

SQL/XML and the SQLX Informal
Group of Companies

Andrew Eisenberg

IBM, Westford, MA 01886
andrew.eisenberg@us.ibm.com

Jim Melton
Oracle Corp., Sandy, UT 84093

jim.melton@acm.org

Introduction
For many years now, the SQL standard has been
maintained and enhanced by NCITS Technical
Committee H2 on Database in the US and by the
ISO/IEC JTC 1/SC32/WG3 Database Languages
Working Group internationally. After the publication
of SQL:1992, the groups began to publish SQL as a
base document (SQL/Foundation) and a number of
independent parts. These parts began with SQL/CLI
(Call-Level Interface) and SQL/PSM (Persistent
Stored Modules) in 1995 and 1996, respectively.

Interest in XML has been growing in the last
several years among software vendors, user
companies of all sizes, and within the standards
community. NCITS H2 and SC32 both approved a
project for a new part of SQL, part 14, XML-Related
Specifications (SQL/XML), in the second half of
2000.

After this new project was approved, a small
number of companies began to meet in order to
explore the technology and develop proposals to
begin fleshing out this new part of SQL. This
informal group of companies has come to be known
as The SQLX Group.

In roughly a year’s time, several pieces of
what might be termed “infrastructure” have been
progressed and are included in the initial working
draft of SQL/XML [2].

SQL/XML Subproject
This new part of SQL, SQL/XML, began with the
approval by both bodies of a subproject proposal
document [1]. This document provided the
justification for this subproject request and a
suggested program of work. The justification states,
in part, the following:

“One of the most intriguing and urgent
requirements to arise from the appearance of
XML is a well-defined relationship between
XML and SQL. Vast quantities of business data
are currently stored in SQL database systems
and great demand exists for the ability to

present that data in XML form to various client
applications. By contrast, increasing amounts of
less-traditional data (“documents”) are being
produced in XML formats and there is
tremendous pressure to allow that data to be
queried concurrently with traditional (“object-
relational”) data. In addition, the growing need
to allow disparate systems to exchange data has
caused significant attention to be paid to the use
of XML as a “canonical data format” between
such systems (e.g., on the Web).”

The program of work enumerates several

capabilities that may be included in SQL/XML. This
list is as follows:

• Specifications for the representation of SQL
data (specifically rows and tables of rows, as
well as views and query results) in XML
form, and vice versa.

• Specifications associated with mapping SQL
schemata to and from XML schemata. This
may include performing the mapping
between existing arbitrary XML and SQL
schemata.

• Specifications for the representation of SQL
Schemas in XML.

• Specifications for the representation of SQL
actions (insert, update, delete).

• Specifications for messaging for XML when
used with SQL.

• Specifications of the (perhaps “a”) manner
in which SQL language can be used with
XML.

If all of these capabilities were attempted as

a single effort, then SQL/XML would not be
published for a very long time. We feel confident that
NCITS H2 and SC32/WG3 will all agree to some
subset of these capabilities that will allow for
publication in a timely manner. NCITS H2 and WG3
have a long history of adding features to their
standards incrementally.

XML itself [3] is a recommendation of the
W3C. SQL/XML is attempting to build upon the
foundation provided by XML, XML Namespaces [4],

and XML Schema [5]. NCITS H2 and SC32/WG3
will endeavor to make sure that they neither duplicate
nor conflict with these recommendations.

The SQLX Group
The level of interest in SQL/XML is so high that
several of the companies participating in NCITS H2
have chosen to work together on developing
proposals for this new part. These proposals, when
they are ready, will be submitted to both NCITS H2
and SC32/WG3 for approval.

This informal group of companies has
chosen SQLX as its name. SQLX meets roughly
every 3 weeks, alternating teleconferences with face-
to-face meetings. The group does not have formal
rules or voting, choosing instead to move forward
when a rough consensus of its members has been
achieved.

One thing that cannot be said too often is
that SQLX is an open group. Members of SQLX
have, in several public forums, invited members of
the broad technical community to participate. Our
public web page can be found at www.sqlx.org.
There are no fees or other requirements for
membership. Membership in NCITS H2, SC32/WG3,
or W3C is not a requirement for membership in
SQLX.

Some of the largest DBMS vendors are
participating in SQLX (our employers, IBM and
Oracle, certainly are). We have some members that
represent smaller vendors and some that represent
potential end-users of this technology.

Initial SQL/XML Working Draft
In this section, we describe the features provided in
the recently published initial SQL/XML Working
Draft.

Mapping SQL Character Sets to and
from Unicode
SQL allows the use of one or more named character
sets. The choice of which character sets are supported
and their internal representation are implementation-
defined. That is to say that the vendor of each product
specifies them. The characters in XML documents, in
contrast, are Unicode characters.

Each product that supports SQL/XML will
have to define a mapping between strings of each of
its character sets and Unicode strings. It will also
have to provide the reverse mapping, from Unicode
strings to strings of each of its character sets.

