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Abstract 

Dynamic load balancing is a prerequisite for effectively utilizing large parallel database 
systems. Load balancing at different levels is required in particular for assigning trans- 
actions and queries as well as subqueries to nodes. Special problems are posed by the 
need to support both inter-transaction/query as well as intra-transaction/query parallel- 
ism due to conflicting performance requirements. We compare the major architectures 
for parallel database systems, Shared Nothing and Shared Disk, with respect to their 
load balancing potential. For this purpose, we focus on parallel scan and join processing 
in multi-user mode. It turns out that both the degree of query parallelism as well as the 
processor allocation should be determined in a coordinated way and based on the cur- 
rent utilization of critical resource types, in particular CPU and memory. 

1 Introduction 

A significant trend in the commercial database field is the increasing support for paral- 
lel database processing [DG92, Va93]. This trend is both technology-driven and appli- 
cation-driven. Technology supports large amounts of inexpensive processing capacity 
by providing "super servers" [Gr95] consisting of tens to hundreds of fast standard mi- 
croprocessors interconnected by a scalable high-speed interconnection network. The 
aggregate memory is in the order of tens to hundreds of gigabytes, while databases of 
multiple terabytes are kept online within a parallel disk subsystem. New application ar- 
eas requiring parallel database systems for processing massive amounts of data and 
complex queries include data mining and warehousing, digital libraries, new multime- 
dia services like video on demand, geographic information systems, etc.. Even tradi- 
tional DBMS applications increasingly face the need of parallel query processing due 
to growing database sizes and query complexity [MPTW94]. In addition, high transac- 
tion rates must be supported for standard OLTP applications. 

The effective use of super-servers for database processing poses many implementation 
challenges that are largely unsolved in current products [Se93, Gr95]. One key problem 
is the effective use of intra-query parallelism in multi-user mode, i.e., when complex 
queries are executed concurrently with other complex queries and OLTP transactions. 
Multi-user mode (inter-query/inter-transaction parallelism) is mandatory to achieve ac- 
ceptable throughput and cost-effectiveness, in particular for super-servers where a high 
number of processors must effectively be utilized. While proposed algorithms for par- 
allel query processing also work in multi-user mode, their performance may be substan- 
tially lower than in single-user mode. This is because multi-user mode inevitably leads 
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to data and resource contention that can significantly limit the attainable response time 
improvements due to intra-query parallelism. 

Data contention problems may be solved by a multiversion concurrency control scheme 
which guarantees that read-only queries do not suffer from or cause any lock conflicts 
[CM86, BC92]. Increased resource contention, on the other hand, is unavoidable since 
complex queries pose high CPU, memory and disk bandwidth requirements which can 
result in significant delays for concurrently executing transactions. Furthermore, re- 
source contention can be aggravated by the communication overhead associated with 
parallel query processing. In order to limit and control resource contention in multi-user 
mode, dynamic strategies for resource allocation and load balancing become necessary. 
In particular, the workload must be allocated among the processing nodes such that the 
capacity of different processing nodes be evenly utilized. 

We first discuss the major forms of workload allocation and dynamic load balancing for 
database processing. Section 3 introduces the major architectures for parallel database 
processing, in particular Shared Nothing and Shared Disk systems. Their potential for 
dynamic load balancing is then evaluated for parallel relational database processing, in 
particular with respect to the two most important operators: scan (Section 4) and join 
(Section 5). In Section 6 we discuss additional considerations for supporting mixed 
OLTP/query workloads, in particular transaction routing. 

2 Workload allocation 
The general term "workload allocation" refers to the assignment of workload requests 
(processing steps) to physical or logical resources (processors, processes, memory, 
etc.). In this sense it corresponds to the term "resource allocation" which only expresses 
another perspective of the allocation problem. Depending on the workload or resource 
type special allocation problems can be considered, e.g., transaction and query alloca- 
tion or processor and memory allocation. Load balancing refers to workload allocation 
in distributed systems where workload requests must be distributed among several pro- 
cessing nodes. 
Heterogeneous database workloads consisting of OLTP transactions of different types 
as well as complex decision support queries pose special resource management prob- 
lems even in the central case. One problem is to find a memory allocation that avoids 
that large queries monopolize the available buffer space thus causing unacceptable hit 
ratios for concurrent OLTP transactions. This problem can be addressed by giving high- 
er priority to OLTP transactions and by using disjoint buffer areas for OLTP and large 
queries where the relative buffer sizes are dynamically controlled depending on the cur- 
rent workload. Such schemes have been proposed in [ZG90, PCL93, DG94] with re- 
spect to hash join queries. In [MD93, BMCL94], heuristics for dynamically controlling 
the number of concurrent queries are proposed in order to limit memory contention. 
Some commercial DBMS already support such dynamic memory allocation schemes, 
e.g., Tandem NonStop SQL and Informix. 

