
Philip A. Bernstein Microsoft Corp.
Jayant Madhavan Google
Erhard Rahm Univ. of Leipzig

The problem of generating correspondences
between elements of two schemas

ISBN char(15) key
Title varchar(100)
Author varchar(50)
MarkedPrice float

ID char(15) key
AuthorID integer references AuthorInfo
BookTitle varchar(150)
ListPrice float
DiscountPrice float

Books
BookInfo

AuthorID integer key
LastName varchar(25)
FirstName varchar(25)

AuthorInfo

Element names

Schema structure

ID char(15) key
AuthorID integer references AuthorInfo
BookTitle varchar(150)
ListPrice float
DiscountPrice float

ISBN char(15) key
Title varchar(100)
Author varchar(50)
MarkedPrice float

Books

BookInfo

AuthorID integer key
LastName varchar(25)
FirstName varchar(25)

AuthorInfo

Constraints: data type,
keys, nullability

Synonyms
Code = Id = Num = No

Zip = Postal [code]

Node = Server

Data instances
Elements match if they have similar instances or
value distributions

Acronyms
PO = Purchase Order

UOM = Unit of Measure

SS# = Social Security Number

Data translation

Data integration

ER design tools

Schema evolution

Object-to-relational
mapping

XML message translation

Data warehouse loading
(ETL)

A correspondence is just a relationship,
with no semantics

Correspondences can be directly useful
Schema merging, impact analysis, …

Or they can be semantically enriched
Clio project [Miller et al., VLDB 2000]
Translate correspondences into constraints on instances
Then translate constraints into an executable mapping

ISBN,Title,MarkedPrice(Books)
= ID,BookTitle,ListPrice(BookInfo)

Author(Books) = FirstName+LastName(AuthorInfo)

ID char(15) key
AuthorID integer references AuthorInfo
BookTitle varchar(150)
ListPrice float
DiscountPrice float

ISBN char(15) key
Title varchar(100)
Author varchar(50)
MarkedPrice float

Books

BookInfo

AuthorID integer key
LastName varchar(25)
FirstName varchar(25)

AuthorInfo

Books
= ID, BookTitle, FirstName+LastName, ListPrice(BookInfo AuthorInfo)

ID char(15) key
AuthorID integer references AuthorInfo
BookTitle varchar(150)
ListPrice float
DiscountPrice float

ISBN char(15) key
Title varchar(100)
Author varchar(50)
MarkedPrice float

Books

BookInfo

AuthorID integer key
LastName varchar(25)
FirstName varchar(25)

AuthorInfo

1994-98, I worked on Microsoft Repository
[Bernstein et al, “The Microsoft Repository,” VLDB 1997]

I talked to many tool developers
They were all working with models of software
artifacts and mappings between them

This led me to propose Model Management
Bulk operators to manipulate models & mappings
Match, Merge, Diff, Compose, Invert, ModelGen, …
[Bernstein, Halevy, Pottinger, SIGMOD Record ’00]

They’re all multi-step
The first step usually generates a mapping: S-map-T
Then merge(S,T), diff(S,T), compose(S -map-S, S-map-T)

So the Match operator was the place to start.
Survey the literature
Develop new match algorithms

We found existing work on schema matching
was embedded in other multi-step solutions

It was one of our contributions

There are now hundreds of papers on the topic

The problem can’t be solved perfectly because
It depends on the available information
It depends on the required accuracy
It depends on the application and usage scenario

So it’s no wonder our paper is highly cited!

Problem definition

History – what led us to the problem

Summary of our 2001 paper (Jayant Madhavan)

Approaches since 2001 & Future trends

(Erhard Rahm)

1

Goals and Contributions

Our original goals
Introduce schema matching as an independent problem and
independent component
Provide a credible candidate algorithm and implementation
as a basis for future work
Generic: independent of data model and target application

Our contributions
Taxonomy of schema matching algorithms
Schema-based hybrid matching algorithm
Evaluation that compared multiple approaches

September 1, 2011 Generic Schema Matching, Ten Years Later 2

Cupid overview

Schema-based hybrid matching algorithm
Combines multiple approaches that use only schema (no instances)

Input: Two schema graphs
Output: Similarity matrix and candidate mapping

Linguistic matching: compare elements based on names
Structure matching: compare elements based on relationships

Wsim = w * Lsim + (1 – w) * Ssim

Not the first to propose either linguistic or structure matching

September 1, 2011 Generic Schema Matching, Ten Years Later 3

September 1, 2011 Generic Schema Matching, Ten Years Later 4

Example from VLDB’01

PO

Item

POLines

Qty

Line

UoM

City

Street

Item

PurchaseOrder

Items

Quantity

ItemNumber

UnitOfMeasure

POShipTo DeliverTo

City Street

AddressName
Name

Linguistic Matching
Tokenization of names

PurchaseOrder purchase + order
Expansion of acronyms

UOM unit + of + measure
Clustering based on keywords and data-types

Street, City, POAddress Address

Linguistic similarity
Pair-wise comparison of elements that belong to the same cluster
Token similarity = f(string matching, synonymy score)
Token set similarity = average (best matching token similarity)

