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Ever-increasing demands for high transaction rates, 
limitations of high-end processors, high availability, 
and modular growth considerations are all driving 
forces toward distributed architectures for transaction 
processing. However, a prerequisite to taking advan­
tage of the capacity of a distributed transaction pro­
cessing system is an effective strategy for workload 
allocation. The distribution of the workload should not 
only achieve load balancing, but also support an effi­
cient transaction processing with a minimum of inter­
system communication. To this end, adaptive schemes 
for transaction routing have to be employed that are 
highly responsive to workload fluctuations and config­
uration changes. Adaptive allocation schemes are also 
important for simplifying system administration, which 
is a major problem in distributed transaction process­
ing systems. In this article we develop a taxonomic 
framework for workload allocation, in particular, trans­
action routing, in distributed transaction processing 
systems. This framework considers the influence of 
the underlying system architecture (e.g., shared noth­
ing, shared disk) and transaction execution model as 
well as the major dependencies between workload, 
program, and data allocation. The main part of the 
framework covers structural (or architectural) and 
implementational alternatives for transaction routing to 
help identify key factors and basic tradeoffs in the 
design of appropriate allocation schemes. Finally, we 
show how existing schemes fit our taxonomy. The 
framework substantially facilitates a comparison of the 
different schemes and can guide the development of 
new, more effective protocols. 

1. INTRODUCTION 

Transaction processing (TP) systems provide online 
access to a shared data base for many concurrent users. 
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They are used in a variety of business applications such 
as airline reservations, electronic banking, securities 
trading, and communicating switching to enable the 
online user to execute preplanned functions (canned 
transactions). These functions are implemented by 
transaction programs that access the data base. The 
essential software components of a TP system are the 
set of transaction programs, the data base management 
system (DBMS), and the so-called TP monitor. The TP 
monitor controls the execution of transaction programs 
and supports their interaction with the terminal and the 
DBMS. The TP system provides recovery and concur­
rency control functions guaranteeing that transactions 
are either completely executed or not at all (atomicity), 
that modifications of successful (committed) transac­
tions survive system and media failures, and that users 
see a consistent state of the data base despite concurrent 
access by other users. 

The workload of TP systems is commonly dominated 
by short interactive transactions that belong to a limited 
number of transaction types (e.g., the debit-credit 
transaction type [1]). A transaction request by a termi­
nal operator is first processed by the TP monitor, which 
analyzes the corresponding input message, performs 
authorization functions, and starts the appropriate trans­
action program upon availability of resources. During 
execution of the transaction program, multiple data 
base operations are typically submitted to and pro­
cessed by the DBMS. At the end of the transaction, a 
commit protocol guarantees repeatability of the transac­
tion's updates (e.g., by writing redo log information to 
nonvolatile storage) before a response message is re­
turned to the terminal. The typical resource consump­
tion of such a transaction ranges between 50,000 and a 
few million machine instructions, up to 30 disk 1/0s 
and 2-20 messages (depending on whether the applica­
tion is distributed). Currently, the largest TP systems 
support more than 100,000 terminals and 1,000 disks, 
and process thousands of transactions per second [2]. 
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The traditional approach to TP systems is the use of 
large mainframe computers with a centralized DBMS 
handling the common data base. However, the need for 
ever-increasing transaction rates, high availability, and 
modular expandability (horizontal growth) has rendered 
this approach inappropriate for many applications and 
resulted in the development of distributed TP systems. 
These distributed systems are based on a variety of 
different architectures, which will be classified in section 
3. A common problem of distributed TP systems is 
how to effectively use all nodes of the system to 
achieve high transaction rates and short response times. 
This problem is closely related to the question of which 
strategy should be used for workload allocation, i.e., 
for the allocation of the transaction workload among 
the processing nodes. Ideally, the workload is assigned 
in such a way that transactions can be processed with a 
minimum of communication and I/0 operations and 
little data contention (e.g., lock conflicts) and resource 
contention {e.g., CPU waits). 

The major form of workload allocation in distributed 
TP systems is transaction routing, which determines at 
which system (node) an incoming transaction request is 
to be processed (i.e., where the corresponding transac­
tion program should be started). Other types of work­
load allocation deal with the assignment of smaller 
units of work than transactions (e.g., data base opera­
tions; see section 3). Transaction routing in existing 
distributed TP systems is not well advanced, but relies 
heavily on static assignments of terminals and programs 
to nodes and manual interactions by the system admin­
istrator. Such approaches prevent effective use of the 
system and make administration more and more com­
plex as the number of nodes, terminals, and programs 
increases. What is needed are automatic, self-tuning 
schemes for workload management, particularly for 
transaction routing, that support efficient transaction 
processing. Unfortunately, this task is much more com­
plicated than load balancing, which has been the focus 
of related research in other distributed systems [3-6]. 
In contrast to typical assumptions in these studies, we 
have to consider a large number of different workload 
(transaction) types with different resource and perfor­
mance requirements (throughput, response times). Fur­
thermore, transaction execution not only requires CPU 
resources, but causes I/0 and communication overhead 
and delays and is subject to data contention (lock 
conflicts, aborts, etc.). To take these factors into 
account, appropriate routing schemes must also con­
sider the reference behavior of transaction types against 
the data bases. 

The development of "good" routing schemes is 
difficult and complicated by many design alternatives 
and dependencies on the underlying system architec-
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ture. To guide the selection of promlSlng routing 
schemes and permit a (qualitative) evaluation and com­
parison of different approaches, we have developed a 
general framework for transaction routing that takes the 
most important system dependencies and design criteria 
into account. The next section presents a more detailed 
discussion of the requirements for appropriate routing 
schemes and provides an overview of our framework. 
Section 3 classifies the major approaches for distributed 
transaction processing and discusses their implications 
for workload allocation. In addition, the interrelation­
ships between workload, programs, and data allocation 
are outlined. The individual classification criteria and 
design alternatives for transaction routing are then 
described in the two subsequent sections. Finally, 
we outline and evaluate sample routing schemes in 
section 6. 

2. REQUIREMENTS AND FRAMEWORK 
OVERVIEW 

Appropriate schemes for transaction routing should be 
effective, efficient, automatic, adaptive, and stable: 

• Effectiveness is the most important requirement. This 
demands routing strategies that improve the perfor­
mance of the transaction processing systems, e.g., 
compared to static load assignments or a random 
distribution of the workload. Typically, the system 
should support high transaction rates while satisfying 
specified response time limits (a possible restriction 
could demand that 95% of type X transactions have 
subsecond response times). 

• Efficiency means that the overhead for drawing rout­
ing decisions, getting the required information, or 
assigning transaction requests to the destination node 
should be small compared to the potential perfor­
mance benefits. In general, there is a tradeoff between 
effectiveness and efficiency, since to improve effec­
tiveness beyond a certain point, more complex algo­
rithms requiring more information collection may 
have to be used. 

• Automatic and adaptive schemes are required to 
reduce dependency on system personnel (simplify 
administration) and permit fast reactions to changed 
conditions in the load profile or system configura­
tion. Adaptive schemes require the continuous moni­
toring of the system to gather dynamic information. 
This information has to be analyzed (e.g., periodi­
cally) to detect conditions that require corrective 
actions (performance problems, significant changes 
in the reference behavior, node failure, etc.). In part, 
monitoring and corrective actions may have to be 
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carried out by local load control components, which 
should be coordinated with the workload allocation 
strategy. 

• Stability of the routing scheme under contingent 
conditions such as overload or after partial failures is 
another consideration for appropriate algorithms. 
This requirement is particularly important for adap­
tive schemes to avoid overreaction to minor system 
and workload changes [7]. In addition, it must be 
detected when automatic corrections do not prove 
useful so that permanent problems (e.g., massive 
lock contention on data base hot spots, insufficient 
hardware resources, etc.) are reported to the 
operator. 

To be effective, a routing scheme should support 
transaction processing with a minimum of overhead and 
deactivations due to intersystem communication, 1/0s, 
data contention (aborts, lock waits), or physical resource 
contention (CPU waits, paging, etc.). Of course, these 
points are influenced by many factors, such as hard­
ware environment (number and capacity of processors, 
main memory sizes, disk subsystem, communication 
system, etc.), system architecture, quality of sys­
tem and application software, data base design, 
administration, or load characteristics. Still, there are 
two basic measures for workload allocation, affinity­
based routing and load balancing, which we consider 
essential for high-performance transaction processing. 

Affinity-based transaction routing. Affinity-based 
routing uses information about the transactions' refer­
ence behavior to route transactions with an affinity to 
the same data base portions to the same node. In this 
way, it strives to achieve what we call node-specific 
locality of reference, which requires that transactions 
running at different nodes should mainly access disjoint 
portions of the data base. Thus, affinity-based routing 
can substantially improve performance for transaction 
processing. 

