SQL and Management of External Data

Jim Melton
Oracle, Sandy, UT 84093
jim.melton@acm.org

Guest Column Introduction

In late 2000, work was completed on yet another part
of the SQL standard [1], to which we introduced our
readers in an earlier edition of this column [2].

Although SQL database systems manage an
enormous amount of data, it certainly has no monop-
oly on that task. Tremendous amounts of data remain
in ordinary operating system files, in network and
hierarchical databases, and in other repositories. The
need to query and manipulate that data alongside
SQL data continues to grow. Database system ven-
dors have developed many approaches to providing
such integrated access.

In this (partly guested) article, SQL’s new part,
Management of External Data (SQL/MED), is ex-
plored to give readers a better notion of just how ap-
plications can use standard SQL to concurrently
access their SQL data and their non-SQL data.

Jim Melton and Andrew Eisenberg

Managing External Data

The cost of writing applications that access SQL data
using an SQL database management system and con-
currently access non-SQL data using a different data
manager continues to absorb resources unnecessarily.
It is exacerbated by the necessity for application pro-
grammers to use different interfaces to access data
under the control of different managers.

Responding to customer needs, Oracle, for ex-
ample, offers its Open Transparent Gateway, Sybase
has its OmniConnect, and IBM provides DataJoiner.
Other vendors, including both major database ven-
dors and smaller niche-market players, offer analo-
gous products. More recently, IBM’s Garlic research
efforts [5] have focussed on providing an API to
which third-party developers can build wrappers that
allow SQL-servers to easily access a wide variety of
non-SQL data sources.

Jan-Eike Michels

Vanja Josifovski

Krishna Kulkarni
Peter Schwarz

Kathy Zeidenstein
IBM, San Jose, CA
{janeike, vanja, krishnak, krzeide}@us.ibm.com
schwarz@almaden.ibm.com

SQL/MED addresses two aspects to the problem
of accessing external data. The first aspect provides
the ability to use the SQL interface to access non-
SQL data (or even SQL data residing on a different
database management system) and, if desired, to join
that data with local SQL data. The application sub-
mits a single SQL query that references data from
multiple sources to the SQL-server. That statement is
then decomposed into fragments (or requests) that are
submitted to the individual sources. The standard
does not dictate how the query is decomposed, speci-
fying only the interaction between the SQL-server
and foreign-data wrapper that underlies the decompo-
sition of the query and its subsequent execution. We
will call this part of the standard the “wrapper inter-
face”; it is described in the first half of this column.

The other aspect of the problem with external
data is the management problem (as well as a re-
trieval problem). Huge amounts of critical data reside
in file systems, including (at least from an SQL per-
spective) “non-traditional data”, such as engineering
diagrams, photographs, and other alternative media.
There are often existing applications that rely on this
data remaining in the file system, yet it is often ad-
vantageous to keep information about that file data in
the database, because the database is easily queried.
Problems with this very typical configuration include
trying to keep database data and file data in sync,
having to use a different interface for the files than
for the database, and having to have different
authorization mechanisms for file data and for data-
base data. SQL/MED addresses these problems by
introducing a new data type called DATALI NK. The
datalinks part of the standard is described in the latter
half of the column.

Accessing External Data using
the Wrapper Interface

SQL is based on the relational model, so external
data must be represented as relational tables if it is to

fit seamlessly into the context of an SQL-server.
SQL/MED introduces the notion of foreign tables to
represent data stored externally to the SQL-server—
an automobile price list can be represented as a
foreign table with columns for make, model, year,
price, efc. External data sources often make available
several such collections, all of which can be accessed
via a single network connection, so SQL/MED
introduces the concept of a foreign server that allows
access to a set of foreign tables—a single website
may provide separate price lists for trucks, autos,
motorbikes, efc., each presented as a separate table.
When the SQL-server decomposes a query into
fragments, each fragment is submitted to the
appropriate foreign server for the foreign table
referenced by that fragment. In the initial version of
SQL/MED, a fragment cannot reference more than a
single table. Future versions will allow query
fragments referencing multiple foreign tables to be
submitted to a foreign server as a single request.

