

SQL Multimedia and Application Packages (SQL/MM)

Jim Melton
Oracle, Sandy, UT 84093

jim.melton@acm.org

Andrew Eisenberg
IBM, Westford, MA

andrew.eisenberg@us.ibm.com

Introduction
Regular readers of this column will have become
familiar with database language SQL — indeed, most
readers are already familiar with it. We have also
discussed the fact that the SQL standard is being pub-
lished in multiple parts and have even discussed one
of those parts in some detail[1].

Another standard, based on SQL and its struc-
tured user-defined types[2], has been developed and
published by the International Organization for Stan-
dardization (ISO). This standard, like SQL, is divided
into multiple parts (more independent than the parts
of SQL, in fact). Some parts of this other standard,
known as SQL/MM, have already been published and
are currently in revision, while others are still in
preparation for initial publication.

In this issue, we introduce SQL/MM and review
each of its parts, necessarily at a high level.

Jim Melton and Andrew Eisenberg

SQL Multimedia and Application
Packages — SQL/MM
In late 1991 or early 1992, a small group of text
search engine vendors, operating under the auspices
of the IEEE, released a specification for a language
called SFQL (Structured Full-text Query Language).
The goal of SFQL was to define extensions to SQL
that would be suitable for applying full-text searches
to repositories of documents.

The proposal was given significant attention by
the full-text community, but was immediately criti-
cized by several other data management communities
on the grounds that SFQL “hijacked” many useful
keywords that were in common use by those other
communities. For example, the keyword CONTAINS
was proposed by SFQL to mean “the indicated unit of
text contains the supplied word or phrase”, but the
spatial data community used the same keyword to
mean “one spatial entity contains a second spatial
entity”. While the high-level semantics of the word
may seem to be quite similar in each case, the actual
code required to implement it is dramatically differ-
ent.

This controversy was sufficiently generalized
that the SQL standards organizations realized that

many incompatible extensions to SQL would be de-
fined by various data management communities, the
end result being a situation in which no single prod-
uct could possibly implement all of the extensions
because of conflicts in keywords (and other related
conflicts).

A summit meeting was held in Tokyo later in
1992 to seek a solution to the dilemma posed by the
conflicting demands on SQL extensions. By that
time, the SQL standards committees were in the
process of adding object-oriented extensions to SQL
and a number of SQL vendors had indicated their
support for what is often called the “object-relational
model”. Based on suggestions from several of those
vendors, the Tokyo summit developed the notion of a
second standard that would define several “class li-
braries” of SQL object types, one for each significant
category of complex data.

The structured types defined in such libraries
would naturally be first-class SQL types that could be
accessed through ordinary SQL:1999 facilities, in-
cluding expressions that invoke SQL-invoked rou-
tines associated with such types (that is, methods).

The proposed standard was immediately known
as “SQL/MM” (MM for MultiMedia). A number of
candidate data domains were suggested, including
full-text data, spatial data, image data (still and mov-
ing), and others. Responsibility for SQL/MM’s de-
velopment was given to the same ISO subcommittee
as SQL (at that time, JTC1/SC21, but now
JTC1/SC32), with the hope that domain experts
would attend to develop the specifications for each
data domain.

Like SQL, SQL/MM is a multi-part standard.
Unlike SQL, the various parts of SQL/MM are quite
independent from one another. However, there is one
part that is common to the remainder of the word.
Part 1, known as the Framework[3], provides defini-
tions of common concepts use in the other parts and
outlines the definitional approach used by those other
parts. In particular, it describes the manner in which
the other parts use SQL’s structured user-defined
types to define the types required by the subject mat-
ter of each part.

Full-Text
The term “full-text” (or, if you prefer, “full text”) is
normally applied to textual data that differs from or-
dinary character string data principally in its length,
but also in database-specific operations that can be
applied to it. Ordinary character strings are usually
indexed by their entire values, but special types of
indexes are defined for full-text data; such indexes
might record information about the proximity of
words and phrases to one another or about words that
appear in a document and related words that do not
appear in the same document. Full-text data is subject
to search operations that are normally not applied to
“simple” character strings. It’s worth pointing out
that “full-text operations” are quite different than the
sort of pattern matches (such as regular expressions)
with which most computer software people are inti-
mately familiar.

The SQL/MM Full-Text standard[4] defines a
number of structured user-defined types (henceforth,
just “UDTs”) to support the storage (presumably in
an object-relational database) of textual data. One of
these types is named FullText and it supports the con-
struction of full-text data values, testing whether that
data contains specified patterns, and conversion of
that data to ordinary SQL character strings. The
specification of the FullText type includes a number
of methods that prepare the value associated with an
instance of the type for the application of full-text
searches, as well as Boolean methods that perform
the searches themselves.

