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Abstract

A large number of websites use online recommenda-

tions to make web users interested in their products or 

content. Since no single recommendation approach is 

always best it is necessary to effectively combine different 

recommendation algorithms. This paper describes the 

architecture of a rule-based recommendation system 

which combines recommendations from different algo-

rithms in a single recommendation database.  Reinforce-

ment learning is applied to continuously evaluate the 
users’ acceptance of presented recommendations and to 

adapt the recommendations to reflect the users’ interests. 

We describe the general architecture of the system, the 

database structure, the learning algorithm and the  test 

setting for assessing  the quality of the approach. 

1. Introduction 
Web recommendations have become an inseparable 

part of many websites. Large, medium-size and small 

companies use web recommendations to increase the 

usability of their websites and customer satisfaction. 

Many techniques have been developed to solve the task of 

generating recommendations, taking into account various 

types of information (e.g. product or user characteristics, 

buying history, …) and using different statistical or data 

mining approaches ([BU02],[JKR02]). Since no single 

recommendation technique is always best it has become 

apparent that several techniques need to be effectively 

combined to increase t he quality of recommender sys-

tems [BU02].  

We present a new approach for combining different 

recommendation techniques by utilizing a central data-

base for storing all recommendations and applying a 

reinforcement learning algorithm to dynamically adapt 

and optimize the recommendations based on implicit user 

feedback. The main incentives for designing such an 

architecture are: 

1) To allow reactive adaptation of the system to 

changes in user behavior and website content.  

2) To provide a platform for flexible selection of rec-

ommendations taking into account that effective 

websites should restrict  the number and types of pre-

sented recommendations.  

3) To make the recommendation system generic and 

extendable. The system should be applicable to a wide 

range of website types and allow addition of new rec-

ommendation algorithms. 

The presented approach has been implemented in a 

prototype which is deployed at a commercial online retail 

store. 

In the next section, we present an overview of our rec-

ommendation system architecture. We then detail the struc-

ture of recommendation rules and the rule database (Sec-

tion 3), our current set of recommendation algorithms (Sec-

tion 4), the strategy for dynamically selecting recommen-

dations (Section 5) and the feedback-based learning strat-

egy (Section 6). In Section 7, we describe the prototype 

and the test setting for assessing the quality of our recom-

mendations. A brief overview of related work is given in 

Section 8. 

2. Architecture overview 

To achieve the above objectives, we use the recom-

mendation system architecture shown in Fig. 1. The main 

components of the system are: 

The website – interacts with the web user, presents 

recommendations and gathers the feedback. 

Web warehouse – stores information about the con-

tent of the website (e.g., products and product cata-

log), users, and the usage logs generated by the web 

server or the application server.  

Set of recommender algorithms –  the recommender 

algorithms generate recommendations using data 

from the web warehouse. Recommendations can 

also be created by a human editor.

Recommendation rule database – stores the recom-

mendations.  

Learning module – refines the recommendation da-

tabase based on the feedback obtained from the 

website. 

As indicated in the figure we use two feedback loops 

for making recommendations. The first loop is periodically 

executed and involves calculating recommendation candi-

dates by several recommendation algorithms utilizing more 

static information on the content as well as recent usage 
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information from the web ware-

house. The output of the algorithms 

is combined in one recommendation 

database which is used to dynami-

cally select recommendations. In the 

second feedback loop we continu-

ously gather and evaluate user reac-

tions on presented recommendations. 

The learning module uses this in-

formation to  refine the recommen-

dations in the database and thus to 

immediately impact the selection of 

future recommendations.  

3. Recommendation rules 

3.1 Rule structure 

Web recommendations are usu-

ally chosen depending on the current 

state of interaction between the user 

and the website as well as on the state of the environment. 

We use recommendation rules to specify which recom-

mendations should be presented in which situation. Rec-

ommendation rules can be generated automatically by a 

recommendation algorithm (also called recommender) or 

come from a human editor. Since different recommenders 

produce recommendations which depend on different 

parameters, combining them into one data structure is not 

a straightforward task.  

Recommendation rules are of the following basic struc-

ture:

Context{a1,a2,a3...}  ->  RecommendedContent.  

Here, context is a vector of values a1,a2,a3, … from 

different dimensions describing the current state of inter-

action between the user and the website. Relevant dimen-

sions include content (e.g. to indicate the current URL or 

product) and user. RecommendedContent is the pointer to 

the content being recommended (e.g. recommended prod-

uct or URL). Recommended content can be either a part 

of our website or external to it.  

