
Reinforcement Learning Architecture for Web Recommendations

Nick Golovin, Erhard Rahm

Univ. of Leipzig, Germany

http://dbs.uni-leipzig.de

Abstract

A large number of websites use online recommenda-

tions to make web users interested in their products or

content. Since no single recommendation approach is

always best it is necessary to effectively combine different

recommendation algorithms. This paper describes the

architecture of a rule-based recommendation system

which combines recommendations from different algo-

rithms in a single recommendation database. Reinforce-

ment learning is applied to continuously evaluate the
users’ acceptance of presented recommendations and to

adapt the recommendations to reflect the users’ interests.

We describe the general architecture of the system, the

database structure, the learning algorithm and the test

setting for assessing the quality of the approach.

1. Introduction
Web recommendations have become an inseparable

part of many websites. Large, medium-size and small

companies use web recommendations to increase the

usability of their websites and customer satisfaction.

Many techniques have been developed to solve the task of

generating recommendations, taking into account various

types of information (e.g. product or user characteristics,

buying history, …) and using different statistical or data

mining approaches ([BU02],[JKR02]). Since no single

recommendation technique is always best it has become

apparent that several techniques need to be effectively

combined to increase t he quality of recommender sys-

tems [BU02].

We present a new approach for combining different

recommendation techniques by utilizing a central data-

base for storing all recommendations and applying a

reinforcement learning algorithm to dynamically adapt

and optimize the recommendations based on implicit user

feedback. The main incentives for designing such an

architecture are:

1) To allow reactive adaptation of the system to

changes in user behavior and website content.

2) To provide a platform for flexible selection of rec-

ommendations taking into account that effective

websites should restrict the number and types of pre-

sented recommendations.

3) To make the recommendation system generic and

extendable. The system should be applicable to a wide

range of website types and allow addition of new rec-

ommendation algorithms.

The presented approach has been implemented in a

prototype which is deployed at a commercial online retail

store.

In the next section, we present an overview of our rec-

ommendation system architecture. We then detail the struc-

ture of recommendation rules and the rule database (Sec-

tion 3), our current set of recommendation algorithms (Sec-

tion 4), the strategy for dynamically selecting recommen-

dations (Section 5) and the feedback-based learning strat-

egy (Section 6). In Section 7, we describe the prototype

and the test setting for assessing the quality of our recom-

mendations. A brief overview of related work is given in

Section 8.

2. Architecture overview

To achieve the above objectives, we use the recom-

mendation system architecture shown in Fig. 1. The main

components of the system are:

The website – interacts with the web user, presents

recommendations and gathers the feedback.

Web warehouse – stores information about the con-

tent of the website (e.g., products and product cata-

log), users, and the usage logs generated by the web

server or the application server.

Set of recommender algorithms – the recommender

algorithms generate recommendations using data

from the web warehouse. Recommendations can

also be created by a human editor.

Recommendation rule database – stores the recom-

mendations.

Learning module – refines the recommendation da-

tabase based on the feedback obtained from the

website.

As indicated in the figure we use two feedback loops

for making recommendations. The first loop is periodically

executed and involves calculating recommendation candi-

dates by several recommendation algorithms utilizing more

static information on the content as well as recent usage

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

information from the web ware-

house. The output of the algorithms

is combined in one recommendation

database which is used to dynami-

cally select recommendations. In the

second feedback loop we continu-

ously gather and evaluate user reac-

tions on presented recommendations.

The learning module uses this in-

formation to refine the recommen-

dations in the database and thus to

immediately impact the selection of

future recommendations.

3. Recommendation rules

3.1 Rule structure

Web recommendations are usu-

ally chosen depending on the current

state of interaction between the user

and the website as well as on the state of the environment.

We use recommendation rules to specify which recom-

mendations should be presented in which situation. Rec-

ommendation rules can be generated automatically by a

recommendation algorithm (also called recommender) or

come from a human editor. Since different recommenders

produce recommendations which depend on different

parameters, combining them into one data structure is not

a straightforward task.

Recommendation rules are of the following basic struc-

ture:

Context{a1,a2,a3...} -> RecommendedContent.

Here, context is a vector of values a1,a2,a3, … from

different dimensions describing the current state of inter-

action between the user and the website. Relevant dimen-

sions include content (e.g. to indicate the current URL or

product) and user. RecommendedContent is the pointer to

the content being recommended (e.g. recommended prod-

uct or URL). Recommended content can be either a part

of our website or external to it.

In our approach we use refined rules of the following

format:

CurrentContent, CurrentUser, CurrentTime ->

RecomendedContent, Weight.