In addition to the FullText type, a number of ad-
ditional types are defined to represent various sorts of
patterns that can be used in full-text searches. Search
patterns can be quite complex, including searching
for text that includes specific words, words stemmed
from (such as the past tense of a verb or the plural of
a noun) specified words, words with similar defini-
tions, and even words that sound like a given word.

Linguists among our readers will know that
some languages are much more amenable to com-
puter identification of components of text than others.
For example, most Western languages use white
space to separate words from one another and use
special punctuation (such as a period, or full stop) to
separate sentences. Other languages, such as Japa-
nese, do not separate words from one another by
spaces, depending primarily on context to distinguish
words. SQL/MM Full-Text is generally acknowl-
edged to have better support for languages for which
automatic distinction of language tokens (such as
words) is relatively easy.

Consider the following SQL table:

CREATE� TABLE� information� (�
� � docno� � � � � � � � � � INTEGER,�

� � document� � � � � � � FULLTEXT�)�
in which the docno column contains a value that
captures some document identifier and the docu-
ment column contains a full-text document.

We could retrieve from that table the identifier of
documents about full-text searching that contain
words closely related to “standard” in the same para-
graph as words that sound like “sequel” by using a
query like this:

SELECT� docno�
FROM� information�
WHERE� document.CONTAINS�
� � � � � � ('STEMMED� FORM� OF� "standard"�
� � � � � � � IN� SAME� PARAGRAPH� AS�
� � � � � � � SOUNDS� LIKE� "sequel"')� =� 1�

That query retrieves the docno column from the
information table for every document for which
the value returned by the CONTAINS method ap-
plied to the document column is 1, meaning true.
The parameter passed to that method uses three dif-
ferent full-text operations: STEMMED FORM OF
will find any of several words derived from “stan-
dard”, such as “standards” and “standardization”; IN
SAME PARAGRAPH AS requires that a second
word (or phrase!) appear in the same paragraph as the
stemmed word; and SOUNDS LIKE finds words that
are pronounced (presumably in English, since we
didn’t specify a different language) like “sequel” (of
which “SQL” might be a case).

Spatial
Many enterprises need the ability to store, manage,
and retrieve information based on aspects of spatial
data, such as geometry, location, and topology. Ap-
plications making use of spatial data include auto-
mated mapping, facilities management, geographic
systems, graphics, multimedia, and even integrated
circuit design. The SQL/MM Spatial standard[5] de-
fines SQL:1999 structured user-defined types and
associated methods to provide the ability to support
such applications.

By its very nature, spatial data often represents
2-dimensional and 3-dimensional data. SQL/MM
Spatial currently supports 0-dimensional (point), 1-
dimensional (line), and 2-dimensional (“flat” shape)
data; future revisions might support 3-dimensional
(volumetric shapes) and possibly data of even higher
dimensions.

There are an astonishingly large number of spa-
tial reference systems in common use, the vast major-
ity of them used to describe geographic entities and
concepts on the surface of our (relatively) spherical
planet. Many of those spatial reference systems deal
with large structures for which the curvature of the

planet is significant; as a result, various systems have
evolved to describe structures in particular regions
(e.g., countries, states and provinces, etc.) for which
the impacts of planet curvature vary from the impacts
in other regions. (For example, lines of longitude
converge towards one another as one moves close to
the poles—seemingly parallel lines of longitude are
in fact not parallel.)

Support for these spatial reference systems are
economically critical to the design of SQL/MM Spa-
tial, because the largest users of spatial data man-
agement systems are often governmental bodies and
very large commercial enterprises that have to deal
with geographic data. Such users include local gov-
ernments (city planning, traffic management, acci-
dent investigation), state and provincial governments
(highway planning, natural resource management),
national governments (defense, border control), ex-
tractive industries (mineral and water location), and
farming (plot allocation). Indeed, SQL/MM Spatial’s
design seems to more naturally support geospatial
data than smaller-scale data such as integrated circuit
design and computer graphics.

SQL/MM Spatial defines several type hierar-
chies. One of those hierarchies has as its most gener-
alized type (that is, its maximal supertype) a type
called ST_Geometry. That type is not instantiable
(meaning that no instances of it can be created—
Spatial defined less than a half-dozen such types), but
it has a number of (about a dozen) subtypes that are
instantiable, such as ST_Point, ST_Curve, and
ST_MultiPolygon.