• Node-specific locality can significantly reduce the 
frequency of internode communication by assigning 
transactions to a node where they are largely locally 
executed. This aspect depends on various factors, 
e.g., the underlying system architecture, and is dis­
cussed further in section 3. Reduced internode com­
munication improves throughput (less overhead) and 
response times. Shorter response times also reduce 
data contention (lock-holding times). 

• Improved locality of reference can be used by the 
data base buffer manager to reduce I/0 overhead and 
delays (better hit ratios). 
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• Most concurrency control conflicts occur between 
transactions running on the same node. These local 
conflicts can be resolved faster than global conflicts 
(e.g., shorter lock waits). 

Since it is not generally feasible to predict the data base 
references of individual transactions, affinity-based 
routing is based on transaction types or workload groups 
for which homogeneity is assumed (i.e., transactions of 
the same workload group exhibit similar reference 
characteristics and resource requirements). For canned 
transactions, information on the reference behavior and 
resource requirements is generally available a priori or 
can be collected via monitoring. Node-specific locality 
is hard to obtain if the references of a transaction type 
are spread over the entire data base, if some data base 
areas are referenced by most transactions, or if there 
are dominant transaction types that cannot be processed 
by a single node without overloading it. Additionally, 
the more nodes to be used, the less node-specific 
locality may be achievable. 

Load balancing. Load balancing is the second key 
objective of effective routing strategies. It strives to 
find a load allocation that avoids overloading individual 
nodes, which would cause excessive queuing delays for 
the bottleneck resources (CPU, main memory, etc.). 
This is particularly difficult during peak load periods, 
when all nodes must be highly utilized to sustain the 
required transaction rate, but without coming into 
the thrashing region of resource contention. 

While other studies of workload allocation in dis­
tributed systems [3-6] have concentrated solely on load 
balancing, in general we have to support load balancing 
as well as affinity-based routing. This is because trans­
action response times are often determined more by 
data base-related factors like I/0 delays, lock waits, or 
remote requests than CPU waits or paging delays. 
Unfortunately, supporting node-specific locality and 
balancing the load are often contradictory goals (e.g., a 
dominant transaction type may have to be assigned to 
multiple nodes), making workload allocation addition­
ally difficult. 

Classification Criteria 

Finding a strategy for transaction routing that satisfies 
the above requirements is difficult and is influenced by 
many factors. We present a framework for workload 
allocation in distributed TP systems that attempts to 
clarify the most important dependencies and illustrate 
the spectrum of possible solutions. 

Figure 1 provides an overview of our classification 
criteria. We separate the schemes into two categories, 
namely affinity-based routing strategies and load-
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balancing schemes. Load-balancing schemes only aim 
at balancing the load; most strategies proposed for 
general distributed systems (not considering transaction 
processing/data base aspects) belong to this class. 
Affinity-based approaches, on the other hand, strive to 
achieve load balancing as well as affinity-based routing 
by considering the reference behavior of transactions 
and other dependencies. The next four criteria in 
Figure 1 refer to implications for workload allocation 
from the underlying system architecture, the allocation 
of transaction programs and the data base, and the 
transaction execution model. These dependencies will 
be outlined in section 3. The remaining classification 
criteria deal with structural and implementational 
aspects and alternatives for transaction routing and will 
be discussed in sections 4 and 5, respectively. Natu­
rally, some of our classification criteria overlap with 
the taxonomies of load-balancing schemes [3, 5]. Fur­
thermore, transaction routing has similarities to mes­
sage (packet) routing in communication networks, 
where the goal is to minimize packet transfer times and 
maximize network throughput. Tanenbaum [8] distin­
guishes between nonadaptive (static) and adaptive 
schemes as well as between centralized, isolated, and 
distributed policies for network routing. 

3. INFLUENCE OF SYSTEM ARCHITECTURE 

This section discusses the impact of different architec­
tures for distributed transaction processing on workload 
allocation. In section 3.1, we present a brief classifica­
tion of distributed TP systems and discuss the role 
of workload allocation in the various approaches. In 
section 3.2, we outline the relationships among work­
load, program, and data allocation. Section 3.3 dis­
cusses the influence of the transaction execution model 
and compares the data partitioning and data sharing 
approaches with respect to workload allocation. 

distributed TP systems 

functionally homogeneous systems 
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1) Affinity-based routing schemes vs.load balancing schemes 

2) System architecture and execution model 
* System architecture (shared disk, shared nothing, etc.) 
* Program allocation (distribution, partial replication, full 

replication) 
* Data allocation (partitioning, partial replication, full 

replication) 
* Transaction execution model 

3) Structural aspects for transaction routing schemes 
* Location of the global scheduler (front-end or back-end 

approach) 
* Centralized or decentralized organization 
* Isolated or cooperative approach 
* Message-based or storage-based communication 
* Source- or server-initiated routing 
* Preemptive or non-preemptive transaction assignment 

4) Implementation aspects for transaction routing 
* Static, dynamic or semidynamic schemes 
* Adaptive or non-adaptive 
* Individual or (workload) group-based routing 
* Deterministic or non-deterministic 
* Solution method for determining the destination 

processor 
* Amount of information used 

Figure 1. Classification criteria for transaction routing 
schemes. 

3.1 Classification of Distributed TP Systems 

For a rough classification of distributed TP systems, we 
distinguish between homogeneous architectures, where 
every node has the same functionality with respect to 
transaction processing, and (functionally) heteroge­
neous architectures such as client-server models 
(Fig. 2). The first subclass is usually further subdivided 
into shared memory, shared disk (SD), and shared 
nothing (SN) architectures [9]. 

Shared memory (shared everything). This class 
refers to transaction systems running on a tightly 
coupled multiprocessor where all processors share a 

client/server systems 

shared shared disk shared nothing single homogeneous heterogeneous 
servers memory (SD) (SN) server servers 

Figure 2. Classification of distributed transaction processing systems. 
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common main memory as well as peripheral devices 
(terminals, disks). Typically, there is only one copy of 
the application and system software, which is accessi­
ble to all processors via the shared memory. This 
approach is applicable to conventional (centralized) 
TP systems with few or no software changes. This 
approach has become increasingly popular for UNIX­
based systems running on tightly coupled micro­
processors (Sequent, Encore, Sequoia, Elxi, etc.). 

Shared disk (data sharing). In data-sharing sys­
tems, the nodes are autonomous (no shared main mem­
ory; separate copies of operating system, TP monitor, 
DBMS, etc.) and share the common data base at the 
disk level. Every node in such a system may be a 
tightly coupled multiprocessor. Internode communica­
tion takes place by means of message passing (loose 
coupling) or via common semiconductor stores, which 
offer higher fault isolation than shared main memory 
and much faster access than disks (close coupling). 
Data (disk) sharing is only applicable if all nodes are in 
physical proximity. Existing SD systems include mM's 
IMS data-sharing facility [10] and TPF [2] and DEC's 
DBMS for Vax Clusters [11]. 

Shared nothing (disk partitioning), SN systems 
also consist of a set of autonomous nodes which are 
loosely coupled, in general. Disks are partitioned among 
all nodes; the data base may be partitioned, too (data 
partitioning), or replicated. This approach is used in 
(geographically) distributed data base systems as well 
as in locally distributed TP systems. Fully or partially 
replicated data bases are of primary interest in 
geographically distributed systems to improve data 
availability and reduce the frequency of slow read 
operations at remote nodes. In local environments, the 
data partitioning approach (no replication) is more 
common. Existing SN systems include IBM's CICS 
[12] and Tandem's Encompass [13] and NonStop 
SQL [14]. 

The client/server approach is often used in 
workstation/server environments where the application 
programs are executed on workstations (or PCs) and 
data base services are provided by single or multiple 
homogeneous or heterogeneous server nodes. Data base 
machines can be considered as special data base servers 
where the clients (executing the application programs 
and submitting data base operations) are either worksta­
tions or general-purpose computers (hosts). Similarly, a 
distributed server may be based on any of the three 
homogeneous multisystem architectures above. Exam­
ples of client/server architectures for transaction pro­
cessing include Camelot [15], Sybase, and SN data 
base machines like Teradata's DBC/1012 [16). Remote 
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data base access (RDA) is a SQL-based communication 
protocol currently under standardization, that allows a 
single program to submit data base operations to multi­
ple heterogeneous servers with different hardware, op­
erating systems, and DBMS [17]. 

For workload allocation, the SD and SN homoge­
neous approaches promise the highest flexibility. Work­
load allocation in shared memory architectures is usually 
handled by the operating system and thus is transparent 
to the TP system. In addition, SD and SN are more 
powerful than shared memory, since each node in these 
systems may be a tightly coupled multiprocessor. In 
client/server architectures, data base operations instead 
of transaction requests are usually submitted by the 
client (user, transaction program). However, this re­
sults in an increased number of work requests and thus 
increased communication overhead. Furthermore, some 
proposals for client/server cooperation (e.g., RDA) do 
not permit free selection of a server, but require the 
application programmer to specify the server(s) with 
which a connection should be established (fixed work­
load allocation, no location transparency). In the case 
of a single server, there is also no potential for work­
load allocation, since this node has to process all data 
base operations (potential bottleneck, limited expand­
ability, single point of failure). With functionally spe­
cialized processors within a data base machine (e.g., 
sort processor, join processor, etc.), similar disadvan­
tages exist unless these components. are replicated. 

