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[57] ABSTRACT

Page management mechanisms provide candidates for
page stealing and prefetching from a main storage data
cache of shared data when the jobs sharing the data are
accessing it in a sequential manner. Pages are stolen
behind the first reader in the cache, and thereafter at
locations least likely to be soon re-referenced by trailing
readers. A ‘“‘clustering” of readers may be promoted to
reduce 1/O contention. Prefetching is carried out so
that the pages most likely to be soon referenced by one
of the readers are brought into the cache.

16 Claims, 26 Drawing Sheets
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CACHE MANAGEMENT METHOP AND
APPARATUS FOR SHARED,
SEQUENTIALLY-ACCESSED, DATA

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to computers and computer
complexes, and operating systems for controlling them.
More particularly, this invention describes techniques
for improved management of cached data which is
sequentially accessed, and shared.

2. Background Art

Improving performance by caching data in high
speed memory is a common strategy used in many com-
puter systems. In managing caches, two common tech-
niques are page replacement algorithms and prefetching
" algorithms. Page replacement algorithms are used to
eliminate data that is unlikely to be used in favor of data
that is more likely to be used in the near future. Pre-
fetching algorithms are used to bring data into the cache
when it is likely to be used in the near future.

The Least Recently Used (LRU) algorithm is the
cache management page replacement algorithm used in
many previous systems. This algorithm assumes that
records recently accessed will soon be reaccessed. This
assumption is not adequate for sequential access pat-
terns (spatial locality) when a particular job reads a
particular record only once. In this case, which is fre-
quently found in batch processing, temporal locality
within a job does not exist.

When data is accessed sequentially, it may be possible
to improve performance by prefetching the data before
it is. needed. This strategy is common in previous sys-
tems. Prefetching means that in the event of a page fault
multiple physically adjacent records are fetched to-
gether in addition to the record for which the fault
occurred. Simple prefetching schemes may be ineffec-
tive since records are often unnecessarily prefetched.
More sophisticated strategies use a-priori knowledge
obtained by analyzing program traces, accept user ad-
vice or dynamically analyze the program reference
behavior, can significantly improve performance. Pre-
fetching can improve performance in two ways: First,
the 1/0 (Input/Output) delay and thus response time of
a job (transaction, query, etc.) can be reduced by cach-
ing data prior to the actual access. Second, the 1/0
overhead for fetching N physically clustered records is
usually much smaller than N times the cost of bringing
in one record. On the other hand, prefetching of records
not actually needed increases the 1/0 overhead and
may displace other pages which are about to be refer-
enced.

SUMMARY OF THE INVENTION

This invention describes techniques for managing
data within- a cache where the data is shared among
multiple jobs each of which is sequentially accessing the
data. It provides a first embodiment describing a page
stealing technique which frees cache pages unlikely to
soon be referenced by another cache reader, and a sec-
ond embodiment describing an alternative page stealing
technique, as well as a prefetch technique for prefetch-
ing soon-to-be-needed records into the cache.

It is an object of this invention to maximize cache hits
for jobs sequentially reading common datasets whose
records are cached in virtual storage, thus reducing
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2
average 1/0 delay per job, and reducing job elapsed
fime.

It is another object of this invention to provide a page
replacement, or page steal, technique more effective
than LRU algorithms for shared, sequentially accessed
data.

It is a further object of this invention to provide a
prefetch technique which may be advantageously used
for cached data shared among multiple jobs each of
which are sequentially accessing the data.

It is a further object of this invention to promote
clustering of cache-accessors among a set of transac-
tions sequentially accessing data in a shared cache.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is an overview diagram illustrating data flow
in this invention.

FIG. 2 is an overview diagram illustrating a first
embodiment in which a nonmain storage data space is
used as a virtual cache.

FIG. 3 is a control block structure diagram illustrat-
ing key control blocks used in the first embodiment.

FIGS. 4A and 4B together comprise FIG. 4, a flow-
chart illustrating control flow for a read request in the
first embodiment. The manner of joining 4A and 4B is
shown in the map on FIG. 4A.,

FIG. § is a flowchart illustrating control flow for
page steal processing for the first embodiment.

FIGS. 6A and 6B together comprise FIG. 6, a flow-
chart illustrating control flow for identifying page-steal
candidates in the first embodiment. The flowcharts
together comprise one chart when jointed as indicated

‘in the map on FIG. 6B.

FIGS. 7A through 7E are control block and data
flow diagrams illustrating an example use of the first
embodiment, showing I/0 queueing.

FIGS. 8A through 8K are control block diagrams
illustrating a usage of the first embodiment in which
three readers are sequentially reading a dataset.

FIG. 9 is a flowchart illustrating first subfunction of
the Velocity Estimation Algorithm used in the second
embodiment.

FIG. 10 is a flowchart illustrating the second sub-
function of the Velocity Estimation Algorithm used in
the second embodiment.

FIG. 11 is a logical view of job progress and table
content in an example use of the second embodiment.

FIGS. 12A and 12B are flowcharts illustrating the
calculation of use times for certain records in the second
embodiment.

FIGS. 13A, 13B, and 13C are flowcharts illustrating
control flow changes to FIG. 12 required to build pre-
fetch candidate lists.

FIG. 14 is a flowchart illustrating control flow for the
asynchronous prefetch job of the second embodiment.

FIG. 15 is a flowchart illustrating control flow for the
cache replacement algorithm of the second embodi-
ment.