Thesaurus: acronymns, synonyms, stop words and categories

September 1, 2011 Generic Schema Matching, Ten Years Later 5

September 1, 2011 Generic Schema Matching, Ten Years Later 6

Structure Matching

PO

Item

POLines

Qty

Line

UoM

City

Street

Item

PurchaseOrder

Items

Quantity

ItemNumber

UnitOfMeasure

POShipTo DeliverTo

City Street

AddressName
Name

September 1, 2011 Generic Schema Matching, Ten Years Later 7

Tree Match Algorithm
Atomic elements (leaves) are similar

Linguistically and data-type similar
Their contexts, i.e., ancestors, are similar

Compound elements (non-leaves) are similar if
Linguistically similar
Elements in their context, i.e., subtrees rooted at the elements,
are similar

Mutually dependent formulation
Leaves determine internal node similarity
Similarity of internal nodes leads to increase in leaf similarity

Bottom-up traversal of trees

September 1, 2011 Generic Schema Matching, Ten Years Later 8

Tree Match: Mutually Reinforcing
Similarity

PO

Item

POLines

Qty

Line

UoM

Item

PurchaseOrder

Items

Quantity

ItemNum

UnitofMeasure

Wsim > thhigh

Wsim > thhigh

Ssim ++

Ssim ++

Ssim ++

Extensions for shared types, referential integrity, views, etc.

Evaluation
Cupid compared with MOMIS/ARTEMIS @
Modena/Milano, DIKE @Calabria
Canonical tasks and real world examples

Technical conclusions
Linguistic matching with attention to detail does help
Structure matching can identify non-linguistic matches
Structure matching can disambiguate between
seemingly identical structures in different contexts
Ability to match across relational schemas, XML
variants, possibly others

September 1, 2011 Generic Schema Matching, Ten Years Later 9

What we learned?

Schema Matching Taxonomy
Provided a framework to describe future solutions and place
them in comparison to other work

Quantitative evaluation
Set a precedent for future papers
Very thankful to MOMIS/ARTEMIS and DIKE teams

Making software available helps a lot
Possible even when developed in industry
We get requests for software even to this day

10

Follow up Techniques
Using schema matching results as is: possible when matches only
contribute implicitly end-user task

For example, building a deep-web crawler [Madhavan+, VLDB’08]

Design mediated schema
Extract schemas of web forms
Match web forms to mediated schemas
Generate URLs for interesting subset of form submissions
Add generated pages to the corpus of indexed pages

September 1, 2011 Generic Schema Matching, Ten Years Later 11

Used Cars

Make

Model

Price

Year

Books

Author

ISBN
Price

Location

Domain Models
www.cars.com

Collective Schema Matching
Schema matching is almost never an isolated task

It ought to get easier over time!

September 1, 2011 Generic Schema Matching, Ten Years Later 12

[Doan+, SIGMOD’01]: Learn to match sources to a mediated schema

craigslist auto

allcars.com

[Do+, ICDE’02]: Compose known matches to discover new ones

Collective Schema Matching

[He+, SIGMOD’03]: Build mediated schema for a domain by clustering
elements in multiple schemas

September 1, 2011 Generic Schema Matching, Ten Years Later 13

craigslist auto

allcars.com

craigslist auto

[Madhavan+, ICDE’05]: Learn to map between new schemas based on other
schemas and mappings in the same domain

Match workflows
New match techniques
User interaction for Match
Semantic matching
Match techniques for large schemas
Self-tuning match workflows
Reuse-oriented matching
Holistic (collective) schema matching
Numerous match prototypes
Evaluation of match tools
Commercial tools

S2

S1
Result
Mapping

Pre-
processing

Input
schemas

Combination
of matcher

results
Selection of

correspondences
Matcher

Execution

(sub-workflow)

General workflow (COMA, …)

Matcher1

Matcher2

Matcher3

Matcher1 Matcher2 … Matcher1

Matcher

Matcher

Matcher

Sequential matchers
Parallel (independent)

matchers
Mixed strategy

Matcher sub-workflows

Graph matching
e.g., similarity flooding [Melnik et al, ICDE 2002]

Instance-based ontology matching
concepts with similar instances should match
consider all instances of a concept as a document and
utilize document similarity (e.g., TF/IDF) to find
matching concepts

Usage-based matching
utilize query logs for hints about related schema
elements (e.g., in join clauses) [Elmeleegy et al., ICDE 2008]
Hamster approach for taxonomy matching [Nandi et al,
VLDB 2009]

Concepts with most similar instances should match
requires shared/similar instances for most concepts

Mutual treatment of entity resolution (instance
matching) and ontology matching
Promising for link discovery in the Linked Open Web
of Data

O1 O2

O1
instances

?