In geographically distributed SN systems, terminals 
are usually directly assigned to the physically closest 
node to limit the communication delay for transaction 
requests. Although this fixed transaction allocation may 
be justified by strong geographic locality of reference, 
it does not guarantee high performance because load 
balancing may be poor (e.g., some nodes may be 
overloaded while others are idle). Instead of assigning a 
transaction to an already loaded system, it could be 
more effective to route it to a different node even it its 
execution would require more communication there. 

Load balancing is generally more difficult to achieve 
in a geographically distributed system than in a local 
system. This is because communication overhead and 
delays are very high for wide-area networks, making it 
impossible to keep (almost) up-to-date information on 
resource utilization of remote nodes. In locally dis­
tributed systems with a high-speed interconnect, com­
munication delays are almost negligible, so that routing 
decisions can be based on the current utilization of all 
nodes. In addition, slow communication is limited to 
the input from and response to the terminal, while 
remote requests during the execution of a transaction 
can be satisfied much faster than over a wide-area 
network. Furthermore, system administration is rela· 
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tively easy compared with geographically distributed 
systems. 

Our discussion will therefore concentrate on locally 
coupled SD and SN systems offering the greatest poten­
tial for effective workload allocation. To compare these 
two approaches, we discuss the influence of program 
and data allocation on workload allocation for both 
architectures. In addition, differences in the transaction 
execution model and their implications for workload 
allocation are analyzed in section 3.3. 

3.2 Influence of Program and Data Allocation 

In contrast to centralized systems, distributed TP sys­
tems based on SD or SN architecture have to solve 
three allocation problems: workload, program, and data 
allocation (Figure 3). Workload allocation depends on 
program allocation, since a transaction should only be 
assigned to one of those nodes that can execute the 
corresponding application program. Data allocation is 
also important for workload allocation, since a transac­
tion should preferably be assigned to that node where 
most of the required data is directly accessible (without 
communication delay). Thus, program and data alloca­
tion may limit the set of nodes where a transaction can 
or should be processed, resulting in a reduced potential 
for load balancing. As shown in Figure 4 and discussed 
below, the allocation of programs and data also depends 
on the system architecture (SD or SN). 

Program allocation. Transaction programs may be 
allocated to nodes in one of the following ways: 
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work (transaction} requests 

l 

common database 
Figure 3. Allocation problems in distributed transaction 
processing systems. 

• distribution 

• partial replication 

• full replication 

Program distribution means that each application pro· 
gram (transaction type) is assigned to only one node. In 
this case, workload allocation is trivial and determined 
by the program allocation. A major problem of this 
approach is that dominant transaction types (e.g., 

system 
lll'chitecture 

shared disk 
(SD) 

shared nothing 
(SN) 

program 
allocation 

data 
allocation 
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~~ 
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program 
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~ 
data partial full 
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Figure 4. Program and data allocation in SD and SN systems. 
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debit-credit) can easily overload single nodes and thus 
prevent good utilization of all nodes. With full replica­
tion, each node can start all application programs. This 
leaves the greatest Hexibility for workload allocation, 
since each node is eligible for assignment of any trans­
action request. With partial replication, some programs 
are replicated on multiple or all nodes. 

Program allocations tend to be static, since relo­
cations require manual interaction. Therefore, full 
program replication seems most promising from the 
perspective of workload allocation, since otherwise a 
(partially) static load distribution would be prescribed. 
Note that system software (DBMS, TP monitor) is also 
fully replicated in homogeneous architectures like SD 
and SN. 

Full program replication is easily supported for data 
sharing by storing the programs on the shared disks. In 
SN systems, program replication requires the redundant 
storage of programs on the disks of different nodes and 
is thus more expensive than with SD. As a conse­
quence, existing SN systems often apply partial pro­
gram replication or program distribution, thus limiting 
the selection of destination nodes for automatic transac­
tion assignment. Furthermore, administration becomes 
significantly more complicated since the program allo­
cation (as well as the data allocation) has to be deter­
mined and adapted by system personnel. 

Data allocation. In the case of data sharing, all 
nodes physically share the same disks and, thus, the 
data base. Data may be dynamically replicated in main 
memory due to caching of data base objects (which 
introduces the problem of buffer invalidations). 
Although the data base is physically shared, there may 
be a logical allocation of data base partitions with data 
sharing, e.g., for concurrency control purposes. This 
is the case in the primary copy-locking protocol, 
where the lock authority is distributed among all 
nodes [18]. 

In SN systems, data base partitions and replicas 
reside on disks and therefore constitute physical assign­
ments to nodes. In contrast to logical data allocations 
represented by internal control information (e.g., in the 
case of data sharing with primary copy locking), physi­
cal data allocations in SN systems are relatively static, 
since cables and large data base portions are typically 
hard to move. The data allocation has to be determined 
by the system administrator and must be coordinated 
with the program allocation so that programs are 
assigned to the nodes where the data base portions they 
access are locally accessible. SN with fully replicated 
data bases permits a local processing of all read­
only data base operations and thus has a high poten­
tial for load balancing. On the other hand, this 
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approach requires n-fold disk capacity and makes 
update operations very expensive. As pointed out above, 
locally coupled SN systems are therefore usually based 
on the data partitioning approach (no replication). 

The Hexibility of work distribution is also infiuenced 
by the units of data allocation, or fragments. If only 
coarse fragments are supported, e.g., entire files or 
record types, the reference distribution against data 
base partitions may be highly skewed, making it diffi­
cult to achieve load balancing (dominant data base files, 
etc.). Data partitioning for nonrelational data bases is 
usually restricted to such coarse fragments and requires 
that every data base operation must not spawn multiple 
partitions. Relational data bases permit smaller frag­
ments with horizontal or vertical partitioning of rela­
tions [19]. Data sharing does not require a physical data 
allocation of partitions; a logical data allocation can be 
based on arbitrarily small fragments, even for nonrela­
tional data bases (e.g., page or record ranges). 

In the past, much research has been devoted to the 
data allocation problem in distributed systems (see 
the survey in [20]). The heuristics proposed in [21] use 
prior knowledge of query processing strategies to 
determine a suitable fragmentation and allocation of the 
data base. 

3.3 Distributed Transaction Execution Schemes 

The main form of load distribution we have discussed 
so far is transaction routing, i.e., the assignment of 
entire transactions to nodes. Though it would be desir­
able from a performance point of view to completely 
process a transaction locally after its assignment to a 
node (to avoid communication overload and delays), 
this cannot generally be achieved if resources (applica­
tions, data) are to be shared between nodes. However, 
a distributed transaction execution introduces additional 
and smaller load distribution units than transactions. 
Given that a TP system mainly consists of transaction 
programs, TP monitor, and DBMS, we have basically 
three levels with different distribution units where com­
munication/cooperation can take place. At the program 
level, a distributed transaction execution is possible by 
remote procedure calls of external program fragments. 
The next finer distribution granule are data base opera­
tions which may be submitted to the DBMS on the 
same or a remote machine. This shipping of data base 
operations can be done by the TP monitor or the 
DBMS. Finer distribution units than data base opera­
tions (e.g., suboperations or lock requests) require 
cooperation. between the DBMS of different nodes. In 
the first two cases (distributed programs and TP moni­
tors), the underlying system architecture is basically 
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SN, while DBMS-to-DBMS communication assumes 
either SN or SD. 

Program-to-program communication (distributed 
programs). In this case, a transaction program can 
invoke other transaction programs which may reside on 
different machines (remote procedure call). This mech­
anism is to be supported by the TP monitor (and 
DBMS) since it requires a distributed commit protocol 
at the transaction's end. Applications based on the TP 
monitors CICS and UTM can make use of this ap­
proach, however without location transparency for the 
application programmer. Tandem, on the other hand, 
supports this approach with full location transparency 
for the programmer. Its TP monitor Pathway keeps 
track of the location of called programs (servers) and 
routes requests automatically to a node where the called 
function is available [22]. 

In principle, this approach permits a distributed 
transaction execution without support by the DBMS if 
each program fragment (function) is only permitted to 
access local data. In this case, however, we would have 
a collection of centralized DBMS requiring a data base 
and application design with multiple data bases and 
independent schemas. Apparently, this approach is very 
inflexible since, data base relocations generally intro­
duce schema and program modifications. Furthermore, 
the data base splitting results in a distribution (no 
replication) of programs, leaving no potential for a 
dynamic workload allocation. 

Shipping of data base operations. This coopera­
tion level is supported by the function request shipping 
facility of CICS, which is also referred to as DB call 
shipping. Data base operations are "shipped" by the 
TP monitor to a local or remote DBMS. In the case of a 
remote request, the remote TP monitor starts a mirror 
transaction and submits the operation to the DBMS 
component at its node. CICS provides location trans­
parency to the application program by maintaining 
appropriate directories. 