It is also often true that several data sources
share a common interface. In such cases, it is desir-
able to use a single code module to access all of these
sources, each of which is represented by a foreign
server. This common code module is manifested in
SQL/MED by a foreign-data wrapper. Each foreign
server to be accessed by a foreign-data wrapper can
be characterized by configuration information—such
as a host name and port number—that differentiates it
from others accessed via the same wrapper. Because
the kinds of information required are likely to vary
from wrapper to wrapper, the standard does not
specify a fixed set of configurable attributes. Instead,
the concept of generic options—attribute/value pairs
used by wrappers for configuration purposes—is in-
troduced. Option values are cached in the catalogs of
the SQL-server; the SQL-server does not interpret
them, but makes their values available to the wrapper
upon request. Generic options can be associated with
each of the foreign data modeling concepts intro-
duced by SQL/MED, including foreign servers, for-
eign tables, and their columns. Thus, a wrapper that
represents data stored in files as foreign tables can
associate an option with each table that specifies the
character used to delimit fields in the corresponding
file. The bulk of SQL/MED’s text specifies an API
— a set of functions — by which an SQL-server and
a foreign-data wrapper conduct their business.

The SQL/MED functions that the SQL-server
has to provide are called the foreign-data wrapper
interface SQL-server routines. This term denotes all
those functions that must be supported by a con-
forming SQL-server. By contrast, the foreign-data
wrapper interface wrapper routines are the
SQL/MED functions that a conforming foreign-data
wrapper has to provide.

Foreign-
Server API Data
Wrapper

I

I

I

: saL- SQL/MED
I

I

I

Implementation-dependent API

=

Foreign
Server

Foreign
Tables

Figure 1 — Components Used by SQL/MED

In Figure 1, the relationships among these pri-
mary components defined and used by SQL/MED are
illustrated. The SQL-server and the foreign-data
wrapper communicate through the SQL/MED API,
but they need not be implemented to run in a single
process context; indeed, they may reside on separate
computers connected by a network. Many configura-
tions are possible, including one in which the foreign-
data wrapper and the foreign server are combined
into a single program. The communication between
the foreign-data wrapper and the foreign server is
determined solely by the authors of those components
and is not addressed by SQL/MED.

The purpose of foreign tables is to support a
transparent view on data — called external data —
that is not stored and managed by the local SQL-
server. By transparent, we mean that the user does
not need to be aware of the fact that the data is not
actually managed by the local SQL-server. Instead,
the user can access a foreign table in a SELECT
statement as though it were a regular base table or
view. External data is presented to the user as ordi-
nary SQL-data, even though it may be stored in a file
system, in HTML-formatted web pages, or in some
other specialized format.

Before the data of a foreign table can be accessed
using SQL/MED’s facilities, the SQL-server must
first be informed of the foreign table’s existence. This
is done using the CREATE FOREI GN TABLE

statement:
CREATE FOREI GN TABLE t abl e- nane
[(col-def, col-def, ...)]

SERVER f or ei gn- server - nane
[generic-options]
Execution of this statement creates a new schema
object, a foreign table (perhaps more clearly, a for-

eign table descriptor), in a schema that belongs to the
SQL-server. The foreign table (descriptor) identifies
the foreign server that manages the data to be pre-
sented as though it were a table.

Of course, since creation of a foreign table re-
quires a reference to a foreign server, the foreign
server (that is, its representation in the metadata of
the SQL-server) must first be created:

CREATE SERVER server - name
[TYPE server-type]
[VERSI ON server-version]
[AUTHORI ZATI ON aut h-info]
FOREI GN DATA WRAPPER w- nane
[generic-options]

The optional TYPE and VERSI ON values are
meaningful only to specific implementations and
valid values are not specified by SQL/MED. The
optional AUTHCORI ZATI ON clause allows the state-
ment to specify the effective owner (from the view-
point of the SQL-server) of the foreign server. Unlike
virtually all other SQL objects, including foreign
tables, foreign servers are not represented in a
schema belonging to the SQL-server, but are repre-
sented at a higher level: the catalog (which contains
schemas and a few other objects).