DESCRIPTION OF THE PREFERRED
' EMBODIMENT

FIG. 1 is a high level overview of the operation of
this invention. In operating system A (10) two address
spaces represent jobs which are concurrently active,
address space 1 (11), and address space 2 (12). Each
address space is concurrently accessing data on dataset
16, which resides on DASD device 15. Each address
space is sequentially reading data from dataset 16 into
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its own local buffer (13, 14). As the data is read, a con-
trol element (17) dynamically determines whether the
data requested resides in a cache element 18. If the data
resides in cache element 18, the request is satisfied from
the cache without the need for 1/0 to dataset 16. If the
data is not yet in the cache 18, the 1/0 is allowed to
proceed. A copy of the data is then transferred from the
local buffer into which it has been read (13 or 14) into
the cache element 18. If there is insufficient space in the
cache element 18 to copy the data from the local buffer
(13 or 14), control element 17 steals encugh storage
from cache 18 to allow the copy to complete. The steal
mechanism of control element 17 relies on the fact that
address spaces 1 (11) and 2 (12) are sequentially reading
dataset 16 in making its steal decision. This page stealing
is a process whereby pages in cache 18 that are least
valuable—that is, least likely to be used in the near
future by address space 1 or address space 2—are freed
for reuse. The particulars of the steal algorithm of con-
trol element 17 are further described below.

FIG. 2 illustrates an embodiment in which a virtual
cache 21 is used which is a nonmain storage data space
(or Hiperspace) of the type described in prior patent
application Ser. No. 07/274,239 filed Nov. 21, 1988, and
assigned to same assignee as the subject application.
This nonmain storage data space virtual cache 21, also
called a “hiperspace”, is backed by expanded storage
22. As illustrated in FIG. 2, address spaces 1 (25) and 2
(27) have been sequentially reading dataset 28, and con-
trol element 29 has been placing data read into buffers
25A or 27A into virtual cache H(21) as appropriate. The
data placed into the virtual cache occupies the virtual
addresses illustrated at 23 which require all of expanded
storage 22 for backing storage. When a new record is
read from dataset 28 to address space 1’s buffer 25A,
and an attempt is made by control element 29 to copy it
into virtual cache H(21) at the location indicated by 24,
it is seen that no further expanded storage is available to
back location 24. Therefore, the frames backing the
virtual addresses indicated at 23 must be stolen to free
the associated expanded storage so that the data in
buffer 25A can be read to location 24 which will then be
backed by the newly freed expanded storage.

FIG. 3 illustrates the primary control blocks used in
the instant embodiment of the present invention. A
dataset table 301, comprising dataset table entries, is
chained off the communication vector table (CVT) 302
through the SCVT (Secondary Communication Vector
Table) 303, which points to the cache global table
header 304, in turn pointing to a cache global table 305.
Each dataset table entry (DSTE) 306 comprises a token
which identifies the hiperspace used for the cache for
the instant data space (306A), an 1/0Q Block anchor
306B, an anchor for a set of control blocks called cluster
blocks 306B, and an anchor for an order queue called
the ACBT (Access Method Control Block Tracker)
queue (306D). Each 1/0 block 307 comprises backward
and forward queue pointers (307A, 307B), the relative
byte address of the lowest (307C) and highest (307D)
data for which 1/0 has been requested, and a pointer
(307E) to an ACBT subqueue of users waiting for this
1/0. Each cluster block 308 is associated with a contig-
uous range of data within the hiperspace cache. It con-
tains the relative byte address (RBA) of the lowest
backed data in the range (308A), the RBA of the highest
backed data in the range (308B), the token associated
with the hiperspace (308C), and a pointer (308D) to a
chain of ACBTs associated with this cluster. The order
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4

queue or ACBT queue contains control blocks, ordered
by RBA of associated reader, which track ACB (Access
Method Control Block) control blocks (ACBs are
VSAM (Virtual Storage Access Method) control
blocks that are well known, as indicated in publication
OS8/VS Virtual Storage Access Method, GC26-3838).
Each ACBT 309 contains the address (309A) of an
ACB associated with a current reader job, or address
space, 310A. (A reader is a process which has estab-
lished access to the dataset ) It also contains an indica-
tion of the current position within the dataset of the
associated reader (309B), an indicator whether the asso-
ciated user is currently suspended (309C), a pointer to
the CLSB (Cluster Block) associated with the reader
(309D), a pointer to an IOBK (1/0 Block) (309E) when
the reader is suspended waiting for an 1/0, a pointer to
other ACBTs (309F) waiting for a common 1/0 opera-
tion, and a pointer to other ACBTs (309G) chained to a
common CLSB. The ACBT is created when a reader
requests sequential access to a dataset which is eligible
for caching (indicated by the installation on a dataset
basis, for example, through an installation exit or secu-
rity profile invoked during OPEN processing) and per-
mission is granted to allow the user to participate in the
caching of the dataset. This process occurs when the
reader OPENS the dataset for read access. In addition,
if they have not already been created, storage is allo-
cated for the CGTH (Caching Global Table Header),
CGT (Caching Global Table) and DSTEs (Data Set
Table Entries). A DSTE is then assigned to represent
the dataset being opened and the ACBT representing
the reader is chained. IOBKs and CLSBs are created
and destroyed during mainline I/O request processing
and are not created as a result of OPEN processing.