In contrast to pure program-to-program communica­
tion, function request shipping permits a transaction 
program to access remote data bases. On the other 
hand, the smaller distribution unit may result in an 
increased number of remote requests. Furthermore, 
there is still no communication between the DBMS 
components, so that each data base operation must be 
completely processed by one DBMS. This is a severe 
restriction for relational DBMS, where operations such 
as joins may have to process multiple relations (all 
relations that may be accessed by a single operation 
would have to be stored at the same node.) 
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DBMS-to-DBMS communication. This approach 
offers the highest flexibility for workload, program, 
and data allocation (and thus for distributed transaction 
processing), albeit at the expense of the highest imple­
mentational complexity. Application programming is 
considerably simplified compared with the previous 
approaches, since the programmer sees only one logical 
data base (one data base schema). Intersystem commu­
nication is handled by the DBMS and is thus trans­
parent to the program. Also, there are no a priori 
restrictions for data, program, and workload allocation, 
although full program (and data) replication is more 
expensive for SN than for SD (see above). 

With data partitioning, communication takes place if 
the processing of a data base operation requires access 
to the data partition of another node. A simple approach 
to get the data is 1/0 request shipping, where each 
external object is explicitly requested (and returned in 
the case of a modification). This strategy is generally 
limited to simple data base operations that require few 
data accesses. For more complex operations, an execu­
tion plan has to be generated that determines a distribu­
tion of suboperations (e.g., selection, projection, join, 
etc.) that tries to limit the number of remote requests as 
well as the amount of data to be transferred. However, 
the execution location of these (sub)operations gener­
ally is independent of where a transaction is routed to, 
but is determined by the physical data base allocation. 
If a data base operation is started on a node not owning 
the required data, no load balancing advantage can be 
gained and only overhead is created for shipping the 
operation to the data owning system and returning the 
results. Since every node has to process all operations 
of local and remote transactions against its partition, 
there is very little potential for load balancing with data 
partitioning. Thus, imbalanced system utilization and 
overloaded nodes are possible. On the other hand, the 
known data allocation makes affinity-based routing 
comparatively easy if the reference distribution of 
transaction types is known. In this case, transaction 
types are simply assigned to the node that controls the 
data partition to which most accesses are directed. This 
assignment is relatively static, given that the data allo­
cation cannot be changed frequently and the reference 
distribution is also stable, and may even be achieved 
with program distribution. 

With data sharing, the entire processing of data base 
operations is local (and does not require development 
of distributed execution plans), since all data is directly 
accessible. Communication is required for concurrency 
and coherence control (treatment of buffer invalida­
tions). Our previous investigations have shown that the 
primary copy scheme permits a very efficient concur­
rency and coherence control for data sharing [23, 24). 
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It uses a logic partitioning of the data base such that 
each node is assigned the synchronization responsibility 
or primary copy authority (PCA) for one partition. By 
coordinating load and PCA allocation, a transaction can 
often be assigned to a node where most of its references 
can be locally synchronized. In this way, the prim­
ary copy scheme can use node-specific locality of refer­
ence to limit the number of remote lock requests. 
Coherence control can be fully integrated into 
the concurrency control protocol to avoid extra 
messages [18, 24]. 

The determination of the preferable destination node 
is as simple as for data partitioning if the reference 
distribution of transaction types and the current data 
(PCA) allocation are known. In contrast to the physical 
data allocation in data partitioning systems, however, 
the PCA allocation can be dynamically adapted together 
with the routing strategy, e.g., when the load profile 
changes significantly or the number of systems is 
changed. Also, compared to data partitioning, the pri­
mary copy scheme still preserves a high potential for 
load balancing since only lock-request processing is 
affected by the PCA allocation. However, the largest 
part of a transaction can be processed at the node to 
which the transaction has been routed. Thus the pri­
mary copy approach combines the load balancing 
advantages of data sharing with the ease of affinity­
based routing of data partitioning. 

Both architectures, data sharing and data partition­
ing, may employ parallel execution strategies for com­
plex queries and assign independent (nonconflicting) 
suboperations to different nodes in parallel. With data 
partitioning, the physical data distribution determines 
whether a parallel execution is applicable for a given 
operation. This limitation is removed for data sharing; 
the same objects can be concurrently read in different 
nodes, thus increasing the flexibility for parallel pro­
cessing models. Khosafian and Valduriez [25] discuss 
parallel execution strategies for SN systems with hori­
zontally partitioned data bases. In [26], the pros and 
cons of SN and SD for parallel query processing are 
discussed in more detail. 

Summary. The discussion in this section has shown 
that the homogeneous SN and SD architectures offer 
the highest potential for effective load distribution. 
Furthermore, only distributed TP systems with DBMS­
to-DBMS communication support flexible load, pro­
gram, and data allocations. Data sharing offers a higher 
potential for load balancing than data partitioning, since 
each program and data base operation can largely be 
locally processed (full program replication, directly 
accessible data base). System administration is also 
simplified, since no program or physical data allocation 
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have to be determined and adapted. In addition, data 
sharing simplifies query processing (no distributed exe­
cution plans) and may offer increased flexibility for 
parallel execution strategies. 

4. STRUCTURAL CLASSIFICATION ASPECTS 
FOR TRANSACTION ROUTING 

Four alternatives characterize the physical architec­
ture of the transaction routing component or global 
scheduler: front-end (FE) or back-end (BE) approach, 
centralized or decentralized realization, isolated or 
cooperative policy, and message- versus storage-based 
communication. The resulting 12 approaches (the 
differentiation between isolated and cooperative 
schemes is only applicable for decentralized routing) 
together with examples of existing implementations are 
shown in Figure 5. Two other organizational aspects 
are orthogonal to these alternatives and deal with the 
distinction between source- and server-initiated and 
preemptive and nonpreemptive load distribution. 

4.1 Location of the Global Scheduler (BE vs. FE 
Approach) 

The location of the global scheduler influences where 
the terminals are allocated. In the BE approach usually 
found in existing TP systems, terminals are directly 
attached to the transaction processing nodes. In this 
case, the global scheduler can be seen as part of every 
local (BE) TP monitor that determines to which system 
an incoming transaction request should be routed for 
processing. Typically, the output message for the ter­
minal user has to be returned via the node to which the 
terminal is attached. The transfers of transaction 
requests and output messages between BE nodes can 
incur a substantial communication overhead. 

The BE approach is employed by IMS MSC (multi­
ple systems coupling) [27], CICS ISC (intersystem 
communication) [12], and Tandem. IMS MSC and 
CICS are based on a distribution of programs (no 
replication), so that the routing destination is deter­
mined by the program allocation. Tandem supports a 
partial program replication, although it is unclear from 
the available documents how the destination node is 
selected when more than one node can process a given 
transaction type. IMS MSC has the additional restric­
tion that every transaction program may access only 
local data. CICS and Tandem are based on the data 
partitioning approach and support a shipping of data 
base operations (in the case of CICS "function request 
shipping") or suboperations (Tandem NonStop SQL) to 
access remote data. 

The FE approach allows a dynamic allocation of 
terminals /transactions to transaction processing nodes 
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that considers the current load situation at the BE 
nodes. Here the terminals are basically attached to the 
FE system from where connections to any BE node can 
be established. The FE processors are typically com­
munication controllers, which may provide optimized 
communication primitives (compared to the communi­
cation among BE nodes) to route transactions to the BE 
systems and to receive response messages. Another 
advantage of the FE approach is that message process­
ing (routing overhead, logging of input messages, etc.) 
can be partially otHoaded from the BE nodes to the FE 
nodes. Furthermore, failure of a BE node no longer 
requires that connections to a large number of terminals 
be reestablished. 

Some existing TP systems already use the FE ap­
proach for transaction routing. For instance, a large 
U.S. bank is using ffiM TPF (transaction processing 
facility) as a FE message switcher to multiple BE IMS 
systems [28]. The routing decisions are based on the 
account number found in the input messages. The IBM 
Network Extension Facility (NEF) for communication 
controllers supports transaction routing by user-selected 
criteria as well as fast session starts and restarts [28]. 
The DEC Vax Clusters have a special terminal server 
as a FE that tries to route user requests to the least 
utilized node to achieve load balancing [11]. 

4.2 Centralized vs. Decentralized Organization 

With the BE approach, transaction routing is usually 
decentralized (distributed), since it makes little sense to 
allocate all terminals to a single transaction processing 
node. This would leave little capacity at this node for 
transaction processing and result in a high comrnunica-
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tion overhead for routing transactions to and receiving 
response messages from the other systems. ffiM's JES3 
[29], however, uses the centralized BE approach for 
allocating batch jobs, typically submitted by operators 
instead of terminal users. It supports workload alloca­
tion among up to eight nodes, including the global 
processor that controls load distribution and provides a 
single system image to the operator. Since batch jobs 
have to specify the resources (e.g., files) they want to 
access, JES3 can prevent scheduling jobs simultane­
ously that are going to update the same data. 