Of course, in order to create (the descriptor that
represents) a foreign server, we have to name the
foreign-data wrapper that manages the foreign server,
so we must first execute:

CREATE FOREI GN DATA WRAPPER wr ap- namne
[AUTHORI ZATI ON auth-id]
[LIBRARY library-nane]
LANGUAGE | anguage- namne
[generic-options]

As with foreign servers, foreign-data wrappers’
representations are stored in an SQL-server’s cata-
logs and not in a schema. Similarly, the optional
AUTHORI ZATI ON clause allows specification of the
nominal owner of the wrapper.

The optional LI BRARY clause specifies a char-
acter string literal that identifies a software library
(using an implementation-defined syntax) containing
those SQL/MED routines that implement the specific
foreign-data wrapper. (Some SQL/MED routines are
implemented by the SQL-server, while others are
implemented as part of the foreign-data wrapper.)
The LANGUACE clause specifies the name of the
programming language in which the library routines
are written (C or PL/I, for example).

The sequence of statement execution must be:
CREATE FORElI GN DATA WRAPPER . ..
CREATE FORElI GN SERVER . ..

CREATE FOREI GN TABLE. . .

Alternatively, once the foreign server has been
created, it may be possible (depending entirely on the
capabilities of the foreign-data wrapper and the for-
eign server) to execute a single statement to create

one or more foreign tables based on information
available from the foreign server:
| MPORT FOREI GN SCHEMA schena- namne
[LIMT TO (table-nane-list)
| EXCEPT (table-name-list)]
FROM SERVER ser ver - nane
I NTO | ocal - schena- nane

This statement presumes that the foreign server
recognizes the concept of a schema containing tables
(or that the foreign-data wrapper simulates that con-
cept). Execution of this statement allows importation
of the table definitions (including those tables’ col-
umn definitions) for every table contained in the
specified foreign schema — possibly limited to cer-
tain tables or with specified tables omitted.

In many cases, foreign servers recognize the
concept of ownership of the data they manage. For
those situations, the SQL-server is given the ability to
map its user identifiers to those of the foreign server
through the statement:

CREATE USER MAPPI NG FOR aut h-id
SERVER ser ver - nane
[generic-options]

SQL statements involving foreign tables man-
aged by the specified foreign server are executed as
though the authorization identifier at the SQL-server
were “really” the corresponding entity recognized by
the foreign server.

Careful readers will observe that we have not yet
discussed the various occurrences of generi c-
opt i ons that appear in most of those statements
we’ve described. Generic options, introduced earlier
in this paper, are specified using the syntax we’ve
shown here.

Processing Queries with For-
eign-Data Wrappers

Communication between an SQL-server and a for-
eign-data wrapper can occur in either of two modes:
decomposition mode or pass-through mode. In pass-
through mode, the SQL-server transfers the query
string, as is, to the foreign-data wrapper. The wrapper
and the data source are solely responsible for ana-
lyzing and executing the query. Although implemen-
tation of pass-through mode by a foreign-data
wrapper is optional, it is especially useful when the
foreign server is also an SQL-engine. Due to space
constraints, we do not discuss pass-through mode
further in this paper.

In decomposition mode, the SQL-server breaks a
query into fragments, each to be executed by a par-
ticular foreign server. The interaction between the
SQL-server and the foreign-data wrapper can be di-
vided into two phases:

* A query planning phase, in which the foreign-
data wrapper and the SQL-server cooperatively
produce an execution plan for the fragment.

* A query execution phase, in which the agreed-
upon plan is executed and foreign data is re-
turned to the SQL-server.