SQL_TEXT is a character set that contains
all of the characters that are used in the SQL
language itself, as well as the characters in all of the

character sets that an implementation supports. The
mapping between SQL_TEXT and Unicode is known
as the plain text mapping from SQL to XML.

Mapping SQL <identifier>s to XML
Names
The range of characters that can be used in an SQL
identifier is much greater than the range of characters
that can be used in an XML Name. While this might
not seem so at first, remember that SQL supports
delimited identifiers (identifiers that are delimited by
double-quote characters) such as "Max % ESPP".

XML Names that begin with the characters
“XML” (in any case combination) are reserved by
W3C for use in future recommendations. The XML
Namespace recommendation uses the “:” character to
separate the namespace prefix from the local part of
the name (“xsd:string”, for example).

In order to bridge this gap, SQL/XML
provides a mapping between the characters of SQL
<identifier>s and XML Names. This mapping begins
by mapping the characters of the SQL <identifier> to
Unicode. SQL <identifier> characters that are valid
characters in an XML Name are not changed. SQL
<identifier> characters that are not valid XML Name
characters are replaced with either “_xHHHH_” or
“_xHHHHHHHH”, where “H” is an upper case
hexadecimal digit.

In addition to these simple rules, there are
some special cases that must be dealt with. The SQL
<identifier> character “_” will always be represented
by “_X005F_”. A leading “:” in an SQL <identifier>
will be represented by “_x003A_”.

SQL/XML defines two flavors of this
mapping. We have just illustrated the partially-
escaped mapping.

The fully-escaped mapping has some
additional rules beyond those we just mentioned. It
maps all occurrences of “:”, not just as the initial
character of the string, to “_x003A_”. Also, an SQL
<identifier> that begins with the characters “X”, “M”,
and “L” in any mixture of cases will be prefixed by
“_xFFFF_”.

The following table shows how some SQL
<identifier>s are mapped to XML Names:

SQL
<identifier>

fully-escaped
XML Name

partially-escaped
XML Name

employee EMPLOYEE EMPLOYEE
"employee" employee employee
"hire date" hire_x0020_date hire_x0020_date
"comp_plan" comp_x005F_plan comp_x005F_plan
"dept:id" dept_x003A_id dept:id
xmlcol _xFFFF_xmlcol xmlcol

http://www.sqlx.org/

One might reasonably expect the partially-
escaped mapping to be used for SQL <identifier>s
that have been chosen with the mapping to XML
Names in mind. The fully-escaped mapping allows
the mapping of SQL <identifier>s that were chosen
without any cognizance at all of XML.

Mapping XML Names to SQL
<identifier>s
The mapping from an XML Name to an SQL
<identifier> is very straightforward. The characters of
an XML Name are examined from left to right. If the
sequence “_xHHHH_” or “_xHHHHHHHH_” is
encountered, then it is mapped to the Unicode
character identified by that codepoint. If the XML
Name begins with “_xFFFF_”, then these initial
characters are ignored.

The mapping between Unicode characters
and SQL_TEXT is then applied. If there are any
Unicode characters that cannot be mapped to
SQL_TEXT, then an exception is raised.

These two mappings allow an SQL
<identifier> to be mapped to an XML Name, and
later to have the XML Name mapped back into the
same SQL <identifier>. This fully-reversible property
does not hold for the mapping of an XML Name to
an SQL <identifier> and back again.

Mapping SQL data types to XML
Schema data types
XML Schema Part 2 defines simple data types for
XML and lexical representations for the values of
these types. SQL/XML provides a mapping for each
of SQL’s scalar data types to an XML Schema data
type.

The approach SQL/XML has taken is to
select the closest possible XML Schema data type for
each SQL data type. By “closest”, we mean that it
must allow all SQL values of this type to be
represented and that it must allow the fewest values
that are not SQL values. XML Schema facets are
used to restrict the acceptable XML values to as
closely as possible match the legal values SQL
values. In the case of SQL’s INTEGER type, for
example, the XML Schema type of integer is used.
The minInclusive and maxInclusive facets are set to
the values of the implementation’s smallest and
largest INTEGER value, respectively.

The XML Schema annotation mechanism is
used by SQL/XML to preserve SQL type information
that would otherwise be lost in the mapping to an
XML Schema data type. The use of this annotation
mechanism is not required by SQL/XML, so an

implementation is free to omit this part of the
mapping if it chooses to.

In our examples, the “xsd” namespace prefix
is used to indicate the XML Schema namespace. The
“sqlxml” namespace prefix is used to indicate the
SQL/XML namespace. A URI has not yet been
chosen for the SQL/XML namespace, but we can
report that work in this area has already been started.
“xsd:annotation” is the name of an element defined
by XML Schema. “sqlxml:sqltype” is the name of an
element defined by SQL/XML to metadata specific to
SQL.