A type (not a subtype of ST_Geometry) called
ST_SpatialRefSys is used to describe spatial refer-
ence systems. Every spatial value that participates in
a given query must be defined in the same spatial
reference system, although a future version of the
Spatial standard might relax that restriction.

In a future version of SQL/MM Spatial that is
currently under development, another pair of types,
ST_Angle and ST_Direction, are used to capture in-
formation about various angles and directions that are
needed when storing and managing spatial informa-
tion.

There are many operations that can be performed
on Spatial data. Among the most common operations
are: construction of a straight line from two points or
from one point, a direction, and a distance; construc-
tion of a polygon from several lines, from several
points, or from a point and a collection of directions
and distances. Other important operations are detec-
tion of whether two lines intersect, whether two areas
overlap or are adjacent to one another, whether a line
is tangent to a curve, and whether two polygons share
a boundary.

Most Spatial types have accessor methods that
permit applications to extract fundamental informa-
tion about instances of the type, such as determining
the values of the X and Y coordinates of a point.

Consider the following table definition:

CREATE� TABLE� CITY� (�
� � NAME� � � � � � � � VARCHAR(30),�
� � POPULATION� � INTEGER,�
� � CITY_PARKS� � VARCHAR(30)� ARRAY[10],�
� � LOCATION� � � � ST_GEOMETRY�)�

We can determine the area of San Francisco by exe-
cuting a query like this:

SELECT� location.area�
FROM� CITY�
WHERE� name� =� 'San� Francisco'�

The expression location.area retrieves the
area attribute of the ST_Geometry structured type
value stored in the location column of the row
corresponding to San Francisco. (Retrieving the value
of an attribute of a structured type instance is equiva-
lent to invoking the accessor method on that attrib-
ute.)

SQL/MM Spatial is closely related to, and fun-
damentally aligned with, other spatial standards being
developed by another ISO Technical Committee, TC
211 (Geomatics) and by the Open GIS Consortium
(“GIS” stands for “Geographic Information Sys-
tems”). Keeping standards being developed in all
three forums has proved challenging, but all partici-
pants seem committed to doing so.

Still Image
One of the fastest growing applications of computers
is storage and processing of visual images such as
photographs. Many enterprises expend tremendous
resources on the acquisition, storage, and manage-
ment of collections of images, including graphics,
paintings, and photographs. Such data has tremen-
dous business value and represents large monetary
outlays. One of the most challenging aspects to han-
dling image data is that of locating an image already
in your possession.

SQL/MM Still Image[6] represents a part of the
solution to those problems. This part of the SQL/MM
standard provides structured user-defined types that
allow you to store new images into a database, re-
trieve them, modify them in various ways, and—most
importantly—to locate them by applying various
“visual” predicates to your collections of images.

In SQL/MM Still Image, images are represented
using an SQL:1999 structured type called
SI_StillImage. This type stores collections of picture
elements (pixels) representing 2-dimensional images.

(Of course, images of 3-dimensional objects are very
common, but the images themselves are 2-dimen-
sional.) Images can be stored in any of several for-
mats, depending on what the underlying implemen-
tation supports—for example, formats such as JPEG,
TIFF, and GIF are commonly supported as input and
output formats, as well as formats in which images
are stored and manipulated. The SI_StillImage type
also captures information about each image, such as
its format, its dimensions (height and width in pix-
els), its color space, and so forth.

Methods applied to SI_StillImage instances in-
clude routines to scale an image (change its size pro-
portionally), to crop an image (remove undesired
parts), rotate an image (such as changing its orienta-
tion from horizontal to vertical), and creating a
“thumbnail” image (a lower resolution image used
for quick display).

Another group of data types are used to describe
various features of images. The SI_AverageColor
type is used to represent the “average” color of a
given image; this value may be used in locating im-
ages in collections (imagine wanting to find an image
that is primarily green to be used in advertising out-
door furniture). The SI_ColorHistogram type pro-
vides information about the colors in an image at a
finer level of granularity than the image’s average
color; it indicates how much of each color is found in
an image. The SI_PositionalColor type represents the
location of specific colors in an image, supporting
queries such as “since sunsets at sea have red and
orange above dark blue, find me images with those
color characteristic”. Finally, the SI_Texture type
allows the recording of information such as coarse-
ness, contrast, and direction of granularity. An
SI_FeatureList type permits recording all of the fea-
tures described in this paragraph for each image.