For parallel database processing, load balancing is the major resource allocation prob- 
lem in order to effectively utilize all available resources. Load balancing can be applied 
for different workload granularities depending on the level of parallelism. At the high- 
est level, we have inter-transaction and inter-query parallelism with a concurrent exe- 
cution of independent transactions and queries (multi-user mode). The corresponding 
load balancing is concerned with distributing transactions and queries among process- 
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ing nodes (transaction and query routing), lntra-query parallelism requires additional 
forms of load balancing for assigning subqueries to nodes. Several forms of intra-query 
parallelism can be distinguished in this context, namely inter-operator and intra-opera- 
tor as well as pipeline and data parallelism [DG92]. Correspondingly, load balancing is 
necessary for operators (e.g., scan, join, sort) and sub-operators. In all cases, load bal- 
ancing should be dynamic, that is the assignment decisions should be based on the cur- 
rent system utilization at runtime. Otherwise an even utilization of all nodes cannot be 
achieved due to typically high variations in the load composition (load surges, etc.) and 
system state. 

Pipeline parallelism is typically used for inter-operator parallelism in order to overlap 
the execution of several operators within a query. Data parallelism, on the other hand, 
is applicable for both inter- and intra-operator parallelism and requires a data partition- 
ing so that different (sub) operators can concurrently process disjoint sets of data. While 
both data and pipeline parallelism are needed, pipeline parallelism is generally consid- 
ered less effective for reducing query response times [DG92]. This is because typically 
only comparatively few (<= 10) operators can be used within a pipeline because the to- 
tal number of operators is mostly small and because there are blocking operators like 
sort that require the total input data before they can produce their output. 

Load balancing is difficult to achieve for pipeline parallelism due to precedence depen- 
dencies between operators and because individual operators can substantially vary in 
their resource requirements and execution times. Furthermore, the size of temporary re- 
suits cannot be predicted very well [Gr93]. A careful flow control must be exercised at 
runtime in order to avoid that the input data generated by producer operators cannot be 
processed fast enough by consumer operators. Otherwise, the consumers' input data 
would have to be stored within temporary files introducing a potentially high amount 
of disk I/O. 

For these reasons our further discussions on load balancing will concentrate on data par- 
allelism allowing much higher degrees of intra-query parallelism than pipeline parallel- 

~ism. In order to support both high throughput for OLTP and short response times for 
complex queries it is important to dynamically determine the degree of intra-query par- 
allelism as well as which processing nodes should process the subqueries. As we will 
see, the implementation of such an approach largely depends on the respective architec- 
ture and query type. 

3 Architecture of Parallel Database Systems 
Parallel database systems are typically based on multiple standard microprocessors in- 
terconnected by a local high-speed network. Effective support for inter- and intra-trans- 
action parallelism requires both adequate use of I/O parallelism and processing 
parallelism. I/O parallelism must be supported by an allocation of the database across 
multiple disks (declustering), either within conventional disk farms or disk arrays 
[PGK88, CLG94]. Declustering supports intra-query parallelism by reading and writing 
large amounts of data processed by a single query in parallel from or to multiple disks. 
Inter-transaction parallelism is supported because independent I/O requests on different 
disks can be served in parallel. 

With respect to processing parallelism, there are three major architectures for parallel 
database systems [DG92, Va93]: 
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Figure 1 : Architecture of parallel database systems 

- Shared Everything (SE, Fig. 1 a) refers to the use of multiprocessors for data- 
base processing. In this case, we have a tightly coupled system where all proces- 
sors share a common main memory as well as peripheral devices (terminals, 
disks). There is only a single copy of the DBMS code that can be executed in 
multiple processes to utilize all processors. This approach is also referred to as 
Symmetric Multiprocessing (SMP). 