In both the query planning and execution phases,
information must be exchanged between the foreign-
data wrapper and the SQL-server. To make con-
forming implementations simpler, and to facilitate
implementation in different programming language
environments, SQL/MED utilizes a functional inter-
face based on handles. For example, suppose infor-
mation managed by the SQL-server is to be passed to
a foreign-data wrapper. Instead of explicitly defining
the layout of a data structure for this purpose, the
standard requires the SQL-server to pass an integer
handle representing such a structure to the foreign-
data wrapper. For each type of handle that can be
exchanged, the standard specifies a set of applicable
functions that take a handle as a parameter and ex-
tract a value from the corresponding data structure.
To simplify the description that follows, we will not
explicitly refer to handles. However, the reader
should assume that whenever a data structure is
passed from the SQL-server to a foreign-data wrap-
per or vice-versa, the exchange is done by means of a
handle.

Query Planning Phase

During query planning, the interaction between the
SQL-server and the foreign-data wrapper is based on
a request/reply paradigm. The SQL-server builds a
request representing the query fragment. The foreign-
data wrapper analyzes the request and returns a reply
that describes that portion of the request that can be
handled by the foreign server. The SQL-server must
compensate for any part of the query fragment that
cannot be executed by the foreign server.

The flexibility of this paradigm is essential, since
the query processing capabilities of data sources may
vary widely. Experience in research and industry has
shown that a declarative approach to describing the
capabilities of data sources leads to an unmanageable
explosion of descriptive attributes. As will be seen
below, the full power of this paradigm is not ex-
ploited in the initial version of SQL/MED. However,
we believe it will be essential for accommodating the
wide array of data sources that should be accessible
using SQL/MED.

Before execution planning for a query fragment
can begin, the SQL-server must identify the relevant
foreign server and create a connection. Since a for-
eign-data wrapper may simultaneously manage mul-
tiple connections to various foreign servers, the

connection provides a context for subsequent inter-
action between the SQL-server and a particular for-
eign server. Creation of a connection does not imply
that the foreign-data wrapper actually connects to the
data source at this time; whether and when the for-
eign-data wrapper establishes a connection to the data
source is up to the wrapper implementation. To create
a connection to a foreign server, the SQL-server in-
vokes the Connect Ser ver () routine provided by
the appropriate foreign-data wrapper, supplying (via
a handle) a data structure that identifies the foreign
server and includes the names and values of any ge-
neric options that were supplied when the foreign
server was defined by DDL. The SQL-server also
supplies another data structure that describes the user
on whose behalf the query is being executed and that
contains the user mapping information described ear-
lier. This information may be used by the foreign-
data wrapper to authenticate the user at the foreign
server. Connect Ser ver () returns the newly-
established connection to the SQL-server. Once a
connection has been created, it is not necessarily de-
stroyed after processing a single query fragment. The
SQL-server can preserve and reuse the connection
later.

Once a connection is established, the SQL-server
invokes the foreign-data wrapper’s | ni t Re-
guest () routine, passing the query fragment to the
foreign-data wrapper in the form of an SQL/MED
request. A request is a data structure that abstractly
describes the SQL statement corresponding to the
query fragment, rather than an explicit representation
of the statement as a character string. This approach
eliminates the need for each foreign-data wrapper to
parse SQL, an onerous task for wrappers designed for
data sources that do not use SQL. The components of
a request are subordinate data structures representing
the individual clauses of an SQL statement, e.g., the
SELECT clause, FROMclause, efc.

Each element of the SELECT list is represented
by a value expression that describes a result column
of the fragment. In the initial version of the standard,
each value expression must denote a simple column
name; future versions will support more complex
expressions. Each element of the FROMclause is rep-
resented by a fable reference that identifies a foreign
table. The initial version of the standard limits the
FROMclause to a single table reference. Other
clauses, such as WHERE, ORDER BY, etc., are also
not currently supported. While future versions of
SQL/MED will allow for more complex requests, the
effect of the current limitations is that only query
fragments of the form “SELECT <col umm_Ii st >
FROM FTN” can be described, where FTN is the
name of a foreign table and each element of <col -

um_| i st > refers to a column of that table. Since
all the columns in the request are needed for the
SQL-server to produce the complete query result, the
foreign-data wrapper must be able to process the en-
tire request.