O2
instances

?

GUI support to inspect and correct computed
correspondences [Falconer et al., ISWC 2007]

Incremental schema matching [Bernstein et al., VLDB 2006]
focused matching on user-selected element / subtree

Provision of top-k matches per element for selection
[Gal, J Data Semantics 2006]

Collaborative schema matching using a wiki-like
infrastructure to provide and improve mappings

[McCann et al., ICDE 2008]

Correspondences with semantic relationships
equality, more general, less general, disjointness

e.g. PortableComputers Tablets
S-Match [Giunchiglia et al, ESWC 2004]

Discovery of mapping expressions
e.g., room-price = room-rate * (1 + tax-rate)

iMAP [Dhamankar et al., SIGMOD 2004]

Conditional correspondences [Bohannon et al., VLDB 2006]
e.g., if productType = “book”

then S1.Invoice.Code =S2.ISBN

Low-level optimizations
Optimized string matching
Space-efficient similarity matrices
Database-based matching

Parallel matching
Inter-matcher and intra-matcher parallelism

Partition-based matching (COMA++, Falcon-AO)
Reduced search space by matching only similar schema
partitions/fragments
Light-weight search for similar schema fragments

Initially determine highly similar element pairs called “anchors”
Only partitions that share at least one anchor are matched

[Hamdi et al, 2009]

Semi-automatic configuration
Selection of promising matchers
Ordering of different matchers
Combination of match results
Selection of correspondences (top-k, threshold, …)

Initial tuning frameworks: Apfel, eTuner, YAM
Use of supervised machine learning

need previously solved match problems for training
difficult to support large schemas

Heuristic approaches
Use linguistic and structural similarity of input schemas to
select matchers and their weights (RiMOM)
Favor matchers giving higher similarity values in the
combination of matcher results (QOM, PRIOR+, OpenII)

Many similar match tasks reuse previous matches
Schema and mapping repository needed

Example: reuse match results after schema evolution
compose previous match result S—T with mapping T-T’ to
solve new match task S—T’

POrder
Article
Payee
BillAddress
Recipient
ShipAddress

Purchase-order
Product
BillTo

Name
Address

ShipTo
Name
Address

Contact
Name
Address

Purchase-order2
Product
BillTo

Name
Address

ShipTo
Name
Address

ContactPhone

Schema T’Schema TSchema S

Mapping
Excel Noris

Mapping
Noris Noris_Ver2

source schema target schema

old target

First proposals for reuse at 3 mapping granularities
Reuse complete schema mappings, e.g. after schema
evolution
Reuse individual element correspondences, e.g. synonyms
Reuse mappings between schema fragments

Fragment-level reuse most sophisticated
Populate repository by most relevant fragments and their
mappings
Analyze schemas to be matched for fragment pairs in the
repository
Assemble and complement fragment mappings

Matching between N schemas, e.g. web forms
mostly simple schemas

Typical use case: creation of a mediated schema

Holistic matching based on clustering of similar
attributes (Wise-Integrator, DCM, HSM, …)

utilize high name similarity between schemas
similar names within a schema are mismatches

Probabilistic mediated schemas
[Das Sarma et al., SIGMOD 2008]

Ranking of several clustering alternatives based on
probabilistic mappings
Fully automatic approach

• Ontology Alignment Evaluation Initiative, http://oaei.ontologymatching.org

Yearly ontology matching
contests since 2005
Up to 17 participating
systems per year
Simple tests (Benchmark) a
and larger test cases
(Anatomy, Directory)
Improvements for
Benchmark and Anatomy,
but not for Directory

Anatomy test case
[Euzenat et al, OM 2010]

Cupid COMA++ Falcon Rimom Asmov Agr.Maker OII Harmony
year of introduction 2001 2002/2005 2006 2006 2007 2007 2008
Input relational
schemas XML ()

ontologies
OAEI participation

compreh. GUI () ? ?
Matchers linguistic

structure
Instance

use of ext.dictionaries ?

schema partitioning
parallel matching
dyn. matcher selection
mapping reuse

*Rahm, E.: Towards large-scale schema and ontology matching.
In: Schema Matching and Mapping, Springer-Verlag, 2011

Many GUI-based mapping editors to manually
specify correspondences and mappings

Initial support for automatic matching, in partiular
linguistic matching

Altova MapForce
MS BizTalk Server 2010
SAP Netweaver
IBM Infosphere

Many further improvements possible
Structural / instance-based matching
Advanced techniques for large schemas

Indicative match
result for selected
node PO403

more than 5000 publications for keyword “schema matching” since year 2000

Pubs
per
year

Joint treatment of entity resolution and
schema matching, e.g. for Linked Data

More comprehensive mapping reuse

Self-Tuning

Improvements for
user interaction
Large-scale schema matching
Semantic matching
Holistic/collective schema matching …

Fully automatic schema matching for web
applications

More match-based approaches for
Ontology/schema merging
Ontology/schema evolution
…

