorial quality of the document. If you're interested,
you can acquire a copy of this (non-copyrighted, not-
quite-finished) document at:

ftp://j erry.ece.umassd.edu
in directory:

/SC32/WG3/Progression_Documents/FCD/
under filename:

fcdi2-olb-1999-11.pdf (or .ps or .txt).

Management of External Data
Over the last few years, it has become increasingly
apparent that application developers are no longer
able to focus all of their eftbrts on building new
applications that use SQL database systems to
manage their data. They are increasingly being
required to integrate all that SQL data with their
legacy data (which some observers suggest may
actually contain an order of magnitude more data
than SQL databases!).

There is an enormous amount of data that
exists in ordinary files, on archive media such as
magnetic tapes, in non-relational databases
(hierarchical, like IMS, and CODASYL or other
"network" models), and even real-time, non-stored
data like that returned by sensors. And applications
must be able to access all of this data, using it
together to make appropriate business decisions.

The cost of accessing all that non-SQL data
in conjunction with the SQL data is awfully high, and
it is made worse by the requirement for programmers
to use different interfaces for different sorts of data.
Various SQL vendors have learned that they can help
their customers (and, not incidentally, earn additional
revenue) by providing solutions that allow
applications to use the SQL language to access all
that non-SQL data.

Oracle, for example, offers its Open
Transparent Gateway and the heterogeneous access
services it provides; Sybase has its OmniConnect that
supports SQL access to many different data sources;
and IBM provides Data Joiner to allow access to
traditional and nontraditional data. Other vendors,
including both major database vendors and smaller
niche-market players, offer analogous products.

In late 1998, a (non-final) Committee Draft
ballot was initiated in ISO on a new part of the SQL
standard to address this market requirement. This
new part 9 is named SQL/MED (Management of
External Data) and provides an API between an SQL-
server (that is, some "local" SQL database
management system) and another entity called a
foreign-data wrapper. The local SQL-server and the
foreign-data wrapper exchange information that
allows the local SQL-server to retr ieve--and
probably insert, update, and delete--data that is
actually controlled by a foreign server, The foreign-
data wrapper's responsibility is to allow the local
SQL-server to treat the data managed by the foreign
server as though it were tabular data...whether or not
it actually is in tabular form. Consequently, the local
SQL-server deals with foreign tables.

The data managed by a foreign server can be
non-SQL data, such as flat files or IMS database, but
it can also be SQL data managed by other vendors'
products. The local SQL-server might choose to
decompose an SQL statement given to it by a client
application and cause various aspects of the statement
to be executed by one or more foreign-data wrappers,
while executing some aspects of the statement
locally. By providing such seamless (or as nearly so
as possible) access to various data sources, a standard
for heterogeneous federated database management
can finally be provided!

The specific goat of SQL/MED is to specify
an open interface that permits anybody, whether an

64 SIGMOD Record, Vol. 29, No. 1, March 2000

existing vendor of SQL systems or some entrepreneur
who understands the characteristics of some data
source required by applications, to write foreign-data
wrappers that can be sold in "shrink-wrapped" form
so that they work with any SQL database system (on
a given hardware and operating system platform, of
course) and provide an SQL interface to another data
source. By creating a marketplace for such interfaces,
we believe that the ability for applications to access
data stored in any format will be vastly increased at a
much lower cost than applications builders encounter
today.

The development of SQL/MED has profited
greatly from a new spirit of cooperation among the
SQL vendors, particularly in the United States. While
we are all still competing vigorously with one
another, we are doing something heretofore unusual
in database standardization--working together to
develop new SQL language capabilities that satisfy
the requirements of all vendors and therefore (we
fervently hope) a broader range of the user
community. This sort of cooperation appears to
resulting in standardized capabilities that will
actually be implemented by most vendors instead of
the mish-mash of features, many of which are
interesting to only a single vendor, that seemed to
result in earlier years.