However, once the standard supports more com-
plex requests, a foreign-data wrapper may be unable
to process the entire request. For example, the request
might include a predicate that cannot be evaluated by
the foreign server. In such a case, the foreign-data
wrapper could return only the basic data values and
the SQL-server could compensate by applying the
predicate and filtering the result. When a foreign-data
wrapper receives a request via the | ni t -

Request () routine, it examines the request by in-
voking routines implemented by the SQL-server
(“foreign-data wrapper interface SQL-server rou-
tines”, in the parlance of the standard). Routines are
provided to extract table references from the FROM
clause (Get Tabl eRef El ent() , Get Tabl eRef -
Tabl eNamne()), as well as the values of generic
options associated with a referenced table (Get -
Tabl eOpt s()). Other routines supply information
about the columns in the SELECT list (Get -

Sel ect El en(), Get Val Expr Col Name()) and
their generic option values (Get Tabl eCol Opt ()).

Once the foreign-data wrapper has analyzed the
request, it constructs an SQL/MED reply. The struc-
ture of a reply is similar to that of a request, but the
corresponding routines for examining the reply
(Get Repl yTabl eRef (), Get Repl y-

Sel ect El em() , etc.) are implemented by the for-
eign-data wrapper (i.e., they are “foreign-data wrap-
per interface wrapper routines”). The reply is
returned to the SQL-server from | ni t Request (),
along with a second data structure, an execution plan.
The content of this second data structure is deter-
mined solely by the foreign-data wrapper, and it is
not interpreted by the SQL-server. Its purpose is to
encapsulate all the information that is needed by the
foreign-data wrapper to execute the portion of the
query fragment represented by the reply. As will be
described below, the SQL-server will hand the exe-
cution plan back to the foreign-data wrapper at the
start of the query execution phase. The execution
plan is the wrapper’s means of preserving informa-
tion between the planning and execution phases of
query processing. By contrast, the SQL-server can
discard the reply when query planning is complete.

Query Execution Phase

During the execution phase, the portion of the query
fragment described by the reply is executed by the
foreign-data wrapper and the underlying data source.

To initiate query execution, the SQL-server invokes
the Open() routine in the foreign-data wrapper,
passing the execution plan as an argument. To fetch a
row of the result, the SQL-server invokes the | t er -
at e() routine. Once all rows have been fetched, the
SQL-server invokes the Cl ose() routine to allow
the foreign-data wrapper to clean-up after the execu-
tion. The execution plan may be reused, for example
if the query fragment represents the inner table of a
nested-loop join. When it is no longer needed, the
SQL-server invokes the Fr eeExecut i onHan-

dl e() routine to deallocate the execution plan.

SQL/MED makes use of descriptors to exchange
data between the SQL-server and a foreign-data
wrapper. These descriptors are adapted from those
used in the SQL/CLI standard [3]. Descriptors are
implemented by the SQL-server, and encapsulate
both the types and values of a row of data. Depending
on the SQL-server implementation environment, the
value may be stored in the descriptor itself, or the
descriptor may point to a buffer. Use of pointers is
generally more efficient, but they are difficult to sup-
port in some languages (e.g., Java).

SQL/MED defines only the fields that make up
the descriptors; it does not define the actual pro-
gramming language data structures that implement
them. As with other data structures we have de-
scribed, SQL/MED specifies various routines that get
and set the value of a descriptor field when given a
descriptor and the field’s identity.

A descriptor consists of zero or more descriptor
areas. Each area describes one column, which can be
an instance of any SQL data type, including types
like ROWand ARRAY as well as basic types like
| NTEGER, VARCHAR, etc. If the implementation
programming language of the wrapper supports a
data type that corresponds directly to the SQL data
type in the descriptor (as described in the SQL/CLI
standard) the SQL-server must be able to convert this
standard representation to any internal representation
it requires. If no such correspondence exists (e.g.,
DATE cannot be directly mapped into any program-
ming language that SQL/MED supports), then the
wrapper should use the canonical character string
representation of the type as described in
SQL/Foundation [4].