FIG. 4 illustrates the high level control flow for read
requests for the instant embodiment of the present in-
vention. When a read request is issued for a particular
RBA, an attempt is made to find a cluster block (CLSB)
associated with the required RBA 401. If the required
RBA is found in a cluster block, 402, this indicates that
the record associated with the RBA is in the hiperspace
cache. The data is then copied to the requesting job’s
local buffer (403), and the read request is satisfied. If the
requested RBA was not in a CLSB, this indicates that
the required data is not yet in the hiperspace cache.
However, even though it is not yet in the cache, it may
be on its way into the cache. The process to transfer the
record from a DASD device to a main storage buffer
may have been initiated. Therefore, a test is made at 404
whether an 1/0 is in progress for this CLSB. This is
indicated by the presence or absence of an associated
10BK. If it is found that such an 1/0 is in progress (i.e.,
there was an IOBK), the reader is placed on the waiters
queue 405 anchored from the IOBK. The reader then is
suspended 406 and awaits a redispatch to continue exe-
cution again at 401. If an I/0 was not yet in progress
(there was no IOBK), an I/0 is requested 407 and an
IOBK constructed and placed on the IOBK queue. The
job then waits for the requested 1/0 to complete 408.
This mechanism for performing 1/0 promotes “cluster-
ing” of readers within a stretch of contiguous frames in
the caches, and is illustrated below in the text describing
FIG. 7. “Clustering” is the process by which subse-
quent readers “catch up” to the reader doing the physi-
cal 1/0 because of the relative slowness of physical 1/0
as compared with data transfer from expanded storage.

When the I/0 completes, so that the requested data is
now in the requesting job’s local buffer, a test is made
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409 whether there are enough available frames to copy
the data from the buffer into the hiperspace cache. (A
count is maintained of the number of frames “in use”,
and compared against an installation-specified number
of expanded storage frames which may be used to back
virtual cache pages.

The count is updated to reflect the data pages copied
into the hiperspace.) If there are enough frames, the
data is copied into the cache, 410, and the cluster block
is updated, 411, to reflect the stretch of in-cache data as
it now exists. If there were not enough available frames
to copy the data into the cache, the steal routine is
executed to free enough storage to copy the data into
the cache 412. The details of this steal routine will be
elaborated on below in the descriptions of FIGS. 5§ and
6. If enough storage now exists to copy the data into the
cache, 413, a copy is performed as indicated above 410.
If there are not enough frames, the routine is simply
exited. No data is transferred to the cache, but no error
is indicated. The next reader needing these pages will
have to perform physical 1/0. Before exiting, any sus-
pended users are permitted to resume 414.

FIG. § is a control flow diagram for page steal pro-
cessing. At 501, the steal target is calculated. This is
defined as three times the number of frames requested in
the current request. This target is implementation sen-
sitive—it may be adjusted so that the benefit of the
frames being stolen is balanced against the frequency
and path length of the reclaim algorithm. At 502, the
current dataset index is fetched. This is simply an index
into the DST which tracks the dataset which is cur-
rently being stolen from. At this point, it will still reflect
the dataset last stolen from. At 503, the next dataset in
the dataset table is selected and the dataset index is
incremented. Cached data sets are thus processed in
round-robin fashion. At 504, the first reader on the
order queue, or the ACBT queue, (FIG. 3 at 304C) for
the current dataset, is selected. The first reader will be
the one currently positioned at the lowest RBA value of
all the readers in the dataset. This current RBA value is
maintained in the ACBT (FIG. 3 at 309B). At 505, a test
is made whether any frames exist for this dataset in the
hiperspace cache behind the current reader, that is with
RBA values lower than that of the position of the cur-
rent reader. If so, at 506, a number of frames in the
cache are stolen, that is are freed for reuse. In doing this,
the routine begins with the frames just behind the cur-
rent reader, that is with lower RBAs than the position
of the current reader. Proceeding backward (ie., to
lower RBA values) frames are stolen until the number
of frames discarded equals the minimum of A: the num-
ber of frames existing before the current reader or B: the
steal target. At 507, a test is made whether the number
of frames stolen is equal to the target. If so, the steal
routine is exited successfully. If not, or if the test at 505
indicated that no cached frames existed behind the cur-
rent reader, then a calculation to determine the least
valuable frames in the cache for this dataset is per-
formed and they are stolen 508. This process is outlined
in more detail in FIG. 6 and will be explained below. At
509, a test is again made whether the pages stolen thus
far is equal to the target. If so, the steal routine is suc-
cessfully exited. If the number of frames stolen so far is
less than the target, i.e., the test at 509 resulted in a no
answer, then a further test is made at 510 whether all
frames have yet been stolen from the current dataset.
(This determination is made by testing a value called
“distance” for zero, which will be further explained in
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FIG. 6. A distance value of zero indicates that all frames
in this dataset have been stolen.) If the test at 510 indi-
cates that additional frames backing portions of this
dataset remain to be stolen, then the calculation of the
then least valuable frames is recomputed at 508 and
processing continues as indicated above. If the test at
510 indicated that no further frames remain to be stolen
from this dataset, then the next dataset is selected from
the DST (Data Set Table) table, and the index of a
current dataset is incremented 503, and processing con-
tinues as indicated above.

FIG. 6 shows the flow of control for identifying and
stealing the least valuable frames. The object of this
processing is to identify the CLSB associated with the
least valuable frames in the cache, and to identify the
least valuable frame within that cluster—from which
frame stealing will proceed backward until the target is
reached (or there are no more to steal). At 601, an initial
distance value (DO) is set equal to zero. (Note: if the
processing described in this figure does not result in
discarding any frames, then this distance value will
remain zero, which will result in the test at 510 in FIG.
§ discovering that all frames have been stolen from the
current dataset.) At 602, the second ACBT on the
ACBT queue is selected. (The frames behind the first
reader will already have been stolen.) At 603, a test is
made whether such an ACBT (at this point associated
with a second reader) exists. If such an ACBT does
exist, a test is made at 604 whether this ACBT is associ-
ated with a CLSB. If so, indicating that the reader asso-
ciated with the ACBT is located within a contiguous
stretch of cached records, a value Hl is set equal to the
current RBA location of the current ACBT (605), and a
value LI is set equal to the RBA value of the previous
ACBT (606). A distance value D1 is then set equal to
the difference between H1 and 1.1 (612). This distance
value will at this point equal the distance between two
successive readers. A test 613 is then made whether D1