In our approach we use refined rules of the following 

format:  

CurrentContent, CurrentUser, CurrentTime ->  

RecomendedContent, Weight. 

That is we describe the current context to which a 

recommendation rule applies by three dimensions: con-

tent, user and time. The weight metric is used for select-

ing recommendations especially when several rules apply 

for a given context.  It is initially set by a recommenda-

tion algorithm and can be adjusted by the learning mod-

ule.

Examples of recommendation rules for product con-

tent are: 

ProductID=”ECD00345”->  ”ECD000884”, 0.8 

ProductID=”ECD00345”, UserCountry=”DE”->   

”ECD000345D”, 0.95 

ProductCategoryID=32867->  ”ECD000890”, 0.3 

UserDomain LIKE ‘%.edu’ OR UserDomain  

LIKE ‘%uni-%’ ->  ”ECD000320”, 0.7 

Note that the context may only be partially specified. 

In the examples, the time dimension is unspecified so that 

the rules apply irrespective of when a user accesses the 

website. A rule with empty context is always applicable.  

A main flexibility of our rule model is that we allow 

each context dimension be specified by a variety of attrib-

utes for which the current value can be determined at the 

time of a user interaction, for example 

Content  

• ProductID 

• Product category (1st level, 2nd level, …) 

• Author (Books) 

• Platform (Software),… 

User

• User ID 

• User country 

• User browser, operating system, language 

• User group,… 

Time 

• Day of week 

• Time of the day 

• Season of the year 

• Specific date or time interval,… 

Obviously, the choice of suitable attributes and their 

granularity depends on the type of website (for example 

news, ecommerce, educational) and on the content of the 

website itself. We especially support an ontological struc-

turing of the content, user and time dimensions, e.g. in the 

form of a product catalog or a hierarchy of user groups. To 

Figure 1: System architecture
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be generic we represent such ontological structures in the 

form of acyclic concept graphs, i.e. we are not limited to 

hierarchical relationships.  We use directed edges to point 

from more specific concepts to more general concepts, 

from subcomponents to aggregated components, etc. Fig. 

2 shows an example of such a graph for the content 

dimension.  Recommendations can be assigned to any 

node in such a graph. When selecting recommendations, 

the ontology is traversed from less general to more 

general nodes, and for each node the corresponding 

recommendations are selected from the database (see 

Section 5). 

3.2 Recommendation rule database structure 

The recommendation rules are stored in a relational 

database. The schema is shown in Fig.3. The rules are 

maintained in the central table Rules. Some additional 

information is stored together with the rules, such as the 

number of times the recommendation was presented 

(Npresented), number of times the recommendation was 

clicked (Nclicked), the recommendation type (the re-

commender which generated the rule), and the creation 

time of the rule. The attributes ContentNode, UserNode 

and TimeNode are foreign keys to uniquely identify val-

ues for the respective context dimension (null values are 

allowed to cover partially specified context information). 

RecomNode identifies the recommended content and thus 

also refers to the ContentNodes table.  

The context dimensions are stored in pairs of tables 

ContentNodes/ContentArcs, UserNodes/UserArcs, Ti-

meNodes/TimeArcs to allow the representation of con-

cept graphs. The node tables contain information on all 

relevant content items (products or URLs), users and time 

events that may occur in the context or recommendation 

part of a rule. Each such item is described by a so-called 

match rule, i.e. a predicate on attributes of the dimension 

(e.g.,  ProductID=”ECD00345” for the content dimen-

sion, UserDomain LIKE ‘%.edu’ for the user dimension).  

Most match rules are automatically determined and sim-

ply use equality conditions. Manually specified match 

rules may be more complex. The fields MatchPref can be 

used to specify the order (priority) in which the matching 

rules are applied. The recommended content is repre-

sented by the fields RecomLink and RecomDescription in 

ContentNodes.  

The table RuleTypes provides some information on the 

used recommenders (description and their maximal value 

for the initial weight of a rule). The recommendations pre-

sented to users are logged in the table Presentations.

4. Recommender algorithms 

Our architecture does not limit the number of recom-

mender algorithms. Every recommender produces recom-

mendations for the rule database with an initial weight 

from the interval [0 .. MaxWeighti], where MaxWeighti is a 

recommender-specific value. The initial weights are set 

according to recommender-specific heuristics. As shown in 

[SB98] the specific settings should not adversely affect the 

convergence of reinforcement learning.  