That is we describe the current context to which a

recommendation rule applies by three dimensions: con-

tent, user and time. The weight metric is used for select-

ing recommendations especially when several rules apply

for a given context. It is initially set by a recommenda-

tion algorithm and can be adjusted by the learning mod-

ule.

Examples of recommendation rules for product con-

tent are:

ProductID=”ECD00345”-> ”ECD000884”, 0.8

ProductID=”ECD00345”, UserCountry=”DE”->

”ECD000345D”, 0.95

ProductCategoryID=32867-> ”ECD000890”, 0.3

UserDomain LIKE ‘%.edu’ OR UserDomain

LIKE ‘%uni-%’ -> ”ECD000320”, 0.7

Note that the context may only be partially specified.

In the examples, the time dimension is unspecified so that

the rules apply irrespective of when a user accesses the

website. A rule with empty context is always applicable.

A main flexibility of our rule model is that we allow

each context dimension be specified by a variety of attrib-

utes for which the current value can be determined at the

time of a user interaction, for example

Content

• ProductID

• Product category (1st level, 2nd level, …)

• Author (Books)

• Platform (Software),…

User

• User ID

• User country

• User browser, operating system, language

• User group,…

Time

• Day of week

• Time of the day

• Season of the year

• Specific date or time interval,…

Obviously, the choice of suitable attributes and their

granularity depends on the type of website (for example

news, ecommerce, educational) and on the content of the

website itself. We especially support an ontological struc-

turing of the content, user and time dimensions, e.g. in the

form of a product catalog or a hierarchy of user groups. To

Figure 1: System architecture

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

be generic we represent such ontological structures in the

form of acyclic concept graphs, i.e. we are not limited to

hierarchical relationships. We use directed edges to point

from more specific concepts to more general concepts,

from subcomponents to aggregated components, etc. Fig.

2 shows an example of such a graph for the content

dimension. Recommendations can be assigned to any

node in such a graph. When selecting recommendations,

the ontology is traversed from less general to more

general nodes, and for each node the corresponding

recommendations are selected from the database (see

Section 5).

3.2 Recommendation rule database structure

The recommendation rules are stored in a relational

database. The schema is shown in Fig.3. The rules are

maintained in the central table Rules. Some additional

information is stored together with the rules, such as the

number of times the recommendation was presented

(Npresented), number of times the recommendation was

clicked (Nclicked), the recommendation type (the re-

commender which generated the rule), and the creation

time of the rule. The attributes ContentNode, UserNode

and TimeNode are foreign keys to uniquely identify val-

ues for the respective context dimension (null values are

allowed to cover partially specified context information).

RecomNode identifies the recommended content and thus

also refers to the ContentNodes table.

The context dimensions are stored in pairs of tables

ContentNodes/ContentArcs, UserNodes/UserArcs, Ti-

meNodes/TimeArcs to allow the representation of con-

cept graphs. The node tables contain information on all

relevant content items (products or URLs), users and time

events that may occur in the context or recommendation

part of a rule. Each such item is described by a so-called

match rule, i.e. a predicate on attributes of the dimension

(e.g., ProductID=”ECD00345” for the content dimen-

sion, UserDomain LIKE ‘%.edu’ for the user dimension).

Most match rules are automatically determined and sim-

ply use equality conditions. Manually specified match

rules may be more complex. The fields MatchPref can be

used to specify the order (priority) in which the matching

rules are applied. The recommended content is repre-

sented by the fields RecomLink and RecomDescription in

ContentNodes.

The table RuleTypes provides some information on the

used recommenders (description and their maximal value

for the initial weight of a rule). The recommendations pre-

sented to users are logged in the table Presentations.

4. Recommender algorithms

Our architecture does not limit the number of recom-

mender algorithms. Every recommender produces recom-

mendations for the rule database with an initial weight

from the interval [0 .. MaxWeighti], where MaxWeighti is a

recommender-specific value. The initial weights are set

according to recommender-specific heuristics. As shown in

[SB98] the specific settings should not adversely affect the

convergence of reinforcement learning.

In the prototype implementation, we determine product

recommendations with the following recommenders:

1. Content similarity. This recommender determines for

each products (content node) the N most similar products.

We determine the similarity by using the TF/IDF score on

product descriptions. The initial weight for each rule is the

similarity score, normalized to [0..MaxWeight].

2. Top-N. The N products which received the most clicks

over a certain period of time are recommended. The con-

text remains unspecified, i.e. these recommendations apply

to all products and users. The initial weight for each rule is

the relative frequency of clicks.

3. Top-N for category. For each product category the N

most frequently clicked products from the same category

are recommended. The initial weight for each rule is the

relative frequency.