A Simple Example

Example 1 illustrates the principles outlined above.
Example 1: Consider a table of employees
stored in a Unix® text file. Each line of the file con-
tains one employee record, with fields separated by a
‘. ’. Assuming that an appropriate foreign-data wrap-

per and foreign server have already been declared,

the following DDL statement could be employed to

declare this file as a foreign table:
CREATE FOREI GN TABLE Per sonnel (

id | NTECER,
| ast _nane VARCHAR(30),
first_nanme VARCHAR(25), ...)

SERVER myFor ei gnSer ver
OPTIONS (Fil enane
"/usr/joel/personnel.txt',
Delimter ':'") ;

Since the foreign-data wrapper that will be used
to access this file supports access to any file of this
general type, each foreign table definition specifies
the appropriate filename and delimiter using generic
options. A user who would like to know how many
people with the last name “Miller” are stored in the
Personnel table could submit the following query
(note that the user does not need to be aware that Per-
sonnel is a foreign table):

SELECT COUNT (I ast_nane)
FROM Per sonnel
VWHERE | ast_name = "Mller"';

The SQL-server first parses and validates this
query, ensuring that it is syntactically and semanti-
cally correct and that the user has all necessary
privileges. Next, it examines the FROMclause and
discovers that it contains a reference to a foreign ta-
ble. Therefore, the SQL-server establishes a connec-
tion to myForeignServer and formulates a request
equivalent to the SQL statement “SELECT
| ast _nane FROM Per sonnel ”. The request
does not include the predicate from the WHERE
clause or the aggregate function in the SELECT list,
but future versions of the standard will allow such
requests.

The foreign-data wrapper examines the request
using the foreign-data wrapper interface SQL-server
routines defined by the standard to obtain the name of
the referenced table, associated options, the columns
to be retrieved and their types, efc. In this example,
the wrapper returns a reply indicating that the request
can be completely satisfied, as well as an execution
plan. A simple implementation of the foreign-data
wrapper might use Unix shell commands to extract
the requested columns from the file. In this case, the
execution plan would contain the relevant commands
(eg,cut -d: -f2 [usr/joe/personnel).
The SQL-server examines the reply handle and dis-
covers that the foreign-data wrapper can completely
handle the request. It incorporates the execution plan
for the fragment into its overall execution plan, which
must include extra processing steps to filter and ag-
gregate the result set that will be returned by the for-
eign-data wrapper.

Using Datalinks

DATALI NKis a new SQL data type that allows stor-
ing in an SQL column a reference to a file that is lo-
cated in a file system external to the database system
(DBS). Datalinks extend the functionality of database
systems to include control over external files without
the need to store their contents directly in the data-
base. Advantages of this technology include being
able to use on files the robust referential integrity,
recovery, and authorization mechanism of the data-
base management system, while avoiding the expense
and application breakage caused by importing the file
contents into the database (such as through LOBs).
Management of files on multiple distinct file servers
allows robust centralized control over distributed
resources across intranets. Datalinks are very useful
for any application that involves processing of infor-
mation from multiple heterogeneous sources, in-
cluding databases and file systems, where it is
required that this information be kept consistent be-
tween the different sources.

Examples for such applications are e-commerce,
customer relationship management, supply chain
management, e-business applications, automotive
insurance, and health insurance applications where
files such as X-rays, ECG results, vehicle damage
pictures, efc., need to be combined. It also includes
CAD/CAM applications involving design documents
and plans, configuration and asset management ap-
plications such as web assets (web pages, server-side
programs and templates), and the management of
large volumes of scientific data residing in file sys-
tems. For example, inventory data can be stored in
the database while pictures of the products reside in
files. To avoid a picture being accidentally removed
or being replaced by another one that shows a differ-
ent product, datalinks are used.

A datalink value is stored in a column of type
DATALI NK, just as a whole number would be stored
in a column of type | NTEGER. In addition to being
stored as the value of a column, a datalink value can
also be stored as the value of an attribute of a user-
defined structured type. SQL/MED allows a variety
of options to be specified for instances of the
DATALI NK type. With these options, it can be de-
termined how strict the database controls the file. The
possibilities range from no control at all (the file does
not even have to exist) to full control, where removal
of the datalink value from the database leads to a
deletion of the physical file. Examples 2 and 3 show
how a column of type DATALI| NK would be defined
in a CREATE TABLE statement.