In the prototype implementation, we determine product 

recommendations with the following recommenders:  

1. Content similarity. This recommender determines for 

each products (content node) the N most similar products. 

We determine the similarity by using the TF/IDF score on 

product descriptions. The initial weight for each rule is the 

similarity score, normalized to [0..MaxWeight].  

2. Top-N.  The N products which received the most clicks 

over a certain period of time are recommended. The con-

text remains unspecified, i.e. these recommendations apply 

to all products and users. The initial weight for each rule is 

the relative frequency of clicks.   

3. Top-N for category. For each product category the N 

most frequently clicked products from the same category 

are recommended. The initial weight for each rule is the 

relative frequency.   

4. Sequence patterns. Products most often succeeding other 

products in the same user session are recommended to 

them. Scaled confidence of such association rules is used 

as the initial weight. 

5. Item-to-Item collaborative filtering. Products, which 

most often appear together in a user’s basket, are recom-

mended to each other. The initial weight is set to the nor-

malized frequency of joint appearance. 

Figure 2. Example of a concept graph for Content  

dimension 

Figure 3. Recommendation rule database structure 
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These algorithms generate recommendations either 

based on the past user behavior (top-N, sequence patterns, 

collaborative filtering) or on website content analysis 

(content similarity).  

When several recommenders produce an identical 

recommendation rule, only the rule with the maximal 

recommender-specific initial weight  is stored in the data-

base. If a rule is already present in the database, even 

with a lower weight, the new rule is discarded. 

5. Selecting recommendations 

Currently, to present recommendations for a given 

context we use a simple selection strategy where the three 

context dimensions (content, user and time) are consid-

ered to be equally important. In order to avoid over-

whelming the user with too many uninteresting recom-

mendations we only select a specific number, n, of  prom-

ising recommendations.  

Recommendation selection comprises the following 

three steps: 

1. For the current context we determine the best 

matching CurrentContentNode, CurrentUserNode and 

CurrentTimeNode values using matching rules. The 

matching rules are selected from the dimension tables and 

are applied to the current context in the order determined 

by the matching preference. 

2. The following database (SQL) query is used to se-

lect all recommendations which either fully or partially 

match the three context components:  

SELECT TOP N RecomNode From Rules  WHERE  

(ContentNode=CurrentContentNode OR  

ContentNode is NULL)  AND  

(UserNode=CurrentUserNode OR  
UserNode is NULL)  AND  

(TimeNode=CurrentTimeNode OR  

TimeNode is NULL) 

WHERE Weight>=Threshold  

ORDER BY Weight DESC

Threshold is a lower limit for the weight of recom-

mendations to avoid presenting recommendations of 

insufficient quality. The threshold value is chosen for 

each website individually, based on the owner’s prefer-

ences.

3. If the query does not produce the needed number 

of recommendations, then the current context is itera-

tively extended using the concept graphs of the dimen-

sions, as illustrated in Fig 2. In each step, one of the di-

mension nodes - CurrentContentNode, CurrentUserNode 

or CurrentTimeNode, is changed to its parents and the 

selection process ( step 2 ) is repeated, until the needed 

number of recommendations is reached. For the context 

switching strategy in our prototype, ContentNode has the 

highest preference and TimeNode the lowest. In the ex-

ample of Fig. 2, if we would not obtain enough recommen-

dations for CurrentContentNode “Product4” we would in 

the next iteration search recommendations for categories 

“History” or “Hardcover”, etc.  

6. Learn rules from feedback 

We use a learning approach to continuously evaluate 

feedback from presented recommendations. The goal is to 

adaptively increase the weights of successful recommenda-

tions and to decrease the weight of unsuccessful recom-

mendations. This should be done in a way so that the ap-

proach can quickly react to significant changes in user 

interests but without overreacting to short-term fluctua-

tions. To avoid the high effort and difficulty of a training 

phase we need an unsupervised learning approach that 

learns automatically from the users’ reactions. This also 

allows adding new recommendations to the rule database at 

any time. 

The learning process evaluates all recommendation tri-

als, called presentations. In a presentation,  the user is 

shown several recommendations selected from the recom-

mendation rule database. The presented recommendations 

are also logged in a temporary table. 

A naïve approach to determine the weight of recom-

mendations would be to just use the number of clicks di-

vided by the number of presentations. However this ap-

proach is too greedy and subject to self-amplification – 

already learned recommendations would not allow other 

recommendations to be presented. 