- Shared Nothing (SN, Fig. lb) systems consist of multiple autonomous processing 
elements (PE) each owning a private main memory and running separate copies 
of the operating system, DBMS and other software. Inter-processor communica- 
tion takes place by means of message passing (loose coupling). A P E  can consist 
of 1 or more processors, i.e., each node in a SN system may be a multiprocessor. 
The database is partitioned among the PEs so that each DBMS instance can di- 
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rectly access only data from the local partition. Access to non-local data requires 
a distributed query and transaction execution. 

- Similar to SN, Shared Disk (SD, Fig. 1 c) systems consist of multiple loosely cou- 
pled PE. However, the database is not partitioned but shared among the PE so 
that each DBMS instance has direct access to any data object. This assumes that 
each node can access any disk. 

All three architectures are supported by commercial DBMS for both inter- and intra- 
transaction parallelism. Virtually all commercial DBMS are able to utilize multiproces- 
sors (SE systems) for inter-transaction parallelism; support for intra-query processing 
is being added to most DBMS. Well-known SN systems supporting intra-query paral- 
lelism include Tandem NonStop SQL and ATT/Teradata's database machine; newer 
implementations are Sybase MPP, DB2/6000 Parallel Edition and Informix XPS (eX- 
tended Parallel Server). Parallel SD implementations include Oracle Parallel Server and 
IBM's database systems (IMS, DB2) for parallel sysplex configurations. Oracle Paral- 
lel Server is available on many platforms, in particular on parallel computers (e.g., 
nCUBE) as well as on most "cluster" architectures (VaxCluster, Sequent, Pyramid, En- 
core, Sun, etc.). 

SE systems have the advantage that shared memory supports efficient cooperation and 
synchronization between DBMS processes. Furthermore, effective load balancing is 
supported by the operating system that automatically assigns the next ready pro- 
cess/subquery to the next free CPU. These advantages are especially valuable for par- 
allel query processing leading to increased communication and load balancing 
requirements to start/terminate and coordinate multiple subqueries. Furthermore, large 
intermediate results can efficiently be exchanged between subqueries. Several studies 
addressed dynamic load balancing for parallel query processing in SE systems 
[HSIT91, Om91, Ho92, LT92]. 

On the other hand, there are significant availability problems since the shared memory 
reduces failure isolation between processors, and since there is only a single copy of 
system software like the operating system or the DBMS [Ki84]. Furthermore, scalabil- 
ity is limited because the shared memory can introduce performance bottlenecks. Con- 
sequently, the number of processors is quite low in current SE systems (< 30). Due to 
these problems, SN and SD are generally considered as more appropriate to meet high- 
performance and high-availability requirements [DG92, MPTW94]. 

From a hardware point of view, SN systems appear particularly attractive. They allocate 
each disk drive to one particular PE and interconnect all PE by a local network, which 
is feasible with standard hardware at little cost. Furthermore, a large number of PE can 
be interconnected in this way because there are no shared resources (other than the net- 
work). SD systems, on the other hand, require an interconnection between all PE and 
disk drives (Fig. lc). Because all I/O requests (page transfers) have to go over this net- 
work, an extremely fast and scalable (multi-stage) interconnection network is needed 
that may be much more expensive than the network of SN systems. Furthermore, SD 
may face an increased potential of performance bottlenecks in the network and disk 
subsystem. 

On the other hand, with current fiber-optic interconnection technology it appears un- 
likely that high bandwidth requirements pose a major problem. Furthermore, high-per- 
formance SN systems also need a very fast and scalable network in particular for a 
larger number of PE and for parallel processing of complex queries that often requires 
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a dynamic redistribution of large amounts of data. In addition, even in SN systems it is 
typically necessary to interconnect each disk drive to at least two PE for fault tolerance 
reasons thus increasing hardware cost. 

Hence, we conclude that hardware-related aspects are less significant when comparing 
SN and SD than software-related aspects, in particular with respect to database process- 
ing 1. This is also because providing powerful hardware, e.g. large numbers of PE, does 
by no means imply that this hardware can effectively be utilized for database process- 
ing. A key prerequisite for achieving this goal is dynamic load balancing. As we will 
see, the potential for such a load balancing differs significantly between SN and SD 
DBMS. Apart from the feasible approaches for parallel query processing and dynamic 
load balancing, SN and SD systems differ in additional areas like transaction manage- 
ment (global concurrency control and global logging for SD; distributed commit for 
SN) and the need for coherency control (for SD). Efficient solutions for these problems 
have been proPOsed [0V91, GR93, MN91, Ra93] but are beyond the scope of this pa- 
per. 