Example 2: The DBS does not care whether a
value that will be inserted into the DATALI NK col-
umn references a file that really exists — references

to files that do not exist will be handled appropriately
by the application. All file permissions are enforced
as specified at the original file system.
CREATE TABLE houses (
id I NTEGER,
nane VARCHAR(30) ,
addr ess VARCHAR(100),
pi ct ure DATALI NK
NO LI NK CONTROL):

Example 3: The DBS requires full control over
the referenced file — that is, the DBS determines
who is allowed to read the file, allows only imple-
mentation-defined updates of the file’s content, and
wants the file deleted when it is no longer referenced
by a datalink value.

CREATE TABLE products (

id I NTEGER,

nare VARCHAR(30) ,

pi ct ure DATALI NK
FI LE LI NK CONTROL
I NTEGRITY ALL
READ PERM SSI ON DB
VRI TE PERM SSI ON BLOCKED
RECOVERY YES
ON UNLI NK DELETE);

Even though a datalink value may “look like” a
character string, it is actually an encapsulated value
that contains a logical reference from the database to
a file stored outside the database. Consequently,
SQL/MED defines a function named DLVALUE()
that generates the datalink value from a file reference,
given in the form of a URL. Examples 4 and 5 illus-
trate the use of this function in connection with the
| NSERT statement.

Example 4:

| NSERT | NTO products
VALUES (12, 'fender',
DLVALUE(' file://nyFil eServer/
nmyDi rectory/fender.jpg'));
Example 5:
| NSERT | NTO houses
VALUES (12001,
‘villa on the hill",
' San Jose, CA',
DLVALUE(‘ http://someServer
. somreConpany. coni
file_may_not_exist/xyz.jpg'));

In order to “take control” of the file, the database
system utilizes a component called a datalinker. The
interaction between a database system, a datalinker,
and a client application during an insert operation
involving a datalink value (as shown in Example 4) is
described by the following four steps:

1. The client application sends the SQL | NSERT
statement to the database system.

2. The database system contacts the datalinker to
determine whether the file exists, and, if so, in-
forms the datalinker that the file is now con-
trolled by the database system.

3. The datalinker reports whether or not the file
exists.

4. Ifthe file could be successfully linked to the
database, then the database system reports a suc-
cessful execution to the client application; oth-
erwise, it returns an error.

Figure 2 illustrates the relationships between an SQL-

server, a datalinker, and a linked file.

N Datalinker
\ -
N
N
N
File
Manager

Figure 2 — Datalink-related relationships

As soon as the tables are populated, a user can
execute queries against them. SQL/MED supports
five functions that convert a datalink value, or parts
of it, into a character string with which the user can
work. For example, in order to see a picture of a
product or house, the user may need to obtain a file
reference for the file, then access the file directly
from the file system using this file reference. The
user cannot get the picture directly from the DBS,
because it is not stored in the DBS! Suppose the user
would like to see a picture of a car fender, of which
she knows the product id. An application could exe-
cute the following statement to retrieve the necessary
information:

SELECT DLURLPATH(pi cture) INTO : hv
FROM pr oduct s
VWHERE id = 12;

After successful execution of this statement, the
host variable hv contains the proper file reference, as
well as an access token that entitles the user to access
the file. The application can now use the native API
of the file server to access the file. If it does so, an
OPEN() call from the application to the file server is
intercepted by the datalinker. The datalinker checks
the validity of the access token and, if valid, eventu-
ally grants access to the file.

One of the strengths of database systems is secu-
rity. In order to extend this strength to datalinks, the
datalinker has to work closely with the database sys-
tem. For example, if an application attempts to open a

file with an incorrect access token (or no access token
at all) and that file is referenced by a datalink value
that is stored in a column declared with READ

PERM SSI ON DB, then the datalinker must prohibit
this access. The same holds true for all attempts to
rename or delete a file (and therefore render the
stored datalink value useless). If that file is refer-
enced by a datalink value in a column declared with

| NTEGRI TY ALL, then the datalinker must not al-
low renaming or deleting of the file.

