
J. SYSTEMS SOFTWARE 171
1992; 18:171-190

A Framework for Workload Allocation in
Distributed Transaction Processing Systems

Erhard Rahm
Department of Computer Science, University of Kaiserslautern, Kaiserslautern, Germany

Ever-increasing demands for high transaction rates,
limitations of high-end processors, high availability,
and modular growth considerations are all driving
forces toward distributed architectures for transaction
processing. However, a prerequisite to taking advan­
tage of the capacity of a distributed transaction pro­
cessing system is an effective strategy for workload
allocation. The distribution of the workload should not
only achieve load balancing, but also support an effi­
cient transaction processing with a minimum of inter­
system communication. To this end, adaptive schemes
for transaction routing have to be employed that are
highly responsive to workload fluctuations and config­
uration changes. Adaptive allocation schemes are also
important for simplifying system administration, which
is a major problem in distributed transaction process­
ing systems. In this article we develop a taxonomic
framework for workload allocation, in particular, trans­
action routing, in distributed transaction processing
systems. This framework considers the influence of
the underlying system architecture (e.g., shared noth­
ing, shared disk) and transaction execution model as
well as the major dependencies between workload,
program, and data allocation. The main part of the
framework covers structural (or architectural) and
implementational alternatives for transaction routing to
help identify key factors and basic tradeoffs in the
design of appropriate allocation schemes. Finally, we
show how existing schemes fit our taxonomy. The
framework substantially facilitates a comparison of the
different schemes and can guide the development of
new, more effective protocols.

1. INTRODUCTION

Transaction processing (TP) systems provide online
access to a shared data base for many concurrent users.

Address correspondence to Dr. Erhard Rahm, Dept. of Com­
puter Science, University of Kaiserslautern, P.O. Box 3049, D-
6750 Kaisers/au tern, Germany.

© Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010

They are used in a variety of business applications such
as airline reservations, electronic banking, securities
trading, and communicating switching to enable the
online user to execute preplanned functions (canned
transactions). These functions are implemented by
transaction programs that access the data base. The
essential software components of a TP system are the
set of transaction programs, the data base management
system (DBMS), and the so-called TP monitor. The TP
monitor controls the execution of transaction programs
and supports their interaction with the terminal and the
DBMS. The TP system provides recovery and concur­
rency control functions guaranteeing that transactions
are either completely executed or not at all (atomicity),
that modifications of successful (committed) transac­
tions survive system and media failures, and that users
see a consistent state of the data base despite concurrent
access by other users.

The workload of TP systems is commonly dominated
by short interactive transactions that belong to a limited
number of transaction types (e.g., the debit-credit
transaction type [1]). A transaction request by a termi­
nal operator is first processed by the TP monitor, which
analyzes the corresponding input message, performs
authorization functions, and starts the appropriate trans­
action program upon availability of resources. During
execution of the transaction program, multiple data
base operations are typically submitted to and pro­
cessed by the DBMS. At the end of the transaction, a
commit protocol guarantees repeatability of the transac­
tion's updates (e.g., by writing redo log information to
nonvolatile storage) before a response message is re­
turned to the terminal. The typical resource consump­
tion of such a transaction ranges between 50,000 and a
few million machine instructions, up to 30 disk 1/0s
and 2-20 messages (depending on whether the applica­
tion is distributed). Currently, the largest TP systems
support more than 100,000 terminals and 1,000 disks,
and process thousands of transactions per second [2].

0164-1212/92/$5.00

172 J. SYSTEMS SOFTWARE
1992; 18:171-190

The traditional approach to TP systems is the use of
large mainframe computers with a centralized DBMS
handling the common data base. However, the need for
ever-increasing transaction rates, high availability, and
modular expandability (horizontal growth) has rendered
this approach inappropriate for many applications and
resulted in the development of distributed TP systems.
These distributed systems are based on a variety of
different architectures, which will be classified in section
3. A common problem of distributed TP systems is
how to effectively use all nodes of the system to
achieve high transaction rates and short response times.
This problem is closely related to the question of which
strategy should be used for workload allocation, i.e.,
for the allocation of the transaction workload among
the processing nodes. Ideally, the workload is assigned
in such a way that transactions can be processed with a
minimum of communication and I/0 operations and
little data contention (e.g., lock conflicts) and resource
contention {e.g., CPU waits).