4 Parallel scan processing 
Scan is the simplest and most common relational operator. If  predicate evaluation can- 
not be supported by an index, a complete relation scan is necessary where each tuple 
(record) of the relation must be read and processed. An index scan accesses tuples via 
an index (typically a B+ tree) and restricts processing to a subset of the tuples; in the 
extreme case, no tuple or only one tuple needs to be accessed (e.g., exact-match query 
on unique attribute). Parallel scan processing requires a declustering of the relation and 
index structures across several disks in order to allow for I/O parallelism. 

We first analyze parallel scan processing for SN; SD scan processing is discussed after- 
wards. 

Shared Nothing 
In SN systems, the database partitioning among PE implies a co~esponding data allo- 
cation to disks because each disk is exclusively assigned to one PE . Database partition- 
ing is typically based on a horizontal (tuple-wise) declustering of relations defined by a 
hash or range function on a partitioning attribute (e.g., primary key) [DG92]. Indices 
are also partitioned with the relation so that each PE holds a (sub-)index for the local 
records. Parallelizing a scan operation is straight-forward and determined by the data- 
base allocation. For hash and range partitioning, exact-match queries on the partitioning 
attribute can be restricted to a single processor; range partitioning also allows restricting 
the number of nodes for range queries on the partitioning attribute. However, all other 
scan queries must be processed by all data processors, i.e. all PE holding a partition of 

the respective relation. 

The performance of parallel scan processing is thus very dependent on the degree of de- 
clustering as it coincides with the degree of scan parallelism in many cases. To evaluate 

1. This is also underlined by the fact that there are SN database systems (e.g., Teradata) running on 
SD hardware platforms and vice versa. The former case is easily feasible by not utilizing the ac- 
cessibility of all disks during normal processing but restricting each DBMS/node to a subset of 
the disks. The latter case is used by Oracle on SN platforms like IBM SP2 and is made feasible 
by the operating system implementing a "virtual shared disk" environment where the distinction 
between local and remote I/O is transparent to the DBMS. 

2. There may be multiple disks per PE. 
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the impact of different degrees of parallelism in both single-user and multi-user mode, 
we have performed several simulation experiments with a detailed simulator of a SN 
database system 3. In Fig. 2, we show the average response times and speedup values of 
different scan queries on a relation of 1 million tuples in single-user mode. The degree 
of declustering and scan parallelism (P) is varied between 1 and 64. 
Fig. 2 shows that parallel processing of a relation scan is very effective in single-user 
mode and that a linear speedup could be obtained (the sequential processing time of 
about 30 minutes is reduced by a factor 60 for 64 PE). Still, response time for 64 PE 
was higher than in the case of a selective index scan for which only 0.1% of the tuples 
qualify. This illustrates that the use of an index may be more effective than employing 
parallel processing in order to improve response time (of course, not all queries can be 
supported by an adequate index). Parallel processing of index scans also improves re- 
sponse time but to a much lower degree than for relation scans. This is because the num- 
ber of records to be processed for selective index scans is much lower than for a relation 
scans. Furthermore, the actual work (number of records) per processor is reduced for 
growing degrees of parallelism while the overhead for starting and terminating the sub- 
queries increases proportionally to P. 

Figure 2: Parallel scan processing in SN systems (single-user mode) 

A major implication of this observation is that different scan queries on the same rela- 
tion have their response time minimum for different degrees of parallelism. As can be 
seen from Fig. 2b, a relation scan may be best processed by 64 PE while the index scans 
have their optimum for smaller degrees of parallelism. The optimal degree of scan par- 
allelism may be computed by an analytical model that considers the tradeoffs between 
the actual amount of work (determined by factors like relation size, query selectivity, 
index usage etc.) and the overhead introduced by intra-query parallelism [Gh90, 
WFA92, Ma95]. Unfortunately, SN requires to statically choose the degree of declus- 

3. Details on the simulation system can be found in [MR92, RM93]. 
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tering so that there is no way to choose the degree of  scan parallelism dependent on the 
scan type. As a result, the actual degree of  declustering must be a compromise value for 
an average load profile, e.g., 30 for our example. However, this implies suboptimal per- 
formance for the different scan types, in particular a overly high communication over- 
head for index scans and an insufficient degree of  parallelism for relation scans 4. 