The CD ballot on SQL/MED resulted in a
very large number of comments, which were resolved
in a series of Editing Meetings held during 1999. The
proposals to resolve those comments created a
revised SQL/MED document that was submitted for a
Final Committee Draft ballot at the beginning of
2000. Significant additional comments are
anticipated on this FCD ballot and Editing Meetings
will be held later in 2000 to resolve them. The goal is
for SQL/MED to be published as an International
Standard some time in 2001 as ISO/IEC 9075-
9:2001. Interested parties can acquire a copy of this
(non-copyrighted and definitely not complete)
document at:

ftp://j erry.ece.umassd.edu
in directory:

/SC32/WG3/Progression_Documents/FCD/
under the filename:

fcdl -med- 1999-11 .pdf (or .ps or .txt).

On-Line Analytical Processing
Standards, and their revisions, often take several
years to develop, ballot, complete, and publish.
SQL: 1999 followed SQL-92 by seven years--which
we all recognize as much too long. Sometimes, even
a more reasonable cycle of republication, such as
three years, is too long for a new facility with urgent
market demand.

In 1999, several SQL vendors recognized
that there was strong and specific demand for
analytical tools in the SQL engines--tools that are
currently being supplied only through after-market
packages. Conversations with the companies offering
those after-market packages revealed that they too
would prefer to have basic analytical tools built into
the database engines so their packages could focus on
real value-added analysis capabilities.

With this realization and agreement, the
SQL standards community was offered an
opportunity to standardize a selection of features--
commonly called "OLAP" features-- i f they could do
so more quickly than by including it in the
subsequent generation of the standard or even by
creating a new incremental part to the standard.

The solution chosen to address this
requirement for rapid progression was to establish a
project to develop an amendment to SQL: 1999. The
format of an amendment, as suggested earlier in this
column, is quite similar to that of an incremental part,
but an amendment will be merged into the next
generation of the documents it amends automatically,
thus minimizing any future difficulties associated
with maintenance or enhancement of the
specification.

The closer cooperation between SQL
vendors on which we commented in our SQL/MED
discussion seems to apply even more to the
SQL/OLAP work. IBM and Oracle have been
particularly aggressive about developing change
proposals that satisfy the broadest range of analytical
and statistical tool requirements, and other vendors- -
such as Informix and Microsoft--have been actively
participating in proposal development and review.
The result is an elegant specification of new SQL
language syntax and semantics that has come
together remarkably fast.

In fact, a Final Proposed Draft Amendment
(FPDAM) ballot on the SQL/OLAP amendment was
initiated at the start of 2000. Under the expectation
that the relatively high-quality ballot document will
need no more than a single Editing Meeting to
resolve all comments, a subsequent Final Draft
Amendment (FDAM) ballot should result in
publication of SQL/OLAP late in 2000 as ISO/IEC
9075-1/AMD1:2000. The title is not yet final, but
should be something along the lines of Amendment 1
to ISO/IEC 9075-1:1999, On-Line Analytical
Processing (SQL/OLAP). Incidentally, this document
amends several parts of SQL:1999, so it was thought
appropriate to characterize it as an amendment to part
1, SQL/Framework.

SQL/OLAP introduces several tools widely
used in data analysis. First (but not most
importantly), it introduces a number of new numeric

S I G M O D R e c o r d , Vo l . 29 , N o . 1, M a r c h 2 0 0 0 65

functions, such as: LN (natural logarithm of the
argument), EXP (raises e to the power of the
argument), POWER (raises one argument to the
power of the other argument), SQRT (takes the
square root of the argument), FLOOR and CEILING
(returns the largest integer less than or equal to, or the
smallest integer greater than or equal to, the
argument), ranking functions (returns the ranking of
an argument among a multiset of values), and
percentile functions (returns the ranking of an
argument as its percentile value among a multiset of
values).

More complex functions are also provided,
including functions that compute standard deviations,
covariances, correlations, slopes and intercepts of
trend lines, and even several sorts of averages.