- is greater than the current value of DO. If so, 614, the
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address of the current CLSB is indicated to be the best
CLSB value, H1 is indicated to be the best RBA value,
and DO is set to the new value of DI Then, 615, the next
ACBT on the ACBT queue is selected, and processing
continues as indicated above as 603. If the test at 613 did
not indicate that the value of D1 is greater than the
previous value D0, then we have not found a new maxi-
mum value, and the setting of values in block 614 is
bypassed, and the next ACBT is selected 615. If the test
at 604 did not indicate that the current ACBT is associ-
ated with a CLSB, this means that the associated reader
is not located within an in-cache stretch of data. Steal-
ing, if appropriate, must then begin within the previous
cluster. At 607, the closest cluster block with an RBA
range less then or equal to the RBA in the current
ACBT is selected. A test is made at 608 whether such a
cluster block is found. If not, there is no previous cluster
to steal from, and the next ACBT is selected 615. If such
acluster is found, the value H1 is set equal to the highest
RBA value within this cluster 609. Then, 610, the clos-
est ACBT on the ACBT queue with an RBA location
less than or equal to H1 is selected, and, 611, L1 is set
equal to the RBA location of this newly found ACBT.
Processing then continues as indicated above at 612. If
the test at 603 did not indicate that an ACBT to be
selected exists, (indicating that all ACBT’s have been
selected and processed), then a final set of processing
must be executed since there may be an in-cache stretch
beyond the position of the last reader in the cache. At
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616, the last CL.SB is selected. The value H1 is then set
equal to the highest RBA wvalue within the selected
CLSB. Then, 618, the last ACBT on the ACBT queue
is selected. The value L1 is set equal to the RBA loca-
tion of this last ACBT (619). The distance value D1 is
then computed to be the difference between H1 and L1
(620). A test is then made whether DI is greater than
the existing D0 value 621. If so, 622, we have a new
optimum stealing location, and the best CLSB value is
set equal to the address of this current CLSB, H1 is
indicated to be the best RBA location, and D1 is substi-
tuted for DO. If not, this processing at 622 is bypassed.
A test is then made whether DO still is equal to the 0
(623). If it does not equal O, this indicates that a candi-
date has been located, and frames are discarded from
the calculated best CLSB beginning at location best
RBA (624). If however, D0 does equal 0, no candidate
has been located, and this discarding process is bypassed
and the routine is simply exited.

FIGS. 7A thru 7E illustrate the I/0 queueing mecha-
nism used to promote “clustering’’ of readers by means
of an example. (The control block contents in this and
the subsequent highlight only fields relevant to the
examples. The various arrows illustrate conventional
control block chaining.) In FIG. 7A reader job one
(701) and reader two (702), represented by ACBT 1
(703) and ACBT 2 (704) are both processing records of
data within blocks 80 to 89 of dataset 1 (705). Hipers-
pace virtual cache H 706 is being used to cache this
data. Cluster block 2 (707) represents this contiguous
stretch of data in hiperspace 706. (Note that both read-
ers are chained (via the ACBT pointer in the CLSB
(Cluster Block Overe), 308D, and the CLSBQ pointer
in the ACBT 309G) to CLSB2 (Cluster Block 2), as
illustrated by the dotted line.) Cluster block 1 (708)
represents another contiguous stretch of data in the
hiperspace, not currently being processed by either of
the two readers. No 1/0 operation is currently in
progress, indicated by the absence of any IOBKs 709. In
FIG. 7B, reader 1, represented by ACBT 1 (703) now
requires blocks 90 thru 99 and initiates an 1/0O opera-
tion, represented by 1/0 block 710. The access method
suspends reader 1 because of the 1/0 initiated, as usual.
In FIG. 7C, before the 1/O operation initiated by reader
1 completes, reader 2 (represented by ACBT 2 704),
requires blocks 90 thru 99. Since the low RBA number
of reader 2’s new requirement matches the low RBA
number of an I/0 already in progress, indicated in the
170 block 710, reader 2's ACBT (704) is queued on the
1/0 block to await the completion of the 1/0 operation.
This queueing is performed by chaining ACBT 2 704 to
the 1/0 block 710. Reader 2 is then suspended in accor-
dance with this invention. In FIG. 7D, at the comple-
tion of the 1/0 operation, blocks 90 thru 99 are moved
from reader 1’s local buffer 711 into the hiperspace at
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712 Cluster block 2 713 is then updated to reflect the -