Running the global transaction scheduler on a single 
node may be more appropriate with the FE approach, 
provided that no bottleneck is created. The main advan­
tage of the centralized approach is simplicity: one 
instance controls the entire system (BE nodes, termi­
nals, etc.), thus facilitating the provision of a single 
administration interface. In addition, it guarantees a 
single node image to the network [30]. While availabil­
ity problems may be resolved by a (passive) standby 
system, a single FE system could become a bottleneck 
with growing transaction rates. This is especially a 
problem if the FE node is used not only for message 
switching but also for other tasks such as monitoring 
the BE systems and arrival rates or logging input 
messages. 

4.3 Isolated vs. Cooperative Strategies 

Decentralized routing schemes may be cooperative or 
isolated depending on whether the components of the 
global scheduler coordinate their routing decisions. In 
isolated decentralized routing schemes, there is no 
communication between the load distribution compo­
nents for exchanging status information or adapting the 
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routing policy. This uncoordinated approach is used in 
existing TP systems such as IMS MSC, CICS ISC, and 
Tandem. Note, however, that in the case of a decentral­
ized FE approach, status information may be exchanged 
between the transaction processing nodes and the FE 
nodes performing transaction routing. In addition, ev­
ery node taking part in transaction routing may 
adapt its own routing strategy based on its local state 
information. 

In cooperative decentralized schemes, there is a com­
mon routing policy and explicit cooperation to exchange 
status information or adapt the routing strategy. One 
coordination approach would be to store global control 
information in a shared memory segment accessible by 
all processors participating in transaction routing (close 
coupling). This may be more efficient than explicit 
message exchange and avoids the problems associated 
with using global information at different levels of 
actualization. Cooperation may also be facilitated by 
using a central coordinator for global control decisions 
in addition to the load distribution components [31]. 
The common routing policy is then determined and 
adapted by the global coordinator, which communicates 
with the load distribution components, e.g., to bring a 
new routing strategy into effect. The globiu control 
component can provide a single administration interface 
to the outside and cooperate with local load control 
components to get monitoring information and coordi­
nate local and global scheduling decisions [31]. 

4.4 Message- vs. Storage-Based Communication 

Communication for workload allocation purposes 
is needed for transferring input and output messages 
(assigning work requests to the destination node 
and returning results) and for exchanging control 
information. Control information may be exchanged 
between local and global load control components 
(e.g., monitoring data), or between global scheduler 
components in the case of cooperative decentralized 
transaction routing (e.g., to adapt the routing policy). 

If all processors are loosely coupled, internode com­
munication takes place by means of message passing, 
i.e., sending and receiving messages over communica­
tion lines. This approach does not rely on shared 
memories, and thus provides good failure isolation and 
is not susceptible to memory bottlenecks. On the other 
hand, message passing often causes a high CPU over­
head-even in local systems-and global information 
needed in multiple systems has to be stored and updated 
redundantly, thus introducing additional messages. 
Ferguson et al. [4] distinguish between broadcast, 
polling, and diffusion schemes for propagating control 
information between processors. 
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The disadvantages of message passing can be over­
come by a close coupling using shared (semiconductor) 
stores. Such a shared memory segment can be used for 
maintaining shared message queues, which allow an 
efficient propagation of messages (transaction requests, 
response messages) between systems. If the shared 
store is nonvolatile, logging of messages can also be 
achieved with little or no extra overhead. In a decen­
tralized organization of the global scheduler, the shared 
store can be further used for keeping global state and 
routing information. 

Of course, these uses require a store with appropriate 
access and synchronization primitives that provide bet­
ter failure isolation than is typically found for shared 
main memory in tightly coupled multiprocessors. Also, 
access times of a few microseconds should be possible 
to enable synchronous memory accesses without pro­
cess switches. Finally, the number of nodes that can be 
connected to the shared store(s) should be high enough. 
If, for instance, only four systems can be connected to 
the store, a distributed FE approach would be restricted 
to two FE and two BE nodes. An alternative in this 
case would be to use the common store only within 
the FE system (for holding global state and routing 
information), and relying on message passing for 
communication with the BE nodes. 

4. 5 Source- vs. Server-Initiated Routing 

The distinction between source (sender)- and server 
(receiver)-initiated routing stems from work on global 
load-sharing schemes [5]. In our context, the source is 
that (FE or BE) processor to which the terminal issuing 
a transaction request is attached, while the server is the 
(BE) node where the transaction program is started. 
With the source-initiated strategy, usually found in 
existing transaction systems, the source node deter­
mines where a transaction is routed. The routing deci­
sion is typically made at transaction arrival time 
(immediate routing of a transaction) so that queues tend 
to form at the server nodes. In a server-initiated algo­
rithm, on the other hand, the servers go looking for 
work at the source node(s), e.g., when they have 
completed another transaction or the available resource 
capacity allows for additional work. Accordingly, 
queues tend to form at the source node(s). 

Shared message queues in a common store (storage­
based communication) can be used by source- as well 
as server-initiated routing schemes. In the former case, 
there may be separate input and output queues for 
every node in the shared store. To assign a transaction, 
the source writes the input message to the (input) queue 
of the destination node. These input queues are either 
periodically checked by the transaction processing nodes 
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to pick up and schedule waiting requests, or the source 
sends a short notification interrupt to the server node 
indicating that a transaction request has been inserted 
in its input queue. Output messages are written to 
the (output) queue of the node, which has to send it 
to the terminal. In the BE approach for routing, a node 
may have an input as well as an output queue, whereas 
otherwise output messages are associated with FE nodes 
and input messages with BE nodes. 

In the case of a server-initiated scheme, the source 
writes input messages either into a single input queue 
for all server nodes or into a specific queue if there are 
separate input queues for different transaction types or 
workload groups. The server nodes pick up requests 
from the input queue(s) when they are willing to pro­
cess a new transaction. 

The basic advantage of server-initiated routing is that 
overloaded nodes are easily avoided, thus giving advan­
tages for load balancing. Furthermore, every server can 
directly use information on local conditions, e.g., data 
base buffer contents or lock ownerships, to pick a 
transaction request that can be processed with little I/0 
and communication overhead. On the other hand, there 
may be long waiting times for transactions at the source 
until a server is willing to process them. This could 
lead to "starvation" for some transactions, or at least 
to missed response time limits. In addition, selection 
of waiting transactions cannot be based solely on 
local conditions but must be globally coordinated 
by the global scheduler. In this respect, the source­
initiated approach seems superior, though the 
server-initiated scheme can be extended to overcome its 
problems (e.g., by limiting the selection of waiting 
transactions according to global priorities or by forcing 
servers to process long-waiting transactions). 

All system examples in Figure 5, except JES3, sup­
port a source-initiated workload allocation. JES3 is 
based on the server-initiated approach, where server 
nodes send job requests to the global processor. The 
global processor maintains job information for waiting 
batch jobs on a shared (spool) disk device and specifies 
in a response message to the requester which job from 
the spool queue can be processed [29]. 

4.6 Preemptive or Nonpreemptive Transaction 
Assignment 

Another aspect of load distribution is whether migra­
tion of transactions is allowed, i.e., that a transaction 
can be rerouted from one processor to another in 
mid-execution for load balancing reasons. The distinc­
tion between migration (preemptive) and placement 
(nonpreemptive) strategies has been made in related 
work on load balancing [32]. Transaction migration 
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seems difficult to realize since locks, data base pages, 
or terminal control blocks associated with the transac­
tion would have to be moved, too. The migration 
overhead is not likely to pay off for short transactions, 
but may be acceptable for complex queries to improve 
load balancing. Currently, migration is not supported in 
distributed transaction and data base systems. 

5. ADDITIONAL CLASSIFICATION ASPECTS 

Six additional classification aspects coping with imple­
mentation alternatives and the used information com­
plete our framework for transaction routing protocols. 
As shown in Figure 6, four of these implementation 
criteria allow us to separate ten families of algorithms 
for which examples from the literature and existing 
systems are specified. In addition to these four criteria, 
we discuss which solution methods are applicable to 
determine a transaction's destination node and which 
types of information can be used by different routing 
schemes. Individual algorithms will be discussed in 
section 6. 

5. 1 Static, Dynamic, or Semidynamic Routing 
Schemes 

There is no general consensus about the definition of 
static and dynamic workload allocation schemes. A 
simple approach would be to consider a routing scheme 
as dynamic if it uses dynamic information for routing 
decisions, i.e., information about the current system 
state, and static if the current system state is not taken 
into account. For instance, Eager, Lazowska, and 
Zahorjan [33] consider a scheme as static if it uses only 
information about the average behavior of the system, 
ignoring the current state. Casavant and Kuhl [3] use 
the time at which the assignment decisions are made to 
separate static and dynamic schemes (predetermined 
destination vs. routing decisions at job arrival time). In 
this article, we will adhere to definitions in [4] that 
allow us to distinguish between three categories: static, 
dynamic, and semidynamic policies. 