While those functions are necessary, they
are made much more powerful by the introduction of
the notion of windows to SQL. A window is a
selection of rows in a (virtual) table determined either
by grouping together all rows of that table that share
values in a specified column or set of columns or by
grouping rows based on their proximity to an
identified row (either a specified number of rows
preceding and following the identified row, or a
specified number of groups of rows related by
column values). For analytical purposes, it is often
desirable to exclude the identified row, or even to
exclude all rows that share with the identified row the
values in identified columns, from the window, so
SQL/OLAP provides syntax for such exclusions.

An incidental benefit of SQL/OLAP affects
ordinary SQL cursor operations. Long-time users of
SQL will be aware that the ORDER BY clause of an
SQL cursor sorts rows based on the values of
columns or expressions provided to that clause, and
that rows for which the columns or expressions
evaluate to the null value are all sorted either at the
beginning of the result or at the end of the result--
and that different implementations make different
choices between beginning and end.

As a result of a need to control the treatment
of null values for OLAP purposes, SQL/OLAP
introduced syntax that allows the application to
specify where nulls are sorted: NULLS FIRST and
NULLS LAST. This new syntax has been added to
ordinary cursor specifications as well, so applications
can control that aspect of their cursor ordering.

You can get a copy of this (non-copyrighted
and not complete) document at:

ftp://jerry.ece.umassd.edu
in directory:

/SC32/WG3/Progression_Documents/FPDAM/
under the filename:

fpdam-olap- 1999-11 .pdf (or .ps or .txt).

It's About Time
Get used to seeing that pun, because it'll show up in a
future column!

Several years ago, work was initiated on
another incremental part of SQL, part 7, called
SQL/Temporal. For those of you not used to the
terminology, temporal data is what allows you to
telephone your bank to complain about missing your
checking account statement from July, 1998, and
actually get your missing statement in the mail a few
days later. In other words, it permits you to do "time
travel" in your database--unfortunately, you can only
travel backwards in time...we don't have the
technology to allow you to do database queries to
find out what the stock market "did" in 2010!

Temporal data is generally managed in
terms of transaction t ime--that is, the time during
which the database system believes a particular piece
of information to be valid--and valid t ime--the time
during which the information actually is valid...at
least according to the information we have available
to us "today". Not all applications require that both
transaction and valid time be captured, but a
surprising number of applications benefit greatly
from having one or the other (or both) available.

We also want to be sure to distinguish
temporal data from time series data. The latter is
more commonly available with today's database
products and is used for analyzing trends in data
recorded at different points over some period of
time--such as stock market data collected daily for
several months. By contrast, temporal data
management is not yet widely implemented, and we
find that most temporal data is managed by code
written into applications instead of in database
management systems!

Work on SQL/Temporal stalled about three
years ago for three reasons. First, there was not a lot
of enthusiasm from SQL vendors--or, indeed, from
their customer base--for adding temporal support to
database engines. Second, the SQL standards folks
were forced to concentrate on completing SQL3 (in
part because it was taking much longer and was much
more difficult than expected) and had to avoid the
distraction of working on a project for which there
was seemingly little market demand. Finally, there is
a fundamental disagreement betwe~en two camps
about precisely what capabilities SQL/Temporal
should provide and how those capabilities should be
provided (that is, both syntax and semantics).

As SQL3 development drew to a close,
resulting in publication of SQL: 1999, participants
became aware that the marketplace was showing an
increased awareness of the benefits of temporal data
support and at least some of the SQL vendors have

66 SIGMOD Record, Vol. 29, No. 1, March 2000

become interested in the issue. Therefore,
development on SQL/Temporal has recently begun to
revive and one may hope to see publication of this
incremental part some time in the 2002 or 2003
time frame.