new size of the contiguous blocks of data, now reaching
from block 80 thru blocks 99 (see FIG. 7E at 714).
Reader 2 is removed from the IOBK waiter list, and the
10BK is freed. Then reader 2 is resumed. Control is
returned to the access method and reader 1 is allowed to
proceed. At FIG. 7E, reader 2’s request for blocks 90
thru 99 is able to be satisfied from hiperspace 706. No
physical I/0O is actually performed; blocks 90 thru 99
(712) are moved into reader 2’s local buffer 713.
FIGS. 8A through 8K further illustrate this first em-
bodiment of the present invention. In 8A, reader 1 be-
gins to sequentially read a dataset. Hiperspace cache
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8
801 is used to cache page frames associated with this
dataset. ACBT 802 represents reader 1, with the current
RBA indicator within this ACBT indicating reader ¥’s
current position reading the dataset. At this point, the
RBA indicator 802A indicates position 10. Since there is
only one stretch of contiguous data within the hipers-
pace cache, 804, there is only one cluster block, 803.
This cluster block indicates the low RBA number to be
1(803A), and the high RBA number to be 10 (803B). In
8B, as reader 1 continues to read the dataset sequen-
tially, the stretch of frames in the cache grows (805).
The ACBT associated with reader 1 now indicates
reader I’s position to be position 50 (806A), and the
cluster block indicating the stretch of data in the hipers-
pace cache has a low RBA indication of 1 (807A) and a
high RBA number of 50 (807B). In 8C, a second reader,
reader 2, has begun to sequentially read the same dataset
as reader 1. Since the data previously read by reader 1
is still in the hiperspace cache, reader 2’s read requests
are satisfied without the need for additional physical
1/0. ACBT 808 is associated with reader 2, and indi-
cates reader 2’s position within the cache to be position
10 (808A). In 8D, since reader 2 is delayed less for
physical 1/0, it starts “‘catching up” with reader 1. (The
*“clustering™ previously mentioned.) This, however, is
only part of the advantage of the caching. Perhaps more
important than the speed up of reader 2 is the fact that
reader 1 is not slowed down by the presence of reader
2. Without the caching, reader 1 would experience
additional delays due to waiting for the device to be-
come available after reader 2’s I/0s. With the caching,
reader 2 is not doing physical 1/0, so reader 1 never has
to wait for reader 2’s I/O to complete. In 8E, reader 2
has caught up with reader 1. Now, one of them will
have to request physical 170, but both will wait until
the requested I/0 completes. In 8E, both reader 1 and
reader 2 are at location 75. This is indicated by both
reader I's ACBT (810) and reader 2’s ACBT (809) hav-
ing RBA numbers of 75 (810A, 809A). This clustering
enables prolonged 1/0 reduction without requiring
large number of frames. Once this clustering has oc-
curred, the number of frames required to maintain the
cluster is small. Eventually, there will be no additional
free frames to use for caching, so some frame stealing
must be done. According to the algorithm of the present
embodiment, the frames most recently read by the read-
ers are the ones that will be stolen. FIG. 8F shows the
condition of the hiperspace cache and the control block
structure after this stealing has been done Note that
there are now two contiguous stretches of data in the
hiperspace cache, 811 and 812. These stretches are sepa-
rated by space 813, from which the needed frames have
been stolen. The two contiguous stretches are repre-
sented by cluster blocks 814 and 815. Cluster block 814
is associated with contiguous stretch 812, and extends
from a low RBA of 1 (814A) to a high RBA of 70
(814B). Cluster block 815 represents contiguous stretch
811, and reaches from a low RBA of 81 (815A) to a high
RBA of 90 (815B). In FIG. 8G, a third reader, associ-
ated with ACBT 816, has begun to sequentially read the
dataset. Because the part of the cache which was left
intact is at the beginning, reader 3 immediately benefits
from the frames of data previously read by reader 1 and
reader 2. The next time frame stealing is required to be
performed, it is the frames most recently referenced by
reader 3 which are selected. This is indicated by the
vacant stretch 817 in FIG. 8H. The frames recently
referenced by reader 1 and reader 2 are not stolen be-
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cause reader 3 will soon reference them. FIG. 8H illus-
trates three clusters of contiguous data, 821, 822, and
823, each having an associated cluster block, 818, 819,
and 820, respectively. Depending upon many factors,

reader 3 may actually catch up with readers 1 and 2. If 5

this happens, as illustrated in FIG. 8I, there will then be
three readers serviced by each single physical 1/0 re-
quest. In FIG. 81, the two contiguous stretches of hip-
erspace data, 824 and 825, are represented by cluster
blocks 826 and 827 respectively. Now, again, any
frames stolen will be those most recently referenced by
the single cluster of three readers. This is illustrated in
FIG. 8]. The recently stolen frames, 828, have split the
contiguous stretch in the hiperspace into now three
pieces, 829, 830, and 831. These are represented by
cluster blocks 832, 833, and 834, respectively. Eventu-
ally, all three readers will complete reading the dataset.
This is illustrated in FIG. 8K. Since there are now no
readers, there are no ACBT’s chained off the DSTE
835. The three contiguous stretches of data remain in
the hiperspace, and are represented by cluster biocks
836, 837, and 838.

As noted above, the present embodiment of this in-
vention determines the optimum candidates for page
stealing based largely on calculations of those frames
with the longest expected times until reuse. The present
embodiment: assumes that all readers are proceeding
through the cache at a constant velocity, so that frames
with the longest expected times until reuse are assumed
to occur either at the front of a stretch of in-cache
pages, or directly behind one of the readers. Also, the
present embodiment makes no special provisions for
prefetching data into the cache.

In an alternate embodiment, computations may be
made of the velocities at which different jobs are pro-
ceeding through the cache, and these differences may
be taken into account in the determining which pages to
steal from the cache. Another feature of this alternate
. embodiment is prefetching of data into the cache, again
based upon differences in velocities. Features of this
alternate embodiment include a prefetch algorithm, to
determine which noncached records should be pre-
fetched and the order in which they are prefetched; a
velocity estimation algorithm, to empirically determine
the rate at which each reader reads records in each
dataset; a use time estimation algorithm, which uses the
previously estimated velocity and information on
whether intervening records are cached or not to deter-
mine the time at which a dataset record will next be
referenced by a reader; and a cache replacement or
page steal algorithm, to determine which record in the
cache should be stolen when a new record in placed
into a full cache. These algorithms are described as
follows:

VELOCITY ESTIMATION ALGORITHM

The velocity of a job J; through a dataset Dj is de-
noted V;and is the rate at which J;is reading records in
D;. The Velocity Estimation Algorithm computes an
estimate of the job’s attainable velocity through the
dataset. The attainable velocity is the rate at which a job
would proceed through a dataset if it encountered no
cache misses on any dataset. The Velocity Estimation
Algorithm is executed periodically and the interval
between invocations is denoted A which is a parameter
to the algorithm. Assume that at time tg job J;is reading
record rjin dataset D;. At some future time to+ A let the
total 1/0 delay incurred by job J;since tgbe b;. If at time
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to+4a, J;has read up to record cjin dataset Dy, its attain-
able velocity is estimated as

The Velocity Estimation Algorithm has two subfunc-
tions. The first is invoked each time a job submits a read
request to the cache manager. This function updates the
following variables:

1. cjz The current position of job J;in dataset D;.