For scan processing in multi-user mode, we consider a homogeneous workload with 
multiple index scan queries. Because we want to linearly increase throughput with the 
number of  PE we increase the arrival rate of  our scan query proportionally with the sys- 
tem size. Fig. 3 shows the resulting response times for parallel scan processing and dif- 
ferent arrival rates (in Queries Per Second per PE, QPS/PE). The main observation is 
that the optimal degree of  scan parallelism depends on the arrival rate and thus on the 
current system (CPU) utilization; it becomes the lower the higher the system is utilized. 
This is because the communication overhead associated with a higher degree of  paral- 
lelism is less affordable under high CPU utilization (high arrival rates). 

Figure 3: Parallel scan processing in SN systems (multi-user mode) 

Hence, it would be desirable to choose the degree of scan parallelism according to the 
current system state. Unfortunately, this is not possible for SN as the data allocation 
statically determines the degree of scan parallelism. Furthermore, the scan processors 
themselves are also determined by the database allocation so that there is no support at 

all for dynamic load balancing. 

Shared Disk 
In SD systems each node has access to the entire database on disk. Hence, scan opera- 
tions on a relation can be performed by any number of  nodes. This gives the required 
flexibility to choose the degree of scan parallelism according to the query type and the 

4. Some SN systems (e.g. Teradata) simply use a full  declustering so that each relation is partitioned 
across all PE. Such an approach is clearly too simple and introduces a high communication over- 
head, in particular for small relations and index scans [CABK881. The high overhead is especially 
harmful in multi-user mode [RM93]. 
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current system utilization. For example, index scans on any attribute may be performed 
by a single processor thereby minimizing communication overhead. This would espe- 
cially be appropriate for exact-match and selective range queries, and supports high 
throughput. For relation scans, on the other hand, a high degree of processing parallel- 
ism can be employed to utilize intra-query parallelism to reduce response time. Further- 
more, under high system utilization a smaller degree of scan parallelism can be chosen 
to limit the communication overhead and support high throughput. A high potential for 
dynamic load balancing is also supported by the fact that all PE are eligible for scan pro- 
cessing allowing a dynamic decision about where a scan should be processed. For in- 
stance, a scan may be allocated to a set of processors with low CPU utilization in order 
to avoid interference with concurrent transactions on other nodes. 

The load balancing potential of the SD architecture must be supported by an adequate 
data allocation that avoids disk contention between parallel subqueries of the same que- 
ry. While in SN systems the data is partitioned among PE, SD (and SE) only requires a 
data declustering across multiple disks. Such a data allocation merely prescribes the 
maximal degree of I/O parallelism while the degree of scan parallelism can be chosen 
smaller. Parallel processing of relation scans is easily supported by choosing a degree 
of declustering D that is high enough for providing sufficiently short response times in 
single-user mode. Parallel relation scans are possible without disk contention for differ- 
ent degrees of parallelism P by choosing P such that P * k = D, where k is the number 
of disks to be processed per subquery. For instance, if we have D=100 we may process 
a relation scan with P = 1, 2, 4, 5, 10, 20, 25, 50 or 100 subqueries without disk conten- 
tion between subqueries. Furthermore, each subquery processes the same number of 
disks (k) so that data skew can largely be avoided for equally sized partitions. CPU con- 
tention between subqueries is also avoided if each subquery is assigned to a different 
processor which is feasible as long as P does not exceed the number of processors. 

Selective index scans returning only a few records are best processed sequentially 
which is feasible for SD with minimal communication overhead. Parallel index scans, 
on the other hand, may lead to disk contention between subqueries on both index and 
actual data, even when the shared index is declustered across several disks. The perfor- 
mance study [RS95] showed that this problem primarily exists for clustered index scans 
which should therefore be processed sequentially (unless the selectivity is so high that 
the data of multiple disks needs to be accessed). Parallel non-clustered index scans, on 
the other hand, did not suffer from a significant disk contention in the case of larger de- 
grees of declustering. 

Multi-user mode typically not only leads to CPU but also to disk contention for both SN 
and SD architectures. In [RS95] it was found that SD is able to reduce the level of disk 
contention by using smaller degrees of scan parallelism under high disk utilization. SN 
does not provide such a flexibility. 