Paper Shuffling
Finally, just to be thorough, we have to note a change
in the collection of parts comprising the SQL
standard. References [2] through [6] make up
SQL: 1999. However, Part 5 (SQL/Bindings) is more
closely tied to Part 2 (SQL/Foundation) than we
thought it would be; as a result, adding any new
features to the language--or, indeed, understanding
the language as published--very often requires
dealing simultaneously with both documents. In other
words, we have realized...rather late...that the
material in SQL/Bindings should really have been
integrated into SQL/Foundation.

By contrast, the specification of the views
and base tables of the Information Schema and
Definition Schema, currently part of
SQL/Foundation, are readily separated and rarely
have to be considered simultaneously with
understanding or adding some feature to the SQL
language. In other words, that material could have
easily been separated into another document.

For the next generation of the SQL standard
(which we're calling "SQL:200n" and not "SQL4"!),
Part 5 has been eliminated by merging its contents
into SQL/Foundation, and a new Part 11,
SQL/Schemata, has been created to hold the
Information and Definition Schema specifications
that were removed from SQL/Foundation.

Summary
The following table provides a summary of the
anticipated delivery of these "Next Steps":

Part Delivery Date
Part 10, SQL/OLB Mid 2000
(Object Language Bindings)
Amendment 1, SQL/OLAP Late 2000
(On-line Analytical Processing)
Part 9, SQL/MED 2001
(Management of External Data)
Part 7, SQL/Temporal 2003?
SQL:200x 2003?

Very obviously, SQL standardization is not
complete--not by a long shot. While SQL: 1999 has
loads of features that are already widely implemented
(and not a few that now seem unlikely ever to be
implemented by more than a single vendor, if that),

the marketplace continues to put new and challenging
demands on the vendors and their ability to deliver
products. The vendors also continue to find new and
exciting ways to compete with one another by
offering useful new features to deliver to their
customers. As the features being demanded,
considered, and built prove their usefulness to a
broad community, they will continue to be fodder for
additional standardization work.

Will SQL ever be "finished"? Of course!
Every language (even COBOL) eventually comes to
an end to its usefulness. SQL will be no different. But
there isn't anything on the horizon today--not even
XML and its variants (like XML Query)-- that solve
the same problems that SQL solves and does so as
well as SQL.

Until the needs change, or the technology
available changes dramatically, we believe that SQL
will continue to be (as Mike Stonebreaker called it)
"Intergalactic Dataspeak". And.. . the SQL standard
will probably continue to grow and be enhanced.

References
[1] "SQL:1999, formerly known as SQL3", Andrew

Eisenberg and Jim Melton, SIGMOD Record,
Vol. 28, No. 1, March 1999.

[2] ISO/IEC 9075-1:1999, Information technology
- - Database language - - SQL - - Part 1:
Framework (SQL/Framework), 1999.

[3] ISO/IEC 9075-2:1999, Information technology
- - Database language - - SQL - - Part 2:
Foundation (SQL/Foundation) , 1999.

[4] ISO/IEC 9075-3:1999, Information technology
- - Database language - - SQL - - Part 3: Call-

Level Interface (SQL/CL1) , 1999.
[5] ISO/IEC 9075-4:1999, Information technology

- - Database language - - SQL - - Part 4:
Persistent Stored Modules (SQL/PSM), 1999.

[6] ISO/IEC 9075-5:1999, Information technology
- - Database language - - SQL - - Part 5: Host
Language Bindings (SQL/Bindings) , 1999.

[7] "SQL Part 0, No Known as SQL/OLB (Object
Language Bindings), Andrew Eisenberg and Jim
Melton, SIGMOD Record, Vol. 27, No. 4,
December, 1998.

[8] ANSI X3.135.10-1998, Information Systems - -
Database L a n g u a g e s - SQL - - P a r t 1 O: Object

Language Bindings (SQL/OLB), 1998.

Web References
[1] ANSI 's Electronic Standards Store:

h ttp ://web store, an s i. org
[2] NCITS' Standards Store:

http://www.cssinfo.com/ncits.html

SIGMOD Record, Vol. 29, No. 1, March 2000 67