By combining several features of an image, it is
possible to write queries that can retrieve from a very
large image base a much smaller collection of images
from which you can quickly select the exact image
you want. It is also possible to screen collections of
images to find images of potential interest for various
reasons. For example, you might want to determine
whether a new logo you’ve commissioned might con-
flict with other logos that have already been copy-
righted. An SQL statement like this one:

SELECT� *�
FROM� REGISTERED_LOGOS�
WHERE� SI_findTexture(newLogo).�
� � � � � � � � SI_Score(Logo)� >� 1.2�

would do just what you need.
Of course, not all images are “still”. Additional

challenges are posed by moving images, such as digi-
tized video. That sort of data is not addressed by

SQL/MM Still Image, but it is possible that some
future part of SQL/MM will be oriented towards
moving images.

Data Mining
The parts of SQL/MM that we’ve presented so far in
this column are all very reasonably described as ori-
ented towards the handling of multimedia data. How-
ever, as you saw in the early sections of the column,
the full name of the SQL/MM standard is SQL Mul-
timedia and Application Packages. In fact, work was
initiated in early 2000 on a new part of SQL/MM that
does not address multimedia data, but instead defines
an application package.

SQL/MM Data Mining[7] defines SQL struc-
tured user-defined types—including methods on the
types—to address an important aspect of modern data
management: the discovery of previously unknown,
but important, information buried in large quantities
of data that might have been collected for other, quite
distinct reasons.

Data mining is not a new concept; indeed, com-
panies have long wanted to use data collected in the
ordinary course of business as a source of informa-
tion about their customers or other resources. A num-
ber of relatively small, but important, companies
were founded during the 1990s to provide enterprises
with data mining products, some of them based on
relational database systems, but most of them dedi-
cated applications that require importing data stored
in another repository and reorganizing it into struc-
tures unique to a particular data mining approach.

SQL/MM Data Mining takes a different view of
the problem: It attempts to provide a standardized
interface to data mining algorithms that can be lay-
ered atop any object-relational database system and
even deployed as middleware when required.

In most data management environments, applica-
tions pose questions to the data repositories that re-
trieve information based on specific criteria. By
contrast, in a data mining environment, applications
often ask the repository to find out what criteria are
most important.

For example, a data mining engine can discover,
informing its users of the discovery, that (to use a
famous, if apocryphal, example) about half of the
customers who buy both disposable diapers and beer
will buy an air freshener product as well. This is not
the sort of question that most users would dream up
by themselves (it certainly doesn’t come to our minds
very often!), but it is precisely the kind of relation-
ship that a data mining product will discover.

A popular question that a data mining product
might be asked is “Who are my most important cus-
tomers and what are the most significant attributes of

those customers and the trends in the values of those
attributes?” The first part of the question may seem
easy—it’s usually straightforward to find out what
customers have bought your products or services
recently. But “most important” may have other mean-
ings than “recent purchases”—profits are not always
directly related to purchases, since growth rates, ser-
vice demands, and other factors can significantly
affect the meaning of importance.

Data mining tools are also used for predictive
purposes, such as insurance companies mining data
on existing customers to help evaluate the risks asso-
ciated with new customers.

There are four different data mining techniques
supported by this standard. One technique, the rule
model, allows you to search for patterns (“rules”) in
the relationships between different parts of your data.
A second technique, the clustering model, helps you
group together data records that share common char-
acteristics and identify the most important of those
characteristics. The third technique, the regression
model, helps you predict the ranking of new data
based on an analysis of existing data. The final tech-
nique, the classification model, is very similar to the
regression model, but it is oriented towards predict-
ing which grouping or class new data will best fit
based on its relationship to existing data.

For each of those techniques, as with most data
mining product, there are three distinct stages
through which you can mine your data. First, you
have to train a model; this means choosing the tech-
nique most appropriate to your goals, then setting a
few parameters to orient the model, and finally train-
ing the model by applying it to a reasonably-sized
data set (perhaps several times for improved valid-
ity). Second, if you’re using the classification or re-
gression techniques, you can test the model by
applying it to known data and comparing the model’s
predictions with that known data’s classification or
ranking. Finally, you apply the model to your busi-
ness data and use the results to improve your enter-
prise.

The models are supported through the use of
several broad categories of new structured user-
defined types. For each model, a type known as
DM_*Model (where the ‘*’ is replaced by ‘Clas’ for
a classification model, ‘Rule’ for a rule model, ‘Clus-
tering’ for a clustering model, and ‘Regression’ for a
regression model), is used to define the model that
you want to use when mining your data. The models
are parameterized using instances of the
DM_*Settings (‘*’ is ‘Clas’, ‘Rule’, ‘Clus’, or ‘Reg’)
type and the models are trained using instances of the
DM_ClassificationData type. The DM_*Settings type
allows various parameters of a data mining model,
such as the depth of a decision tree, to be set.