5 P a r a l l e l  j o i n  p r o c e s s i n g  

Parallel (equi-)join processing typically consists of a parallel scan phase and a parallel 
join phase. During the scan phase, the scan processors read the input relations from disk 
and perform selections on them. The scan output is then redistributed among multiple 
j~ pr~176 perf~ the j~ phase using any sequential alg~ (e'g" hash join 
or sort-merge). Finally, the local join results are merged at a designated node. Data re- 
distribution between scan and join processors is performed by applying a partitioning 
function (hash or range) on the join attribute. This ensures that matching tuples of both 
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input relations arrive at the same join processor. The advantage of such a scheme is that 
there is a high potential for dynamic load balancing even for SN. This is because the 
number of join processors as well as the choice of these processors can be based on the 
current load situation, similarly as for parallel scan processing in SD systems. On the 
other hand, the communication overhead for data redistribution can be substantial. 

In the following, we outline some general tradeoffs to consider for dynamic load bal- 
ancing and such a parallel join processing. Afterwards, we briefly discuss load balanc- 
ing in the presence of data skew as well as some other join strategies with reduced 
redistribution overhead. 

General tradeoffs 
Similar to parallel scan processing, it is possible to determine the optimal degree of in- 
tra-query processing (i.e. the optimal number of join processors) in single-user mode by 
means of an analytical model [Ma95]. In addition to the mentioned tradeoff between ac- 
tual (CPU) work per subquery and communication overhead there are additional factors 
that need to be considered for determining the optimal number of join processors. In 
particular, the overhead for redistributing the data between scan and join processors in- 
creases with the number of join processors. Furthermore, the I/O overhead for join pro- 
cessing is very much dependent on the aggregate memory of the join processors that 
increases with the degree of join parallelism. For instance, if a hash join is used for local 
join processing an optimal I/O performance is achieved if the smaller join input can be 
completely kept in the join processors' memory [Gr93]. If less memory is available, ad- 
ditional I/O is necessary to keep the join input in temporary disk files at the join proces- 
sors leading to a substantial response time degradation. Hence, the optimal degree of 
join parallelism in single-user mode is at least as high as required to avoid temporary 
file I/O (or, if this is unachievable, the total number of PE). Since all PE are lightly load- 
ed in single-user mode, selection of the join processors is no problem (e.g., random se- 
lection is sufficient). 

a) CPU-bottleneck 

optimal number of / 
joi~processors / 

SU-OPT 

O 

b) memory/disk-bottleneck 

• op.tim; number of 
Iom processors 

I 
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Figure 4: Optimal number of join processors in multi-user mode 

The studies [RM93, RM95] showed however, that this changes significantly in multi- 
user mode. Similar to parallel scan processing, the optimal number of join processors is 
lower than in single-user mode under high CPU utilization (Fig. 4a). Moreover, the op- 
timal degree of join parallelism is generally the lower the higher the system is utilized 
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F i g u r e  5: Tradeoffs in dynamic load balancing with multiple bottlenecks 

due to the high communication overhead associated with many join processors. Fur- 
thermore, the least utilized CPUs should be selected for join processing [RM93]. How- 
ever, if response times are largely dominated by temporary file I/O, i.e., if we have 
memory or disk bottlenecks, it is generally advisable to choose more join processors to 
obtain more memory and thus to reduce the amount of temporary I/O [RM95].As a re- 
sult, under high memory (disk) utilization the optimal degree of join parallelism is typ- 
ically higher than in single-user mode (Fig. 4b). These tradeoffs are summarized in Fig. 
5 which shows that the degree of join parallelism in multi-user mode must be chosen 
dynamically based on the current memory, disk and CPU utilization. Similarly, selec- 
tion of the join processors must consider the current CPU and memory utilization of the 
PE. 

Policies 

Specific approaches for such a dynamic load balancing considering multiple bottleneck 
types have been proposed and evaluated in [RM95]. A major finding is that the dynamic 
decisions should be based on the actual resource utilization at the individual nodes rath- 
er than on average utilization levels (since there may be large differences in resource 
utilization). Furthermore, it is important to use integrated policies for drawing the two 
control decisions (degree of parallelism, processor allocation) in a coordinated way. For 
example, a policy called MIN-IO-SUOPT proved to be effective in the presence of 
memory bottlenecks�9 Based on the current memory availability it determines the degree 
of join parallelism p so that the amount of temporary file I/O is minimized�9 In the case 
of multiple configurations avoiding temporary file I/O the number of processors closest 
to the single-user optimum is selected (in order to ensure a sufficiently high degree of 
parallelism)�9 The subjoins are assigned to the p nodes with the most available memory. 