As in previous work, we consider a scheme as static 
if it does not consider the current system state for 
routing decisions but employs a predetermined alloca­
tion strategy. Such an approach is not capable of auto­
matically adapting to changing situations but requires 
manual interactions to change the static load assign­
ment. We separate routing policies that take the current 
system state into account into dynamic and semi­
dynamic approaches. Dynamic schemes take the 
pessimistic view that the system state is constantly 
fluctuating and cannot be adequately estimated a priori. 
Therefore, they consider the current system state for 
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every transaction assignment. Semidynamic policies are 
a compromise between static and dynamic schemes. 
They have a static phase in which a common routing 
policy is applied to all transactions, and a dynamic 
phase in which the current system state is considered to 
adapt the routing policy. In the dynamic phase, the 
current system state is examined and, if deemed neces­
sary, the routing policy is changed. Typical reasons for 
such an adaptation are performance problems (e.g., 
missed response time limits) and changes in the load 
profile or configuration (e.g., node failure). 

The main advantage of static schemes is efficiency 
(low overhead), since no dynamic information has to be 
gathered and analyzed. On the other hand, effectiveness 
may be poor since no automatic adaptation to changing 
conditions is possible. Administration is difficult since 
system personnel must determine and adapt the work­
load allocation. On the other hand, dynamic routing 
schemes may introduce significant overhead, depending 
on how much dynamic information is to be provided 
and analyzed. Semidynamic policies may thus be a 
reasonable compromise if there are stable phases 
where the load profile and system state do not change 
significantly. 

5.2 Adaptive vs. Nonadaptive Policies 

Changes in the load profile and system configuration 
(changed number of nodes, new applications) or tuning 
measures make adaptations of the workload allocation 
necessary. Adaptive workload allocation schemes are 
capable of an automatic adaptation to changing condi­
tions [34], while nonadaptive schemes require manual 
interactions for any allocation change. By definition, 
semidynamic schemes are always adaptive, and static 
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schemes are nonadaptive (Figure 6). Dynamic policies 
may be adaptive or nonadaptive depending on whether 
the policy itself is modified according to changed condi­
tions. For instance, a strategy that always assigns a 
transaction to the least used node is dynamic (since it 
considers the current system state for every transaction), 
but not adaptive. 

Adaptive policies require dynamic information, i.e., 
a continuous monitoring of the system state. To control 
the system, they typically apply feedback loops, which 
consist of analyzing the current system state, determin­
ing whether performance problems exist or are likely to 
occur in the near future (e.g., due to changes in the 
reference behavior), determining the underlying causes 
of problems (bottlenecks), and initiating corrective 
actions. To limit the control overhead, monitoring 
may be done on a sampling basis and the feedback 
loop may be executed only periodically or after special 
events such as node failures. The average time interval 
between successive executions of the control loop is a 
tuning parameter that determines the overhead as well 
as the responsiveness of the control scheme. 

The main corrective action is an adaptation of the 
workload allocation policy by changing the algorithms 
and/or adjusting control parameters used to implement 
the routing policy (e.g., routing table) [32, 34]. With 
data sharing and primary copy locking, the data alloca­
tion can also be adapted automatically. Another option 
for data sharing (proposed in [35]) is to adapt the 
number of transaction processing nodes to current per­
formance requirements (this is typically not possible for 
data partitioning since all data base partitions must stay 
accessible). This idea seems appealing since the maxi­
mal capacity is generally only needed during periods of 
peak transaction rates, so that available resources can 
be assigned to other applications (e.g., numeric com-
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putations) during off-peak periods. If automatic 
corrections do not prove effective, the operator can be 
informed of the problem as a last resort. 

5.3 Individual or (Workload) Group-Based Routing 

Group-based routing schemes categorize all trans­
actions into workload groups and use the same assign­
ment policy for all transactions in the same 
group. Typically, a workload group consists of trans­
actions with similar reference behavior and resource 
requirements that can thus be considered collectively. 
A transaction's workload group is derived from inform­
ation associated with the transaction request, i.e., trans­
action type, input parameters, and terminal identifica­
tion. This information allows a flexible definition of 
workload groups (by the administrator). For instance, a 
workload group can consist of 

• all transactions of one or more transaction type 

• a fraction of a dominant transaction type determined 
by a value range of input parameters (e.g., account 
ranges for debit-credit transactions) 

• transactions from a specified set of terminals 

• combinations of the above alternatives. 

In the simplest case, all transactions of a workload 
group are assigned to the same node. If this is not 
possible for load-balancing reasons, a workload group 
can also be allocated to multiple nodes according 
to a specified rule (deterministic vs. nondeterministic 
schemes; see below). Table-driven routing schemes are 
an example of group-based allocation policies where a 
routing table determines the determination for every 
workload group. This approach is considered adaptive 
if the routing table can automatically adapt to changing 
conditions (e.g., relocation of a workload group from 
an overloaded node to a less utilized one). 

Individual routing schemes do not aim at a common 
routing strategy for workload groups but treat transac­
tions independently of one another. Since these individ­
ual routing decisions are usually more expensive than 
just a table look-up, they may introduce substantially 
more overhead than group-based schemes. 

5.4 Deterministic vs. Nondeterministic Routing 
Schemes 

For group-based routing schemes, this aspect separates 
the cases in which a workload group is assigned to 
exactly one node (deterministic) or multiple nodes 
(nondeterministic). Assignment to a single node is 
desirable to support node-specific locality of reference 
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(affinity-based routing) and simplify the routing deci­
sions. Unfortunately, this restriction leads to overused 
nodes if the processing requirements of a single work­
load group exceed the capacity of one node (dominant 
transaction type, unexpectedly high arrival rates, etc.). 
Therefore, load-balancing considerations often pre­
scribe a nondeterministic scheme in which the destina­
tion node may be different for transactions of the same 
workload group. Probabilistic routing schemes are a 
typical example of nondeterministic policies in which 
the transaction assignment is controlled by some proba­
bilistic distribution (e.g., 80% of group X transactions 
are routed to node 1, 20% to node 2). 

Individual routing schemes are generally nondeter­
ministic since the workload is to be distributed among 
multiple nodes. 

5. 5 Solution Method for Determining Processor 
Allocation 

According to [3], we can here distinguish between 
optimal and suboptimal solutions, and in the latter 
case approximative and heuristic approaches. Optimal 
and approximative approaches formalize the transaction 
routing problem within a computational model and try 
to find solutions by one of the following methods [3]: 

• queuing theory 

• graph theory 

• mathematical programming 

• solution space enumeration and search. 

Optimal schemes assume complete knowledge about 
the state of the system and resource needs and deter­
mine a processor allocation that optimizes a certain 
objective function such as minimal communication 
overhead or highest throughput. Their main disadvan­
tages are the typically enormous computation overhead 
and the fact that they are necessarily based on a number 
of simplifying assumptions. Approximative schemes 
only try to find a good instead of the best solution in 
order to avoid searching the entire solution space. 
Although they are more efficient than optimal schemes, 
they generally also use an (over)simplified compu­
tational model of the transaction system. Heuristic 
approaches, on the other hand, depend to a lesser 
degree on the accuracy of the underlying models. They 
try to find a processor allocation even more efficiently 
than approximative solutions by avoiding computation­
ally expensive methods and using some intuitive opti­
mizations. For instance, clustering group of processes 
that interfere with or communicate heavily to the same 
processor [36] generally helps to decrease the commu­
nication overhead; even so, its effect on response times 
may not be directly predictable. 
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5.6 Amount of Information Used for Transaction 
Routing 

The information which may be used for load distribu­
tion can be characterized along two lines: 

Static versus dynamic information. None of the 
information relevant for transaction routing is com­
pletely static, but is subject to change. Nevertheless, 
for simplicity and efficiency, some information is 
assumed to be static or to change infrequently. Typical 
examples are the number of nodes and their respective 
CPU capacity or the number of transaction types 
(workload groups) and their average resource require­
ments. Dynamic information is collected while the load 
is being executed (via monitoring) and used for subse­
quent routing decisions. This kind of information may 
change quite frequently. Examples are the current CPU 
utilization, response time information per transac­
tion type derived from recent executions, or information 
about which data base pages are currently held in the 
data base buffers. Static routing schemes use only static 
information, while dynamic and semidynarnic schemes 
may use dynamic and static information. Use of static 
information complicates system administration since 
this information must generally be provided by the 
administrator. 

Other information. This includes 

• load characteristics (e.g., arrival rates, resource 
requirements, performance goals) 

• data base characteristics (e.g., fragmentation) 

• processor characteristics (e.g., number of nodes, 
resource capacity, utilization). 

Some information refers to more than one of these 
three categories, e.g., the reference pattern (load and 
data base), the current distribution of transaction 
requests to nodes (load and processors), or the data/ 
PCA allocation (data base and processors). 

The reference pattern for different workload groups 
can be characterized by means of a reference matrix. 
Such a matrix shows for every workload group the 
frequency of object references with respect to differ­
ent data base fragments over a characteristic period 
of time [7]. 