4. Sequence patterns. Products most often succeeding other

products in the same user session are recommended to

them. Scaled confidence of such association rules is used

as the initial weight.

5. Item-to-Item collaborative filtering. Products, which

most often appear together in a user’s basket, are recom-

mended to each other. The initial weight is set to the nor-

malized frequency of joint appearance.

Figure 2. Example of a concept graph for Content

dimension

Figure 3. Recommendation rule database structure

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

These algorithms generate recommendations either

based on the past user behavior (top-N, sequence patterns,

collaborative filtering) or on website content analysis

(content similarity).

When several recommenders produce an identical

recommendation rule, only the rule with the maximal

recommender-specific initial weight is stored in the data-

base. If a rule is already present in the database, even

with a lower weight, the new rule is discarded.

5. Selecting recommendations

Currently, to present recommendations for a given

context we use a simple selection strategy where the three

context dimensions (content, user and time) are consid-

ered to be equally important. In order to avoid over-

whelming the user with too many uninteresting recom-

mendations we only select a specific number, n, of prom-

ising recommendations.

Recommendation selection comprises the following

three steps:

1. For the current context we determine the best

matching CurrentContentNode, CurrentUserNode and

CurrentTimeNode values using matching rules. The

matching rules are selected from the dimension tables and

are applied to the current context in the order determined

by the matching preference.

2. The following database (SQL) query is used to se-

lect all recommendations which either fully or partially

match the three context components:

SELECT TOP N RecomNode From Rules WHERE

(ContentNode=CurrentContentNode OR

ContentNode is NULL) AND

(UserNode=CurrentUserNode OR
UserNode is NULL) AND

(TimeNode=CurrentTimeNode OR

TimeNode is NULL)

WHERE Weight>=Threshold

ORDER BY Weight DESC

Threshold is a lower limit for the weight of recom-

mendations to avoid presenting recommendations of

insufficient quality. The threshold value is chosen for

each website individually, based on the owner’s prefer-

ences.

3. If the query does not produce the needed number

of recommendations, then the current context is itera-

tively extended using the concept graphs of the dimen-

sions, as illustrated in Fig 2. In each step, one of the di-

mension nodes - CurrentContentNode, CurrentUserNode

or CurrentTimeNode, is changed to its parents and the

selection process (step 2) is repeated, until the needed

number of recommendations is reached. For the context

switching strategy in our prototype, ContentNode has the

highest preference and TimeNode the lowest. In the ex-

ample of Fig. 2, if we would not obtain enough recommen-

dations for CurrentContentNode “Product4” we would in

the next iteration search recommendations for categories

“History” or “Hardcover”, etc.

6. Learn rules from feedback

We use a learning approach to continuously evaluate

feedback from presented recommendations. The goal is to

adaptively increase the weights of successful recommenda-

tions and to decrease the weight of unsuccessful recom-

mendations. This should be done in a way so that the ap-

proach can quickly react to significant changes in user

interests but without overreacting to short-term fluctua-

tions. To avoid the high effort and difficulty of a training

phase we need an unsupervised learning approach that

learns automatically from the users’ reactions. This also

allows adding new recommendations to the rule database at

any time.

The learning process evaluates all recommendation tri-

als, called presentations. In a presentation, the user is

shown several recommendations selected from the recom-

mendation rule database. The presented recommendations

are also logged in a temporary table.

A naïve approach to determine the weight of recom-

mendations would be to just use the number of clicks di-

vided by the number of presentations. However this ap-

proach is too greedy and subject to self-amplification –

already learned recommendations would not allow other

recommendations to be presented.

To better adapt the weight of recommendations, we

use a simple reinforcement learning algorithm of [SB98]

called exponential, recency-weighted average. It allows us

to dynamically balance the need to show the best recom-

mendations (exploitation) and the need to learn how good

they are (exploration). After a presentation, the system

determines which recommendations r participated in it and

updates their weights Q(r) according to the formula:

Q(r) = (1-1/T)*Q(r) + Feedback(r) / T .

In this formula, T is the size of the sampling window used

for learning. The latest trials have the most impact on the

resulting weight value while the contribution of past trials’

decreases exponentially (as the method’s name exponen-

tial, recency-weighted average suggests). The feedback in

the formula is determined as follows. When some recom-

mendation r in a presentation is clicked, r receives positive

feedback, all other recommendations receive negative

feedback. When no recommendation is clicked, after a

predefined timeout all participating recommendations re-

ceive negative feedback.