In [MD95] an algorithm called RateMatch for dynamically determining the number of 
join processors is presented�9 This scheme is based on the observation that the size of the 
join input is less significant for finding the optimal number of join processors than the 
rate at which the scan processors generate the join input. Thus the scheme tries to de- 
termine the number of join processors such that their aggregate join processing rate 
matches the rate at which the join input is provided by the scan processors�9 However, 
RateMatch is an isolated scheme that uses an independent algorithm for selecting the 
join processors. Furthermore, it only considers average values for the current resource 
utilization rather than node-specific utilization information. 



48 

Treatment of Data Skew 

For data parallelism to be effective the underlying data partitioning must ensure about 
equally sized input partitions for subqueries. In general, this is difficult to achieve due 
to non-uniform value distributions for the partitioning attributes or because of nonuni- 
form query selectivities. The resulting data skew can result in large differences in the 
execution times of subqueries thereby reducing the effectiveness of intra-query paral- 
lelism (since response times are determined by the slowest subqueries). 

For parallel j tin processing based on a dynamic redistribution of the join input it is fea- 
sible to dynamically check the size of the scan output and to extend the redistribution 
scheme in order to generate about equally sized join inputs in the presence of data skew. 
Approaches for such a dynamic load balancing have been proposed in [WDJ91, 
DNSS92, HLY93, WDYT94, HLH95]. However, these studies assumed single-user 
mode corresponding to a best-case situation with little or no resource contention. 
Hence, only intra-query load balancing is supported and the effectiveness of the propos- 
als in multi-user mode must be questioned. In fact, the overhead associated with the pro- 
posed load balancing schemes is likely to be a major problem in multi-user mode. A 
more appropriate approach to reduce the skew problem in multi-user mode may be to 
avoid the expensive generation of equally-sized subjoins but to use information on the 
current system utilization to select the join processors dependent on the size of the sub- 
joins (by assigning larger subjoins to less loaded nodes, etc.). 

Limiting the redistribution overhead 
Dynamically redistributing both input relations supports dynamic load balancing, but 
incurs a high communication overhead for large relations. In SN systems, this overhead 
is reduced if at least one of the join inputs is already declustered on the join attribute. In 
this case, the data processors of this relation act as join processors and only the second 
relation needs to be redistributed. Data redistribution is completely avoided if both re- 
lations are equally partitioned on the join attributes and allocated to the same set of PE. 
Unfortunately, these special cases leave no room for dynamic load balancing because 
the degree of join parallelism and the join processors are statically determined by the 
database allocation, similar as for scan processing. Still, in many cases the communica- 
tion savings are more significant than the lost load balancing potential [RM93]. 

SD systems can also avoid the redistribution overhead if  one or both joininputs are 
physically declustered across several disks by a logical partitioning on the join attribute. 
In this case, however, a large potential for dynamic load balancing remains because 
each PE may be selected as join processor. Furthermore, the declustering still leaves 
several choices for the degree of join parallelism without causing disk contention be- 
tween subqueries (similar to parallel scan processing). For instance :assume two rela- 
tions declustered across 50 disks by using the same value partitioning (range or hash) 
on the join attributes. Then there may be 1, 2, 5, 10, 25 or 50 scan and join processors 
working in parallel and accessing disjoint sets of disks. In this case, the redistribution 
overhead is completely avoided while a high potential for dynamic load balancing is 
preserved. 

6 M i x e d  w o r k l o a d s  

In the previous sections we have already shown the need for dynamic load balancing 
for parallel query processing in multi-user mode, i.e. with both intra.query and inter- 
query parallelism. Similar requirements are posed for mixed workloads consisting of 
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simple OLTP transactions and complex queries. Since efficient processing of OLTP 
transactions has typically highest priority, the need for limiting resource contention due 
to parallel query processing is aggravated. As we have seen SD offers significant ad- 
vantages over SN to achieve this goal: 

SN requires definition of a (static) database allocation for an "average" load pro- 
file that must be a compromise between the different requirements for OLTP and 
complex queries. This inevitably leads to sub-optimal performance for both 
workload types and does not support dynamic load balancing. In particular, com- 
plex queries have to be restricted to fewer nodes than desirable to limit the com- 
munication overhead so that response times may not sufficiently be reduced. On 
the other hand, OLTP transactions cannot be confined to a single node in many 
cases thereby causing extra communication overhead and lowering throughput. 
In both cases, the sub-optimal performance must be accepted even if only one of 
the two workload types is temporarily active. 