Once a model has been created and trained, it
can be tested by building instances of the
DM_MiningData type that holds test data, and in-
stances of the DM_MiningMapping type that specify
the different columns in a relational table that are to
be used as a data source. The result of testing a model
is one or more instances of the DM_*TestResult type
(‘*’ can only be ‘Clas’ or ‘Reg’). When running your
model against real data, you get the results in in-
stances of the DM_*Result type (‘*’ can be ‘Clas’,
‘Clus’, or ‘Reg’…but not ‘Rule’).

In most cases, you also create and use instances
of DM_*Task types to control the actual testing and
running of your models.

At the time this column went to press, it seemed
likely that final progression of the SQL/MM Data
Mining standard might be slowed just a little bit to
ensure that it is fully compatible with a “sister” data
mining API being developed for Java by the Java
Community Process.

Summary
The SQL/MM suite of standards includes a Frame-
work that describes the conventions used to define
each of the other parts. There are other parts used to
manage full-text data, spatial data, and still images,
and to data mining.

Careful inspection of the references below will
reveal that there is no part 4 of this multi-part stan-
dard. That’s because an attempt to develop a set of
classes for general mathematical operations was
eventually determined to satisfy too few users at too
great a cost; development of SQL/MM General Pur-
pose Facilities was thus abandoned several years ago.

Not all parts of SQL/MM are yet commercially
successful, but the seems to be growing support at
least for both Full-Text and Spatial by several impor-
tant players in those fields. Support for Still Image
seems to be developing more slowly, and it’s far too
soon to say about Data Mining since that part has not
yet been published. Whether additional data types
(such as moving image data) are ever supported de-
pends on many factors, including interest from the
technical community depending on such data. The
recent surge in consolidation within the database in-
dustry causes some to think that there is a reduction
in the need for such standards, but the greater atten-
tion being paid to the Internet and the World Wide
Web prove that the need for portability of data and of
code continues to increase.

If you’re interested in acquiring copies of the
SQL/MM standard’s various parts, you can do so at
ANSI’s electronic standards store cited below. Unfor-
tunately, even in downloadable (PDF) form, these
standards are a bit pricey. We expect that, once they

have been formally adopted as American National
Standards, they will be available at the NCITS web
store for very reasonable prices.

References
[1] Jim Melton, Jan-Eike Michels, Vanja Josifovski,

Krishna, Kulkarni, Peter Schwarz, Kathy Zei-
denstein, SQL and Management of External
Data, SIGMOD Record, Mar., 2001.

[2] Jim Melton and Andrew Eisenberg, SQL:1999,
formerly known as SQL3, SIGMOD Record,
Feb. 1999.

[3] ISO/IEC 13249-1:2000, Information technology
— Database languages — SQL Multimedia and
Application Packages — Part 1: Framework, In-
ternational Organization for Standardization,
2000.

[4] ISO/IEC 13249-2:2000, Information technology
— Database languages — SQL Multimedia and
Application Packages — Part 2: Full-Text, In-
ternational Organization For Standardization,
2000.

[5] ISO/IEC 13249-3:1999, Information technology
— Database languages — SQL Multimedia and

Application Packages — Part 3: Spatial, Interna-
tional Organization For Standardization, 2000.

[6] ISO/IEC 13249-5:2001, Information technology
— Database languages — SQL Multimedia and
Application Packages — Part 5: Still Image, In-
ternational Organization For Standardization,
2001.

[7] (ISO/IEC) FCD 13249-6, Information technol-
ogy — Database languages — SQL Multimedia
and Application Packages — Part 6: Data Min-
ing. [FCD = Final Committee Draft for ballot]

Web References
[1] National Committee for Information Technology

Standards (NCITS): http://www.ncits.org
[2] NCITS H2 – Database Committee:

http://www.ncits.org/tc_home/h2.htm
[3] ISO/IEC JTC 1/SC 32: http://www.jtc1sc32.org
[4] ANSI’s Electronic Standards Store:

http://webstore.ansi.org
[5] NCITS’ Standards Store:

http://www.cssinfo.com/ncits.html
[6] ISO/IEC JTC 1/SC 32 (primarly WG 3, WG 4,

and WG 5) archives:
ftp://www.sqlstandards.org/SC32/