2. b;L The total 1/0 delay job J;has accrued since its

velocity in D; was last measured.

3. tj: The last time J;'s velocity was measured in data-

set D;.

FIG. 9 depicts the Velocity Estimation Algorithm’s
processing for each read 1/0 submitted by ajob. In this
code, job J;is reading record r in dataset Di. At 901 a
test is made if the record is the first one in the dataset. If
this is the case, 902, tixis set to the time J;started reading
Dy, which is returned by the system function Curren-
t—Time. The current position of the job is recorded in
cikin at 903. If r is in the cache, 904, the Velocity Esti-
mation Algorithm simply returns. If r was not in the
cache, 905, record r must be read into the cache, the
time is recorded in the variable blocked_time at 905,
and the 1/0 is started 906. When the 1/O has com-
pleted, the total time the job was blocked while r was
being read into the cache is Current.. Time —block-
ed_time. At 907-912, the total time the job has been
blocked is updated for all data sets the job is reading.

FIG. 10 shows the second Velocity Estimation Algo-
rithm subfunction—the asynchronous velocity estima-
tion function which is invoked every A time units. The
interval between invocations is implemented by sus-
pending for time (A) at 1001. Before any velocities are
estimated, the variables used in the flowchart (it vij,
pij» bjj) are set to zero. The two loops (1003-1008 and
1002-1010) check the position of every job in every
dataset. If the position is nonzero, J; is reading dataset
Dj. Block 1005 computes the estimated velocity attain-
able. This is defined as the total distance traveled in the
dataset since the last velocity estimate, which is (c;~p;),
divided by the total time the job was active during the
interval of time from t;;to Current_Time. This is simply
Current__Time —t;;—b;;. At 1006, the variables are reset
for the next interval.

USE TIME ESTIMATION ALGORITHM

The Use Time Estimation Algorithm is invoked after
each recomputation of the jobs' velocities. This algo-
rithm uses the estimated velocity of job J;through data-
set D; to compute the time J; will read record r of D;.
Let c;5be the record ID of the position of J;in Djand let
Vi be the velocity in this dataset. The algorithm esti-
mates that job J; will read (“use™) record c;+k in

x
€]

time units

The Use Time Estimation Algorithm is parameter-
ized by the look ahead time L. In L time units, job J; will
use records cj+1, c;+K of dataset. D; where
K = Floor(L-Vj). In this case, the use time of ¢;+p with
respect to J;is defined as (p/K)-1.. The K records cj+1,
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cij+2,...,cy+K are said to be in the look ahead of job
i

FIG. 11 presents an example that illustrates the cache
management algorithms of the second embodiment.
The horizontal line represents a dataset and the hash
marks represent records. Circles indicate cached re-
cords. The arrows represent the velocities and look
ahead of jobs 1, 2 and 3. For example, the first record in
job 2’s look ahead is record 10. The use time of record
10 with respect to job 2 is (1/5)-L. The sets below the
horizontal line represent the tables, or lists, used in this
embodiment and described below: the “behind last job”
list; the “not seen” list; the *“use time” list; and the “pre-
fetch candidate™ list.

It is possible that not all K records in J;’s look ahead
are cached. In this case, some of the records in the look
ahead of J;must be read from disk. Let T be the average
time required to read a record from the disk and insert
it into the cache. If there are q noncached records in the
set {cj+1, cj+2, . . ., cj+(p—1)}, the use time of
record c;+p with respect to job j;is

2. .
3 L+g-T

The use time includes the 1/0 delays that will occur
before J;can use record p. In the example, the use time
of record 5 with respect to job 1is (2/3)-L+T.

A given record r may be in the look ahead of several
jobs. In this case, its use time is defined as the minimum
use time with respect to all jobs. The use time is com-
puted for each record in the cache. The use time is also
computed for records that are not cached but are in the
look ahead of some job. This is used for prefetching
purposes and is described later. In either case, UT[j,r]
denotes the use time of record r in dataset D;.

FIG. 12 sets the use times of cached and noncached
records that are in the look ahead of at least one job.
The first two loops (steps 1201-1207) reset all use time
to an infinite default value. (An arbitrarily large value.)
The second two loops (steps 1208-1224) examine every
Jjob in every dataset. If J;is current reading Dfc;>0),
the length of its look ahead is computed at 1215. The
variable q records the number of noncached records in
J7s lock ahead in dataset D;. This variable is initialized
to 0 in at 1216. The loop from 1217-1224 examines
every record in the look ahead. Step 1219 computes the
use time of record c;+p in dataset D; with respect to J;
which includes the transfer times for the q missing re-
cords. If this is less than the previously computed use
time, the record’s use time is set to the new value. Step
1221 tests if record p is cached, and if it is not the
counter q is updated at 1222.

The Use Time Estimation Algorithm builds a list
containing' all cached records which is used by the
Cache Replacement Algorithm. This list is sorted from
largest to smallest use time. There is one complication.
There may be cached records that are not in the look
ahead of any job. These records fall into two classes.
The first class are those records that are behind the last
active job in their dataset. The second class contains
records that are not behind the last job in the dataset but
are not in any jobs look ahead. The Use Time Estima-
tion Algorithm builds three sorted lists of cached re-
cords, which are the following;:

1. The behind_last__job__list containing records be-

hind the last job in their data sets. This list is sorted
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from largest to smallest records ID. In the example
of FIG. 11, this list is {3, 2, 1}.