In SD systems, declustering of data across multiple disks does not increase the 
communication overhead for OLTP. In general, OLTP transactions are com- 
pletely executed on one node to avoid the communication overhead for intra- 
transaction parallelism and distributed commit. On the other hand, the degree of 
processing parallelism and thus the communication overhead for complex que- 
ries can be adapted to the current load situation. Furthermore, resource conten- 
tion for CPU and memory between OLTP transactions and complex queries may 
largely be avoided by assigning these workload types to disjoint sets of proces- 
sors which is not possible for SN, in general. 

SD also offers an increased flexibility for transaction routing, i.e. for determining the 
PE where a transaction request should be routed to. This decision is particularly impor- 
tant for OLTP transactions where it can largely influence the number of remote re- 
quests. In SN systems, the best load assignment is primarily determined by the static 
database allocation. This is because a transaction should be assigned to the PE where 
most of the needed data is locally available. Assigning the transaction to another PE 
would still require that the data-owning PE has to process the operations on the required 
data. Hence, only little work would be saved for this node but additional communica- 
tion overhead would be introduced for starting the subqueries, returning the results and 
for commit processing. 

In SD systems, on the other hand, each PE can process any database operation and thus 
any transaction leaving a high potential for dynamic transaction routing and load bal- 
ancing. However, sequentially executing a transaction on one PE can also require inter- 
PE communication for SD, in particular for global concurrency and coherency control 
IRa93]. To limit the communication overhead for these functions it is generally advis- 
able to support locality of reference by means of a so-called affinity-based transaction 
routing [YCDI87, Ra92, Ra93]. It assigns transactions with an affinity to the same da- 
tabase portions to the same processing nodes which supports a local concurrency and 
coherency control (depending on the chosen protocol) and good I/O performance. A 
survey of transaction routing schemes can be found in IRa92]. 
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7 Summary and Outlook 
Dynamic load balancing is a prerequisite for effective utilization of parallel database 
systems consisting of many processing elements. Intra-query parallelism must effec- 
tively be supported in multi-user mode, i.e., in combination with inter-query and inter- 
transaction parallelism. The major control decisions to draw dynamically include deter- 
mining the degree of intra-query parallelism and selecting the processors for executing 
subqueries. Load balancing must also be supported by a dynamic transaction routing for 
the initial assignment of queries and transactions. 

Dynamic load balancing is most easily achieved for Shared Everything, but these sys- 
tems suffer from availability and scalability limitations introduced by the shared mem- 
ory. Shared Nothing and Shared Disk DBMS, on the other hand, require a 
comparatively large communication overhead for parallel query processing, in particu- 
lar if intermediate query results are dynamically distributed in the system. We found out 
that Shared Nothing only offers a limited flexibility for dynamic load balancing because 
the database allocation determines in many cases where operations have to be pro- 
cessed, in particular for scan operations. Shared Disk systems, on the other hand, pro- 
vide a higher load balancing potential since each PE can access any data and thus 
process any transaction, query or subquery which is especially valuable for query pro- 
cessing in multi-user mode and for mixed workloads. SD also requires an appropriate 
declustering of the data across multiple disks. But this data allocation only determines 
the maximal degree of intra-query parallelism, while the actual degree of parallelism 
can be chosen smaller (depending on the query type and current system state) without 
causing disk contention between subqueries. 

Both SD and SN can employ dynamic load balancing for parallel join processing if the 
join inputs are dynamically redistributed among several join processors. We have dis- 
cussed basic performance tradeoffs to consider for determining the optimal degree of 
join parallelism and selecting join processors in multi-user mode. Under high CPU uti- 
lization we found it necessary to reduce the degree of join parallelism in order to limit 
CPU contention (communication overhead for startup/termination and data redistribu- 
tion). Under disk and memory bottlenecks, on the other hand, the degree of join paral- 
lelism should be increased in order to reduce the memory and I/O requirements per 
subquery. Furthermore, both control decisions should be drawn in a coordinated way 
and based on node-specific utilization information rather than system-wide averages. 
The redistribution overhead is reduced or avoided if the join input is already physically 
declustered on the join attribute. In this case, only SD preserves a potential for dynamic 
load balancing while for SN the data processors have to perform the join. 

More work is needed on dynamic load balancing in several areas, in particular for inter- 
operator parallelism, to deal with data skew in multi-user mode, and to integrate local 
resource allocation policies for mixed workloads. Moreover, parallel database process- 
ing for object-oriented databases needs further investigation. 
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