The specific values of the feedback should be chosen

according to the goals and specifics of the website. For our

prototype, we use the following feedback values:

1 if r is a clicked (successful) recommendation

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

-1/(n-1) if some other recommendation is clicked (n is

the number of recommendations shown simul-

taneously in a presentation).

-p if no recommendation is clicked (p is the

overall probability for a website that a web

page is reached because of a recommenda-

tion).

 The second value is motivated by the fact that

when n recommendations are simultaneously shown to

the user, each recommendation has n-1 times larger prob-

ability of getting negative than positive feedback. Hence,

negative feedback is divided equally between all not

clicked recommendations. The last value ensures that all

non-clicked recommendations are equally decreased

according to the average probability that recommenda-

tions are used at all.

7. Prototype

The prototype of the system is implemented on a

small commercial online software store

(http://www.softunity.com, approximately 5000 page

views per day). Our approach is used to automatically

select and present 5 recommendations (n=5) on each

product detail page. Some facts concerning the prototype

are shown in the table below.

Number of products: ~2182

Number of topics: ~ 207

Number of ContentNodes: ~ 8300

Number of Rules: ~ 35970

The prototype uses a mysql installation for the rec-

ommendation rule database and the web warehouse. All

recommenders, the learning module as well as the web-

site itself, are implemented using the PHP scripting lan-

guage.

To assess the effectiveness of the proposed approach,

we plan to compare our learning approach for determin-

ing recommendations with the use of randomly generated

recommendations. To do so we use either method for

50% of the presentations by changing the selection strat-

egy for recommendations for every presentation between

intelligent (weight-based) and random. The latter mode is

achieved by a slight modification of the SQL selection

query (Section 5) by using the clause “ORDER BY

RAND()”) instead of “ORDER BY Weight DESC”.

Comparing the recommendation usage for the two cases

should indicate whether the proposed approach brings an

increase in user acceptance.

8. Related work

A recent survey provides a detailed overview of the

research on web recommendation algorithms and their

combination [Bu02]. According to their classification, the

presented system belongs to the category of so-called

“mixed” hybrid recommendation systems, i.e. systems

where recommendations from different algorithms are

presented together. [NM03] propose to choose recom-

mender algorithms based on the degree of connectivity for

a given web page. [MB97] also use a central repository for

recommendations but rank the recommendations based on

explicit user feedback. One of the authors is investigating

another feedback-oriented approach for making dynamic

web recommendations which focuses on the automatic

selection of recommenders to use (instead of selecting

individual recommendations) [TR03]. The distinguishing

feature in this work compared to previous approaches is the

use of reinforcement learning as a flexible and reactive

technique for learning and combining recommendations

from several recommendation algorithms.

9. Summary and outlook

This paper describes the architecture of a novel hybrid

recommendation system. Our approach uses multiple tech-

niques to generate recommendations and employs rein-

forcement learning to refine their quality.

We plan to comprehensively evaluate the approach

and use the results for improvement, e.g. with respect to the

selection and learning strategy or to extend our library of

recommenders. For instance, the ontological knowledge

represented in concept graphs should also be useful for

recommenders to determine the similarity between prod-

ucts or users.

10. References

[AG03] S. Acharyya, J. Ghosh: Context-Sensitive Modeling of
Web-Surfing Behavior using Concept Trees. Proc. WebKDD,

2003

[Ba97] M. Balabanovic: An Adaptive Web Page Recommenda-

tion Service. CACM, 1997

[BS03] S. Baron, M. Spiliopoulou: Monitoring the Evolution of

Web Usage Patterns. Proc. ECML/PKDD, 2003

[Bu02] R. Burke: Hybrid Recommender Systems: Survey and

Experiments. User Modeling and User-Adapted Interaction, 2002

[JKR02] A. Jameson, J. Konstan, J. Riedl: AI Techniques for

Personalized Recommendation. Tutorial presented at AAAI, 2002

[LSY03] G. Linden, B. Smith, and J. York: Amazon.com Recom-

mendations: Item-to-Item Collaborative Filtering. IEEE Internet

Computing. Jan. 2003

[NM03] M. Nakagawa, B. Mobasher: A Hybrid Web Personaliza-
tion Model Based on Site Connectivity. Proc. 5th WEBKDD

workshop, Washington, DC, USA, Aug. 2003

[SKKR00] B. Sarwar, G. Karypis, J. Konstan, J. Riedl: Analysis

of Recommendation Algorithms for E-Commerce. Proc. of ACM

E-Commerce, 2000

[SB98] R.S. Sutton, A.G. Barto: Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[TR03] A. Thor, E. Rahm. Data-Warehouse-basierte Architektur

für adaptive Online-Recommendations (in German). Proc.

LIT2003, Leipzig, 2003

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