2. The not_seen_list containing records not in the
look ahead of any job and not behind the last job in their
dataset. This list is sorted from largest to smallest record
ID. In the example of FIG. 11, this list is {15, 7}.

3. The use_time_list containing records in job looka-
heads. This list is sorted from largest to smallest use
time and is {13,5,9,11,10} in the example of FIG. 11. (In
this example, T=(L/2).)

How the Cache Replacement Algorithm uses three lists
to make replacement decisions is described below:

Overhead Considerations

Let S.be the number of records in the cache. The Use
Time Estimation Algorithm builds three sorted lists of
cached records, which requires time O(Sclog S;). This
overhead can be reduced by not fully sorting the lists.
Each list can be partitioned into Q sets of records, and
each set is not sorted. For the use_.time_list each set
contains records with approximately the same use
times. The maximum number of records that can be
transferred from disk into the cache during the next L
time units is q=(L/T). Assume that the Use Time Esti-
mation Algorithm does not examine records in J;’s look
ahead after q noncached records are observed. The
range of values for use times in the use_time_list is
[0.2L}. The i-th partition set contains each cached re-
cord p with use times in the range

i = G+ 1
(Q)2L=U7Ip]<( 5 )21.

fori=0, 1, ..., Q—1. The partitions for the other lists
are defined similarly and each partition contains records
with nearly equal IDs. :

The partitions can be represented by three tables
indexed from 0 to Q—1 which are the 1) behind_las-
t_job table, 2) the not_seen _table, and the 3)
use_time__table. These tables can be built in time O(S,).

The overhead of the Use Time Estimation Algorithm
can be controlled by setting the parameters and L. The
parameter determines how often the velocity and use
time estimation is invoked and L controls the complex-
ity of processing the lookaheads. The optimum values
are a function of the particular job mix—a reasonable
value would be A=between 5 and 10 seconds, and
L=2-A. Finally, these algorithms do not directly delay
the processing of read requests that jobs submit. These
two algorithms can be run as a background job and their
overhead only indirectly effects the performance of the
batch jobs.

CACHE REPLACEMENT ALGORITHM

The Cache Replacement Algorithm determines
which cached record is replaced when a newly read
record is inserted into the cache and the cache is full.
The record replaced is the one with the highest use
time. By construction, the records in the not__seen__list
have use times that are greater than the use time of any
record in the use_time list. The next use time of a
record p in dataset Djthat is in the behind_last__job_1l-
ist list is determined by the time a new batch job starts
reading Dj. The Cache Replacement Algorithm as-
sumes that this time is greater than the use times of
records in the not_seen_list. If two records p and p+1
are both in the behind_last__job list, record p +1 will
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have higher use time. This explains why the behin-
. d_last_job list is sorted from largest to smallest record

ID. The reason-for sorting the not_seen_list from larg-
est to smallest record ID is to avoid replacing records in
front of the slower readers in the data sets. This is im-
portant if elapsed time is the performance metric to
optimize.

The Cache Replacement Algorithm first replaces on
demand all records in the behind._last_job. list (FIG.
15 at 1501, 1502), followed if needed by all records in
the not_seen_list (1503, 1504) and finally all records in
the use_time_.list (1505, 1506). If a request is still not
satisfied, the velocity and use time estimation algo-
rithms are rerun 1507, and stealing is reattempted.

If the three tables of partitions are used in place of the
three lists, the replacement order is: 1) behind_las-
t._job_table, 2) not..seen—_table, and 3) use_time__ta-
ble. All three tables are examined from index Q—1
down to 0 and the head of the first nonempty set is
replaced. The scanning overhead can be eliminated by
concatenating the 3.Q lists in their steal ordering to
form a single list.

PREFETCH ALGORITHM

Each dataset D; has a dedicated prefetch job that
prefetches records for batch jobs reading Dj. In this
embodiment we assume that there is a one-to-one map-
ping between the data sets and disks. Only one I/0 at a
time can be in progress on a disk, which means that
there is no need for more than one prefetch job per
dataset. Our prefetch algorithms easily generalize to the
following cases:

1. Multiple datasets per disk

2. Datasets that occupy multiple disks

3. Disks that support multiple simultaneous 1/Os.

The order in which records from dataset Dj are pre-
fetched is based on use times (deadline) set by the Use
Time Estimation Algorithm. A record that is not in the
look ahead of a job and is not cached is called a prefetch
candidate. The Use Time Estimation Algorithm, illus-
trated in FIGS. 12A and 12B, builds a list of prefetch
candidates for each dataset. The list of Djis denoted
prefetch__candidate [j] and is sorted from smallest to
largest use time. The prefetch candidate lists are to be
built by making 3 additions to FIG. 12, as indicated in
FIG. 13A, 13B and 13C. The first addition is iltustrated
in FIG. 13A, and would precede step 1201 of FIG. 12.
It simply initializes the lists. The second addition is
illustrated in FIG. 13B, and would follow steps 1222 of
FIG. 12.

This addition inserts the prefetch candidate in the list
if this is the first time it has been found in a job’s look
ahead. The final addition to FIG. 12 follows the two
loops that set the use times (i.e. follow the “YES” path
out of step 1206 in FIG. 12), and are illustrated in FIG.
13C.

The list of candidates is sorted from smallest to larg-
est use time. The list of prefetch candidates for the
example in FIG. 11 is {8, 4, 12, 14, 6}.

After the prefetch lists have been built, the asynchro-
nous prefetch jobs begin their work. The prefetch job
- for dataset D;removes the next record from the head of
the prefetch__candidates[j] list and submits the prefetch
1/0 to the cache manager. FIG. 14 illustrates control
flow for the asynchronous prefetch job for dataset Dj.
Each prefetch candidate is removed from the list 1402
and read into the cache 1403 until test 1401 determmes
that there are no more candidates.
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The time complexity of building the prefetch candi-
date lists is O(S.1og(S,)) due to the sorting. This com-
plexity can be reduced to O(S.) by using 25 unsorted
partitions as was done for the use__time_lists. The CPU
overhead of the prefetch jobs is negligible because each
Jjob executes very few 1/Os per read.