Example 6 shows the effect of the option ON
UNLI NK DELETE of the CREATE TABLE state-
ment in Example 3 when a datalink value is deleted.

Example 6: With the following DELETE state-
ment, the row will be removed from the table that

was inserted in Example 4.
DELETE FROM products WHERE id = 12;

Additionally, the referenced file will also be de-
leted, even though it existed before the row was in-
serted into the table.

SQL/MED’s Future

The version of SQL/MED that was completed in
2000 (MED:2000) is limited in several ways. Most
importantly, it provides a read-only interface to data
managed by foreign servers. The next version, which
will probably be published in late 2002 or early 2003,
will probably add the ability to insert data into for-
eign tables, update such data, and delete that data.

In addition, MED:2000 required that the foreign-
data wrapper support only “SELECT * FROM
f or ei gn-t abl e”. The next version of SQL/MED
will allow an SQL-server to transmit a complete
VHERE clause, or at least a complete predicate, to the
foreign-data wrapper for evaluation. It may also be
possible to instruct the foreign-data wrapper (or the
foreign server) to perform joins, projections, group-
ing operations, and various SQL functions.

The expected datalink changes for the next ver-
sion of SQL/MED will provide usability and func-
tionality improvements. The most important change
being discussed is the ability to update a linked file
and provide file data recovery. In the current version
of SQL/MED, updating a file (while the option to
recover lost file data is in place) requires two steps:
the first to unlink the file and the second to modify
the file and re-link it. The ability to update in place
will allow such updates in one step. This functional-
ity will provide the ability to use datalinked files for
such functions as library checkout and checkin and a
way to back out any uncommitted file changes and
restore to the previous committed version.

Summary

We have discussed SQL’s new part 9, SQL/MED,
which provides features that enable SQL applications
to integrate non-SQL data along with data stored in
an SQL-server. This facility, like much new technol-
ogy, may appear complex at first glance, but we be-
lieve that it is remarkably simple for the amount of
power it provides.

In fact, one of the primary goals of the
SQL/MED architecture is to enable non-DBMS de-
velopers to write foreign-data wrappers for a wide
variety of non-SQL data sources in as portable and
rapid manner as possible. We believe that a third-
party marketplace for such foreign-data wrappers,
portable between various vendors’ database systems,
could arise within just a few years.

As soon as publication of SQL/MED has been
finalized (probably late in the first quarter of 2001),
copies of this part of the SQL standard can be pur-
chased both as PDF downloads and in hardcopy from
the ANSI Electronic Standards Store from the NCITS
Standards Store (both cited below). In fact, all parts
of the SQL standard can be acquired in the same
manner. Needless to say, the PDF downloads are
much less expensive than the paper versions!

References

[1] ISO/IEC 9075-9:2000, Information technology
— Database languages — SOQL — Part 9: Man-
agement of External Data (SOL/MED), Interna-
tional Organization for Standardization, 2000

[2] SOL Standardization: The Next Steps, Andrew
Eisenberg and Jim Melton, SIGMOD Record,
Vol. 29, No. 1, March, 2000

[3] ISO/IEC 9075-3:1999, Information technology
— Database languages — SQL — Part 3: Call-
Level Interface (SOQL/CLI), International Organi-
zation for Standardization, 1999

[4] ISO/IEC 9075-2:1999, Information technology
— Database languages — SOQL — Part 2: Foun-
dation (SQL/Foundation), International Organi-
zation for Standardization, 1999

[5] Mary Tork Roth, Peter M. Schwarz, Don't Scrap
1t, Wrap It! A Wrapper Architecture for Legacy
Data Sources, VLDB 1997: 266-275

Web References

[1] ANSI’s Electronic Standards Store:
http://webstore.ansi.org

[2] NCITS’ Standards Store:
http://www.cssinfo.com/ncits.html