Resource (CPU, memory, etc.) utilization is dynamic 
and can be expressed by different load indices [37, 38]. 
Examples of load indices include CPU utilization as 
observed by a sampling monitor, the length of the 
ready queue or average CPU waiting times in the case 
of CPU resources, and the paging rate, paging delays, 
or hit ratios in the case of memory resources. Routing 
schemes that do not use information on resource utiliza-
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tion are sometimes referred to as load independent; 
otherwise they are considered load dependent. Note 
that all static schemes are load independent, and that 
dynamic and semidynamic schemes may or may not 
rely on utilization-based information. 

Clearly, many quantities may be useful for workload 
allocation. However, practical routing schemes typi­
cally have to base their decisions on comparatively few 
parameters because complexity and overhead generally 
increase with the amount of information used, though 
more effective strategies may result. For the sake of 
efficiency, only selected quantities (e.g., CPU utiliza­
tion) can be dynamically monitored and analyzed. 

6. SAMPLE APPROACHES TO TRANSACTION 
ROUTING 

The previous sections showed that the design of a 
routing scheme depends on several factors and that 
numerous design alternative3 can be chosen. The pre­
sented framework permits us to classify and compare 
the various approaches used in existing transaction 
systems or proposed in the literature. In section 6.1, we 
briefly summarize the characteristics of some allocation 
schemes in existing transaction systems. The following 
two subsections discuss proposals from the literature 
for (pure) load balancing (6.2) and affinity-based rout­
ing (6.3) Due to space limitations, most of these 
schemes can only briefly be characterized here; how­
ever, in section 6.3, one class of algorithms (table­
driven, affinity-based schemes) will be discussed in 
more detail. At the end of this section, we discuss some 
observations from a trace-driven simulation study on 
purely table-driven schemes and argue that dynamic, 
group-based schemes may be a better approach for 
transaction routing. 

6.1 Workload Allocation in Existing TP Systems 

Workload allocation in current distributed TP systems 
has already been characterized in previous sections. 
Using our classification criteria, we can summarize the 
characteristic features of the various systems as shown 
in Figure 7. The criteria are ordered according to 
Figure 1 (groups 1-4), although some criteria do not 
apply or their value cannot be determined from the 
available documentation. Point 1 (load balancing vs. 
affinity-based routing) has not been specified for static 
schemes that rely on manual assignments. In these 
systems, it is up to the administrator and his or her 
allocations whether load balancing or an affinity-based 
routing can be achieved. 

A static terminal allocation with no further load 
distribution by the transaction processing (BE) nodes 
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DEC Vax-Ciusters: 
1) load balancing (send to least utilized node) 
2) system architecture, execution model: SD with 

distributed locking protocol [ 11] 
program allocation: full replication 

3) centralized FE approach, message-based communi­
cation, source-initiated routing, non-preemptive 

4) dynamic, non-adaptive, individual routing 
information used: CPU utilization 

IMS/MSC: 
2) system architecture: SN 

program allocation: distribution (no replication) 
data allocation: data partitioning (at database/file level) 
execution model: local transaction execution 

3) isolated decentralized BE approach, message-based 
communication, source-initiated routing, 
non-preemptive 

4) static, non-adaptive (manual), group-based routing 
(transaction type), deterministic (destination node deter­
mined by program location) 

CICS ISC (Intersystem Communication): 
2) system architecture: SN 

program allocation: distribution (no replication) 
data allocation: data partitioning (at database/file level) 
execution model: program-to-program communication 

or DB call shipping 
3) - 4) as for IMS/MSC 

Tandem: 
2) system architecture: SN 

program allocation: partial replication 
data allocation: data partitioning (horizontal fragmen­

tation of relations for NonStop SQL) 
execution model: program-to-program and 

DBMS-to-DBMS communication (distribution of 
suboperations) 

3) isolated decentralized BE approach, message-based 
communication, source-initiated routing, 
non-preemptive 

4) static, non-adaptive (manual), group-based routing 
(transaction type), non-deterministic (program 
replication) 

Figure 7. Characteristics of load allocation schemes in exist­
ing TP systems. 

can also be classified with our framework. It embodies 
a static, nonadaptive, group-based, and deterministic 
approach in which the destination node is solely deter­
mined by the terminal identification. This allocation can 
easily be established with routing tables in communica­
tion controllers. An adaptive version would result if the 
terminals of a crashed node were automatically reas­
signed to one or more of the surviving processors. 

6. 2 Load-Balancing Schemes 

Many load balancing schemes have been proposed in 
the literature. Two of them, random splitting [5] and 
"send to least utilized node" (according to some load 
index) are classified in Figure 6. These simple schemes 
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are not affinity based and therefore not appropriate for 
transaction processing. They implicitly assume com­
pletely homogeneous workloads consisting of jobs 
(transactions) with similar resource requirements. They 
further assume that a transaction can be executed on 
any node with no communication, I/Os, or lock con­
tention. Random splitting is a static scheme in which 
the destination node is determined at random according 
to a prespecified probability function. 

Load-balancing schemes for replicated data bases are 
discussed in [39-41]. They consider only queries 
(read-only operations) to eliminate lock contention as 
well as the overhead for keeping all replicas up to date. 
Fully replicated data bases are assumed in [39, 41] so 
that every node can execute a query without any com­
munication. The main objective in [39, 40] is to bal­
ance the number of CPU-bound and I/O-bound queries 
per node, assuming that queries can be grouped in one 
of these two categories before their execution. 
Thomasian [ 41] uses queuing models to estimate query 
response times and to find the node with the shortest 
execution time for a query. 

6.3 Affinity-Based Routing Schemes 

Affinity-based routing schemes aim at load balancing as 
well as supporting node-specific locality to reduce the 
amount of communication, I/0, or global lock conflicts 
(see section 2). It is most easily achievable for data 
partitioning or data sharing with primary copy locking. 
In both cases, a transaction is preferably assigned to 
that node controlling most of the data base portions the 
transactions is likely to access. This is basically a static 
decision (permitting a group-based or table-driven rout­
ing scheme) that only needs to be adapted if the data or 
PCA allocation or the reference pattern of transaction 
types change. 

Before discussing the table-driven approaches, we 
briefly look at proposals for individual routing [42, 43]. 
They compare various dynamic routing schemes for 
data partitioning systems with a central FE node for 
load distribution. The key problem of these schemes 
appears to be the overhead associated with the determi­
nation of the destination node. For every incoming 
transaction, they calculate a response-time estimate for 
every node, and assign the transaction to the processor 
with the best estimate. These calculations are fairly 
complex (no cost analysis is provided), although a 
number of significant simplifications (e.g., no lock 
contention) are applied to keep the formulas analyti­
cally tractable. In [43], the nonadaptive algorithms 
from [42] are extended by feedback mechanisms to 
reduce the dependencies on accurate information about 
resource requirements. 
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Table-driven affinity-based routing schemes. The 
overhead of individual affinity-based routing can be 
significantly reduced by using a table-driven (group­
based) workload allocation. On arrival of a transaction, 
the destination processor can simply be determined by a 
"lookup" in the routing table. On the other hand, the 
computation of the routing table itself may be expen­
sive and typically requires extensive a priori informa­
tion (or estimates based on prior measurement data), 
e.g., resource requirements or reference behavior. 
Typically, table-driven routing schemes are either 
semidynamic or static, depending on whether the com­
putation method permits an automatic adaptation of the 
routing table to changing conditions. However, we will 
consider a group-based approach as dynamic if the 
destination node is not solely determined by a routing 
table (or equivalent data structure), but the current 
system state at transaction arrival time is also taken into 
account. 

Several methods for calculating a routing table have 
already been proposed in the literature. In Figure 8, the 
characteristic features of these schemes are summarized 
according to the four groups outlined in Figure 1. They 
generally assume either a data partitioning system or 
data sharing with primary copy locking, since both 
approaches allow a similarly good prediction of the 
communication frequency (if the transaction reference 
behavior is known). The objective function in most of 
these schemes is to minimize the number of remote 
requests by means of an affinity-based routing while 
achieving roughly the same CPU utilization for all 
nodes. Main input parameters of the algorithms are the 
number of nodes, mean arrival rate per transaction type 
(workload group), CPU requirements per transaction 
type (average path length), and a reference matrix (or 
equivalent). In addition to the routing table, the schemes 
generally also determine a suitable data/PCA alloca­
tion. Recall, however, that a dynamic adaptation of the 
data/PCA allocation (together with the routing table) is 
only possible for data sharing, in general. 