To better adapt the weight of recommendations, we 

use a simple reinforcement learning algorithm of [SB98] 

called exponential, recency-weighted average. It allows us 

to dynamically balance the need to show the best recom-

mendations (exploitation) and the need to learn how good 

they are (exploration). After a presentation, the system 

determines which recommendations r participated in it and 

updates their weights Q(r) according to the formula:

Q(r) = (1-1/T)*Q(r) + Feedback(r)  / T . 

In this formula, T  is the size of the sampling window used 

for learning. The latest trials have the most impact on the 

resulting weight value while the contribution of past trials’ 

decreases exponentially (as the method’s name exponen-

tial, recency-weighted average suggests). The feedback in 

the formula is determined as follows. When some recom-

mendation r in a presentation is clicked, r receives positive 

feedback, all other recommendations receive negative 

feedback. When no recommendation is clicked, after a 

predefined timeout all participating recommendations re-

ceive negative feedback.  

The specific values of the feedback should be chosen 

according to the goals and specifics of the website. For our 

prototype, we use the following feedback values: 

1 if r is a clicked (successful) recommendation  
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-1/(n-1) if some other recommendation is clicked (n is 

the number of recommendations shown simul-

taneously in a presentation).  

-p if no recommendation is clicked (p is the

overall probability for a website that a web

page is reached because of a recommenda-

tion).  

    The second value is motivated by the fact that 

when n recommendations are simultaneously shown to 

the user, each recommendation has n-1 times larger prob-

ability of getting negative than positive feedback. Hence, 

negative feedback is divided equally between all not 

clicked recommendations. The last value ensures that all 

non-clicked recommendations are equally decreased 

according to the average probability that recommenda-

tions are used at all.   

7. Prototype  

The prototype of the system is implemented on a 

small commercial online software store 

(http://www.softunity.com, approximately 5000 page 

views per day).  Our approach is used to automatically 

select and present 5 recommendations (n=5) on each 

product detail page.  Some facts concerning the prototype 

are shown in the table below.  

Number of products:             ~2182 

Number of topics:                 ~ 207 

Number of ContentNodes:   ~ 8300 

Number of Rules:                 ~ 35970 

The prototype uses a mysql installation for the rec-

ommendation rule database and the web warehouse. All 

recommenders, the learning module  as well as the web-

site itself, are implemented using the PHP scripting lan-

guage. 

To assess the effectiveness of the proposed approach, 

we plan to compare our learning approach for determin-

ing recommendations with the use of randomly generated 

recommendations. To do so we use either method for 

50% of the presentations by changing the selection strat-

egy for recommendations for every presentation between 

intelligent (weight-based) and random. The latter mode is 

achieved by a slight modification of the SQL selection 

query (Section 5) by using  the clause “ORDER BY 

RAND()”) instead of  “ORDER BY Weight DESC”. 

Comparing the recommendation usage for the two cases 

should indicate whether the proposed approach brings an 

increase in user acceptance.  

8. Related work 

A recent survey provides a detailed overview of the 

research on web recommendation algorithms and their 

combination [Bu02]. According to their classification, the 

presented system belongs to the category of so-called 

“mixed” hybrid recommendation systems, i.e. systems 

where recommendations from different algorithms are 

presented together.  [NM03] propose to choose recom-

mender algorithms based on the degree of connectivity for 

a given web page. [MB97] also use a central repository for 

recommendations but rank the recommendations based on 

explicit user feedback. One of the authors is investigating 

another feedback-oriented approach for making dynamic 

web recommendations which focuses on the automatic 

selection of recommenders to use (instead of selecting 

individual recommendations) [TR03].  The distinguishing 

feature in this work compared to previous approaches is the 

use of reinforcement learning as a flexible and reactive 

technique for learning and combining recommendations 

from several recommendation algorithms. 

9. Summary and outlook  

This paper describes the architecture of a novel hybrid 

recommendation system. Our approach uses multiple tech-

niques to generate recommendations and employs rein-

forcement learning to refine their quality. 

We plan to comprehensively evaluate the approach 

and use the results for improvement, e.g. with respect to the 

selection and learning strategy or to extend our library of 

recommenders.  For instance, the ontological knowledge 

represented in concept graphs should also be useful for 

recommenders to determine the similarity between prod-

ucts or users. 
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