The mapping of SQL data types to XML
Schema data types is illustrated in the following
examples:

CHAR (10) CHARACTER SET LATIN1 COLLATION
DEUTSCH

→
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:length value="10"/>
<xsd:annotation>

<sqlxml:sqltype name="CHAR"
length="10"
characterSetName="LATIN1"
collation="DEUTSCH"/>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>

CHAR (10) CHARACTER SET LATIN1 COLLATION
DEUTSCH

→ (without annotation)
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:length value="10"/>

</xsd:restriction>
</xsd:simpleType>

INTEGER

→
<xsd:simpleType>

<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="2157483647"/>
<xsd:minInclusive

value="-2157483648"/>
<xsd:annotation>

<sqlxml:sqltype name="INTEGER"/>
</xsd:annotation>

</xsd:restriction>
</xsd:simpleType>

DECIMAL (8, 2)

→
<xsd:simpleType>

<xsd:restriction base="xsd:decimal">
<xsd:precision value="9"/>
<xsd:scale value="2"/>
<xsd:annotation>

<sqlxml:sqltype name="DECIMAL"
userPrecision="8"
scale=" 2"/>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>

REAL

→
<xsd:simpleType>

<xsd:restriction base="xsd:float">
<xsd:annotation>

<sqlxml:sqltype name="REAL"
precision="24"
minExponent="-149"
maxExponent="104"/>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>

INTERVAL YEAR(4) TO MONTH

→
<xsd:simpleType>

<xsd:restriction
base="xsd:timeDuration">

<xsd:pattern value=
"-?P\p{Nd}{1,4}Y\p{Nd}{2}M"/>

<xsd:annotation>
<sqlxml:sqltype

name="INTERVAL YEAR TO MONTH"
leadingPrecision="4"/>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>

We hope that these examples were self-

explanatory. The careful reader may have noticed
that the mapping of DECIMAL (8,2) had an XML
precision of 9, and an SQL precision of 8. This is
possible because an SQL implementation is allowed
to use a value for precision that is greater than or
equal to the precision that was specified. The XML
value of precision reflects the value of precision that
the implementation chose.

Mapping SQL values to XML values
The mapping of SQL values to XML values is largely
determined by the mapping from the SQL data type
to the XML Schema data type.

This mapping of values can be seen in the
following examples:

SQL data type SQL literal XML value
VARCHAR (10) 'Smith' Smith
INTEGER 10 10
DECIMAL (5,2) 99.52 99.52
TIME TIME'12:30:00' 12:30:00
INTERVAL HOUR
TO MINUTE

INTERVAL'2:15' PT02H15M

Future Work
So far, we have only laid the groundwork for the bulk
of the SQL/XML effort, and even this infrastructure
is incomplete. We have not yet dealt with how null
values will map to XML values. We have also not yet
specified how SQL’s User-Defined Types or Arrays
are mapped to XML Schema data types.

In a year or so we expect to write another
article that will update our readers by describing
SQL/XML at a stage much nearer to its completion.

References
[1] Subproject: "XML-Related Specs (SQL/XML)",

ISO/IEC JTC 1/SC 32 N00575,
WG3:HEL-026R2, H2-2000-331R2, Jim Melton,
October 10, 2000.

[2] XML-Related Specifications (SQL/XML) –
Working Draft SQL:200n Part 14, H2-2001-149,
WG3:YYJ-012, Jim Melton (Editor), June 18,
2001, available at http://www.sqlx.org.

[3] Extensible Markup Language (XML) Version 1.0
(second edition), October 2, 2000,
http://www.w3.org/TR/REC-xml.

[4] Namespaces in XML, W3C Recommendation,
Tim Bray, Dave Hollander, and Andrew Layman
(Editors), January 14, 1999,
http://www.w3.org/TR/1999/REC-xml-names-
19990114.

[5] XML Schema Part 2: Datatypes, W3C
Recommendation, Paul V. Biron and Ashok
Malhotra (Editors), May 2, 2001,
http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502.

Web References
National Committee for Information Technology
Standards (NCITS)
 http://www.ncits.org

NCITS H2 – Database Committee
 http://www.ncits.org/tc_home/h2.htm

ISO/IEC JTC 1/SC32
 http://www.jtc1sc32.org

SQLX http://www.sqlx.org

W3C http://www.w3.org

http://www.sqlx.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.ncits.org/
http://www.ncits.org/tc_home/h2.htm
http://www.jtc1sc32.org/
http://www.sqlx.org/
http://www.w3.org/

	SQL/XML and the SQLX Informal Group of Companies
	Introduction
	SQL/XML Subproject
	The SQLX Group
	Initial SQL/XML Working Draft
	Mapping SQL Character Sets to and from Unicode
	Mapping SQL <identifier>s to XML Names
	Mapping XML Names to SQL <identifier>s
	Mapping SQL data types to XML Schema data types
	Mapping SQL values to XML values

	Future Work
	References
	Web References