Cornell, Dias, and Yu [44] transform the quadratic 
optimization problem into a linear one and apply opti­
mal solutions to it. To make this possible, a determinis­
tic (nonprobabilistic) routing is necessitated in which 
every transaction type has to be assigned in its entirety 
to one node. Apart from this disadvantage, the compu­
tation method is too expensive to allow a dynamic 
adaptation of the routing table during transaction pro­
cessing. This method has therefore been classified as 
static in Figures 6 and 8. In addition, their computation 
method determines the data allocation for which a 
frequent adaptation is not possible in data partitioning 
systems. The methodology of [44] has also been applied 
in [45], but for data sharing and a token ring-based 
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Cornell, Dias, and Yu [44]: 
1) affinity-based routing 
2) system architecture: SN 

program allocation: full replication 
data allocation: data partitioning (data allocation at 

database /file level) 
execution model: DB call shipping 
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3) centralized FE approach, message-based communication, 
source-initiated routing, non-preemptive 

4) static, non-adaptive, group-based routing (transaction 
type), deterministic 
computation method: optimal 
solution, mathematical programming 
information used: 
number of nodes, reference matrix, CPU requirements 

Yu, Cornell, Dias, and lyer [45]: 
1) affinity-based routing 
2) SD with 'pass-the-buck' protocol for concurrency control, 

full program replication 
3) - 4) as in [44] 

Yu, Cornell, Dias, and Tbomasian [46): 
1) affinity-based routing 
2) system architecture: SN 

program allocation: full replication 
data allocation: data partitioning (data allocation at 

database /file level) 
execution model: DB call shipping or 1/0 request shipping 

3) centralized FE approach, message-based communication, 
source-initiated routing, non-preemptive 

4) static, non-adaptive, group-based routing (transaction 
type), non-deterministic (probabilistic) 
computation method: approximative solution, 

mathematical programming + iterative search 
information used: number of nodes, reference matrix, 

CPU requirements, arrival rates, CPU capacity, 
lock conflict probability, 1/0 delay 

Reuter [7]: 
l) affinity-based routing 
2) SD with primary copy locking, full program replication 
3) message-based communication, source-initiated routing, 

non-preemptive 
4) sernidynamic, group-based routing (transaction type), 

deterministic 
computation method: simple, two-step heuristic 

(routing table is determined in step l, PCA 
allocation in step 2) 

information used: number of nodes, reference matrix, 
CPU requirements, arrival rates, CPU capacity 

Rabm [47]: 
1) affinity-based routing 
2) data partitioning (SN) or (SD) with primary copy locking, 

full program replication 
3) message-based communication, source-initiated routing, 

non-preemptive 
4) semidynarnic, group-based routing (transaction type), 

non-deterministic (probabilistic) 
computation method: iterative search heuristic 

(coordinated calculation of routing table and 
data/PCA allocation) 

information used: number of nodes, reference matrix, 
CPU requirements 

Figure 8. Characteristics of some table-driven transaction 
routing schemes. 



188 J. SYSTEMS SOFTWARE 
1992; 18:171-190 

synchronization protocol ("pass-the-buck") used in 
IMS data sharing. 

To achieve a probabilistic routing, an even more 
expensive, approximate determination of the routing 
table has been proposed [46]. The scheme works in two 
steps. The first step uses the method from [ 44] to 
calculate an optimal nonprobabilistic routing table and 
the data allocation. In the second step, an iterative 
search procedure has been applied that uses the data 
allocation of step 1 and strives to find a probabilistic 
routing table that minimizes the average response time. 
For this purpose, an analytical model is used during 
the search procedure to calculate an estimate for the 
average response times. 

The computational overhead of both schemes seems 
prohibitive for use in an adaptive (semidynamic) 
scheduling policy. Also, given that the input data for 
the algorithms is based on averages or estimates, and 
many important dynamic aspects cannot be considered 
a priori (hit ratios, concurrency control conflicts, etc.), 
it seems superfluous to try to derive optimal solutions 
or to predict the exact response time. Much more 
efficient heuristic algorithms to determine the routing 
table and data/PCA allocation have been proposed [7, 
4 7]. The proposal in [7] is restricted to a deterministic 
load assignment and works in two steps. The first step 
calculates a routing table such that each node has to 
process about the same amount of work (load balanc­
ing). The second step determines a PCA allocation that 
minimizes the number of remote requests for the load 
allocation of step I. The scheme in [ 4 7] permits a 
probabilistic routing and determines the load and 
data/PCA allocation in a coordinated way to achieve a 
lower number of remote requests. In each step of this 
iterative heuristic, a transaction type (or some part of 
it) is assigned to one node such that this node is not 
overloaded. This assignment starts with the largest 
transaction type and is continued until all workload 
groups are allocated. The data/PCA distribution is 
adapted in each step of the assignment procedure such 
that the load distributed so far can be processed with a 
minimum of internode communication. 

Routing tables determined with the latter method 
were used for load allocation in an empirical simula­
tion study of data-sharing systems [23, 24]. The simula­
tion system was driven by traces of six real-life transac­
tion processing applications and included different 
algorithms for concurrency control (among them PCL) 
and buffer management. Though substantial perfor­
mance benefits of affinity-based over random routing 
schemes could be quantified, the problems of a purely 
table-driven routing scheme were also revealed. It 
turned out that with the predetermined transaction allo­
cation, load balancing could not generally be achieved 
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(routing table and PCA allocation remained unchanged 
during a simulation run). Not only great differences in 
the CPU utilization of different nodes and overleaded 
CPUs were observed, but also significant differences 
with respect to I/0, communication, and concurrency 
control conflict frequencies. However the algorithms 
for calculating a routing table usually (have to) assume 
that the frequency of these events and the resulting 
CPU overhead and response-time delays are nearly the 
same in all nodes (in fact, even the communication 
overhead for remote requests is generally ignored in the 
calculation of the routing table). As a consequence, the 
table-driven routing often failed to achieve a balanced 
system utilization. This was particularly a problem for 
higher transaction rates, where not only increased CPU 
requirements but also increased data contention had to 
be dealt with. 

In part, these problems may be resolved by dynami­
cally adapting the routing table (semidynamic approach) 
and additionally by applying local workload manage­
ment techniques. Also, not all performance problems 
can be solved by load control techniques but are influ­
enced by many other factors (data base and application 
design, algorithms used for concurrency control and 
buffer management, etc.). Still, our experience indi­
cates that a purely table-driven approach is not appro­
priate for achieving load balancing, although it is an 
efficient way to support affinity-based routing decisions. 
This is because only the average CPU utilization may 
be predictable and can thus be balanced by a predeter­
mined routing table, but not the actual utilization. Even 
a prediction of the average utilization is difficult and 
based on many simplifications and estimates. 

A possible solution may be dynamic, group-based 
approaches that draw a routing decision from a routing 
table and also consider the current system state (e.g., 
CPU utilization) to avoid assignments to already loaded 
systems. Such schemes would normally assign transac­
tion requests to the node where they can be processed 
with minimal communication overhead. Only if the 
preferred destination is already loaded would a different 
routing decision be drawn. In this way the number of 
nonpreferable assignments can be reduced, particularly 
if compared with a nondeterministic routing in which a 
transaction type is allocated according to a predeter­
mined probability function. The details and quantitative 
evaluation of such an approach, however, are subjects 
for future research. 

7. CONCLUSIONS 

Effective workload allocation is a key factor for high 
performance in distributed transaction systems. Apart 
from load balancing, transaction routing should support 
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transaction processing with a mtmmum of internode 
communication, I/0, and lock delays. To this end, 
affinity-based transaction routing that tries to achieve 
node-specific locality by assigning transactions that 
access the same data base portions to the same destina­
tion node(s) should be used. In addition, load distri­
bution should be adaptive to permit a flexible and 
automatic adaptation to changing conditions and to 
simplify system administration. Current TP systems fail 
to provide such load allocation strategies. They gener­
ally apply static workload allocation schemes controlled 
by system personnel (e.g., static terminal assignment to 
nodes). 

Developing effective and efficient transaction routing 
policies is difficult. One complication arises from the 
fact that load balancing alone is not sufficient for 
efficient transaction execution, but that data base­
related aspects (communication, 1/0, data contention) 
are generally more important factors. In addition, 
there are numerous workload and system dependencies 
and realization alternatives to consider, resulting in 
a huge design space. The framework presented here is 
a first attempt to summarize the major dependencies 
and to structure the solution space. The discussion was 
based on a classification of alternative system architec­
tures and execution models for distributed transaction 
processing. We found that the homogeneous, locally 
coupled SN and SD architectures offer the highest 
potential for workload allocation. We then described 
the major structural and implementation aspects to be 
considered and revealed basic design tradeoff's. Finally, 
the classification and evaluation of existing implementa­
tions and proposals for transaction routing demon­
strated the usefulness and power of our framework. 

So far, implementations and proposals for transaction 
routing are mostly based on a source-initiated approach 
and message-oriented communication. The discussion 
in section 4, however, shows that server-initiated poli­
cies and storage-based communication are viable alter­
natives that deserve serious investigation. While we 
have concentrated here on workload allocation for 
canned transactions, separate strategies may be neces­
sary for batch transactions and complex ad-hoc queries 
because of their large resource requirements, which 
may penalize the concurrent execution of short transac­
tions. Local load control measures and their coordin­
ation with global control decisions is another important 
area for future research. 
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