While the invention has been described in terms of
two embodiments, it is recognized by those skilled in
the art that the invention is not limited to these embodi-
ments. There are numerous system environments in
which the invention can be used without departing
from the spirit or scope of the invention as described
and claimed.

What is claimed is:

1. In a data processing system having a host proces-
sor, attached 1/0 devices, and a virtual storage cache
for caching data sequentially read from a dataset on an
attached 170 device by multiple readers executing on
the host processor and sharing the cache, a method for
managing the cache comprising the steps of:

(1) Determining that page-stealing is required to free

a page of a backing store backing a virtual page in
said virtual storage cache before additional data
can be placed in the cache;

(2) determining the page of backing storage to steal
based on a sequential usage-based estimate of time
until reuse of said page by one of said sequential
readers;

(3) stealing the page of backing storage on demand;

(4) continuing to steal as necessary until a target of

stolen pages is reached.

2. The method of claim 1 further comprising the steps

(1) Creating a prefetch candidate list of dataset pages,
each of said dataset pages having an estimated time
until use;

(2) prefetching one of said dataset pages with a small-
est estimated time until use into the cache.

3. The method of claim 1 in which said sequential
usage-based estimate of time until reuse is calculated on
demand based upon location of the virtual page in the
cache and distance of the virtual page from a following
reader, and directs page stealing in order of said esti-
mate of time until reuse (greater to smaller) first, for
virtual pages behind an initial reader in the cache, and
second and subsequently, for virtual pages most distant
from the following reader.

4. The method of claim 3 further comprising the step
of temporarily suspending trailing readers requesting
physical 1/0 for a record currently being read in by a
preceding reader, until said record is placed into the
cache, so that the trailing readers may retrieve said
record from the cache.

5. The method of claim 4 further comprising the step,
if more than one dataset is being sequentially read and
sharing use of the backing store, of maintaining and
incrementing a dataset index, said dataset index indicat-
ing which of said more than one dataset from which to
steal said page of the backing store, so that balanced
stealing is performed in round-robin fashion from all
datasets.

6. The method of claim 2 in which said sequential
usage-based estimate of time until reuse is calculated
periodically based upon location of the virtual page in
the cache, distance of the virtual page from a following
reader, and velocity of readers progressing through the
cache, and directs page stealing in order of said estimate
of time until reuse (greater to smaller) first, for virtual
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pages behind an initial reader in the cache, second, for
virtual pages not within a lookahead distance of any
reader, and third, for virtual pages in the lookahead
distance of some reader. '

7. The method of claim 6 in which said estimate of
time is further based upon status of pages between said
virtual page and said following reader as cached or
uncached. .

8. A cache management control element in a data
processing system having a host processor, attached
1/0 devices, and a virtual storage cache for caching

5

data sequentially read from a dataset on an attached 1/0

device by § multiple readers executing on the host pro-
cessor and sharing the cache, said cache management
control element comprising:

(1) Means for determining that page stealing is re-
quired to free a page of backing store in processor
storage backing a virtual page in said virtual stor-
age cache;

(2) sequential usage-based reuse time estimation
means for determining the page of backing storage
to steal. ’

9. The cache management control element of claim 8

further comprising;:

1) Means for calculating estimated use times of un-
cached records; i )

2) means for prefetching uncached records of said
dataset into said virtual storage cache so that re-
cords with short estimated use times are first pre-

 fetched.

10. The cache management control element of claim

8 in which said sequential usage-based reuse time esti-
mation means comprises:

(1) An ACBT linked with each of said readers, said
ACBT containing an RBA Iocation of said reader;

(2) a CLSB containing a pointer to a stretch of in-
cache data; o

(3) distance calculation means for calculating a larg-
est distance between a page within one of said
stretches of in-cache data, and a trailing reader.
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11. The cache management control element of claim
10 further comprising means for temporarily suspend-
ing a subsequent record-requesting reader after a previ-
ous record-requesting reader has initiated physical 1/0
to read into the cache a record.

12. The cache management control element of claim
11 further comprising dataset index means for selecting,

in a round-robin fashion, a dataset as a page-steal candi-

date, if more than one dataset is being sequentially read
and sharing use of the backing store.

13. The cache management control element of claim
9 further comprising velocity estimation means for esti-
mating the best rate at which a job may proceed
through a dataset, said estimated best rate being used by
said reuse time estimation means to calculate reuse times
for cached records, and by said means for calculating
estimated use times to calculate use times for uncached
records. .

14. The cache management control element mecha-
nism of claim 13 in which said reuse time estimation
means and said means for calculating estimated use
times estimates reuse times and use times based in part
on cached-or uncached status of pages between a cur-
rent position of a job in said dataset, and a position of a
page within a lookahead.

15. In a data processing system having a host proces-
sor, attached 1/0 devices, and a virtual storage cache
for caching data sequentially read from a dataset on an
attached I/0 device by multiple readers executing on
the host processor and sharing the cache, a method of
managing the cache comprising the step of coordinating
I/O requests from groups of readers to reduce 1/0
contention between readers within any one of said
groups of readers.

16. The method of ciaim 15 in which said coordinat-
ing df 1/0 requests is accomplished by the step of tem-
porarily suspending trailing readers requesting physical
1/0 for a record currently being read in by a preceding
reader, until said record is placed into the cache, so that
the trailing readers may retrieve said record from the

cache.
% * * * *
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