
HOW TO WRITE A CV

NoSQL-Datenbanken

Prof. Dr. E. Rahm und Mitarbeiter

Seminar WS 2011/12

Relationale Datenbanken

universelle Verbreitung und auf absehbare Zeit ungefährdet für die meisten DB-Anwendungen

- SQL = mächtige, deklarative Query-Sprache
- Standardisierung
- Breite Programmierunterstützung (JDBC, Hibernate, ...)
- ACID
- Reife Technologie
- Automatische Parallelisierung

Probleme relationaler DB

- Schema-getrieben
 - weniger geeignet für semi-strukturierte Daten
 - zu starr für irreguläre Daten, häufige Änderungen
- relativ hohe Kosten, v.a. für Parallele DBS
- Skalierbarkeitsprobleme für Big Data (Web Scale)
 - Milliarden von Webseiten
 - Milliarden von Nutzern von Websites und sozialen Netzen
- ACID / strenge Konsistenz nicht immer erforderlich

3

NoSQL-Datenbanken

Definition von www.nosql-database.org

Next Generation Databases mostly being

- non-relational
- distributed,
- open-source and
- horizontally scalable.

The original intention has been modern web-scale databases. The movement began early 2009 and is growing rapidly. Often more characteristics apply as:

- schema-free, easy replication support, simple API,
- eventually consistent / BASE (not ACID) ...

"nosql" is now mostly translated with "not only sql"

NoSQL Produkte/Projekte

www.nosql-database.org listet mehr als 100 NoSQL-Systeme

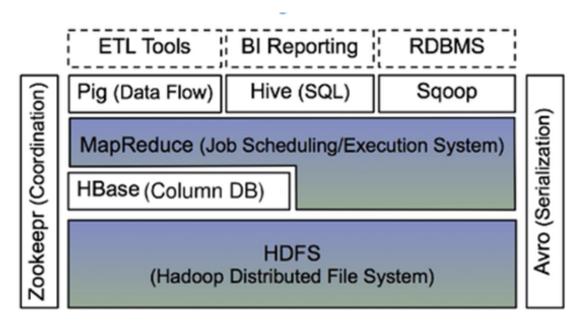
Key Value Stores / Tuple Stores

- Amazon Dynamo, Voldemort, Yahoo! Sherpa/PNUTS
- Membase, LevelDB ...

Wide Column Store / Column Families

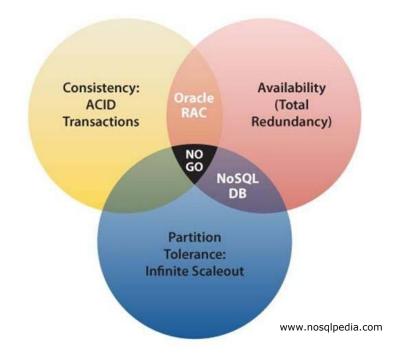
- Hadoop & Hbase
- · Cassandra, Hypertable ...

Document Stores


CouchDB, MongoDB ...

Graph Databases

_Neo4J ...


5

Hadoop-Plattform

Source: Cloudera.com

CAP Theorem von Brewer

7

SEMINAR

Seminarziele

- Beschäftigung mit einem praxis- und wissenschaftlich relevanten Thema
 - kann Grundlage für Abschlussarbeit oder SHK-Tätigkeit sein
- Erarbeitung + Durchführung eines Vortrags unter Verwendung wissenschaftlicher (englischer) Literatur
- Diskussion
- Schriftliche Ausarbeitung zum Thema
- Hilfe und Feedback durch zugeteilten Betreuer

9

Seminar: Anrechnungsmöglichkeiten

- Masterstudium
 - Teil der Module *Moderne Datenbanktechnologien*
 - Seminarmodul (oder Masterseminar)
- Bachelorstudium
 - Seminarmodul (oder Bachelorseminar)
- Alte Studiengänge (Diplom, etc.)
 - Problemseminar

Scheinvergabe / Modulprüfung

- selbständiger Vortrag mit Diskussion (ca. 45 Minuten)
 - Abnahme der Folien durch Betreuer
- schriftliche Ausarbeitung (ca. 15 Seiten)
 - Abnahme der Ausarbeitung durch Betreuer
 - Ausarbeitung soll zum Vortragstermin vorliegen (Vorträge ab Januar 2012)
- aktive Teilnahme an allen Vortragsterminen
- Modul-Workload: 30h Präsenzzeit, 120 h Selbststudium

11

Seminar (3)

- Vortragstermine
 - Montags, 9:15 –10:45 Uhr
 - Montags 11 12:45 Uhr, JG 1–22, ab 9. 1. 2012
- Themenzuordnung
 - Koordinierungstreffen mit Betreuer bis spätestens 4.11.2011
 - ansonsten verfällt Seminaranmeldung
 - freiwilliger Rücktritt auch bis max. 4.11.2011

Nr.	Thema	Termin	Betreuer	Studenten
1	Einführung, Charakteristika, Vergleich SQL-/NoSQL-DB	19,12.	S. Endrullis	Buthald 0++
2	Key Value Stores, Amazon Dynamo, Amazon S3, Scalaris	9.1.	S. Endrullis	Mwzdorf Atuat
3	Document Stores, Apache CouchDB, MongoDB	9.1.	L. Kolb	sintschilin Volke,
4	Wide-Column-Stores, Google Bigtable, Hbase, Facebook Cassandra /Messages	16.1.	A. Groß	Frey bunga bharib
5	Scalable Relational Databases, Google Megastore/Tenzing, H-Store/VoltDB	23.1	A. Thor	skhum 7 Miller
6	Large-Scale Datenanalyse, Google Dremel, Apache Hive, Cheetah	30.1.	L. Kolb	Lan Fishe
7	Transaktionsmanagement für NoSQL-DB, Citrusleaf, CloudTPS, ElasTraS	30.1.	A. Thor	Nötzold
8	Graph-Datenbanken, Einführung, Neo4j, HibergraphDB, Sones GraphDB	16.1./ 23.1.	M. Hartung	Stuber Albroug
9				Pti. Ala