The major form of workload allocation in distributed
TP systems is transaction routing, which determines at
which system (node) an incoming transaction request is
to be processed (i.e., where the corresponding transac­
tion program should be started). Other types of work­
load allocation deal with the assignment of smaller
units of work than transactions (e.g., data base opera­
tions; see section 3). Transaction routing in existing
distributed TP systems is not well advanced, but relies
heavily on static assignments of terminals and programs
to nodes and manual interactions by the system admin­
istrator. Such approaches prevent effective use of the
system and make administration more and more com­
plex as the number of nodes, terminals, and programs
increases. What is needed are automatic, self-tuning
schemes for workload management, particularly for
transaction routing, that support efficient transaction
processing. Unfortunately, this task is much more com­
plicated than load balancing, which has been the focus
of related research in other distributed systems [3-6].
In contrast to typical assumptions in these studies, we
have to consider a large number of different workload
(transaction) types with different resource and perfor­
mance requirements (throughput, response times). Fur­
thermore, transaction execution not only requires CPU
resources, but causes I/0 and communication overhead
and delays and is subject to data contention (lock
conflicts, aborts, etc.). To take these factors into
account, appropriate routing schemes must also con­
sider the reference behavior of transaction types against
the data bases.

The development of "good" routing schemes is
difficult and complicated by many design alternatives
and dependencies on the underlying system architec-

E. Rahm

ture. To guide the selection of promlSlng routing
schemes and permit a (qualitative) evaluation and com­
parison of different approaches, we have developed a
general framework for transaction routing that takes the
most important system dependencies and design criteria
into account. The next section presents a more detailed
discussion of the requirements for appropriate routing
schemes and provides an overview of our framework.
Section 3 classifies the major approaches for distributed
transaction processing and discusses their implications
for workload allocation. In addition, the interrelation­
ships between workload, programs, and data allocation
are outlined. The individual classification criteria and
design alternatives for transaction routing are then
described in the two subsequent sections. Finally,
we outline and evaluate sample routing schemes in
section 6.

2. REQUIREMENTS AND FRAMEWORK
OVERVIEW

Appropriate schemes for transaction routing should be
effective, efficient, automatic, adaptive, and stable:

• Effectiveness is the most important requirement. This
demands routing strategies that improve the perfor­
mance of the transaction processing systems, e.g.,
compared to static load assignments or a random
distribution of the workload. Typically, the system
should support high transaction rates while satisfying
specified response time limits (a possible restriction
could demand that 95% of type X transactions have
subsecond response times).

• Efficiency means that the overhead for drawing rout­
ing decisions, getting the required information, or
assigning transaction requests to the destination node
should be small compared to the potential perfor­
mance benefits. In general, there is a tradeoff between
effectiveness and efficiency, since to improve effec­
tiveness beyond a certain point, more complex algo­
rithms requiring more information collection may
have to be used.

• Automatic and adaptive schemes are required to
reduce dependency on system personnel (simplify
administration) and permit fast reactions to changed
conditions in the load profile or system configura­
tion. Adaptive schemes require the continuous moni­
toring of the system to gather dynamic information.
This information has to be analyzed (e.g., periodi­
cally) to detect conditions that require corrective
actions (performance problems, significant changes
in the reference behavior, node failure, etc.). In part,
monitoring and corrective actions may have to be

A Framework for Workload Allocation

carried out by local load control components, which
should be coordinated with the workload allocation
strategy.

• Stability of the routing scheme under contingent
conditions such as overload or after partial failures is
another consideration for appropriate algorithms.
This requirement is particularly important for adap­
tive schemes to avoid overreaction to minor system
and workload changes [7]. In addition, it must be
detected when automatic corrections do not prove
useful so that permanent problems (e.g., massive
lock contention on data base hot spots, insufficient
hardware resources, etc.) are reported to the
operator.

To be effective, a routing scheme should support
transaction processing with a minimum of overhead and
deactivations due to intersystem communication, 1/0s,
data contention (aborts, lock waits), or physical resource
contention (CPU waits, paging, etc.). Of course, these
points are influenced by many factors, such as hard­
ware environment (number and capacity of processors,
main memory sizes, disk subsystem, communication
system, etc.), system architecture, quality of sys­
tem and application software, data base design,
administration, or load characteristics. Still, there are
two basic measures for workload allocation, affinity­
based routing and load balancing, which we consider
essential for high-performance transaction processing.

Affinity-based transaction routing. Affinity-based
routing uses information about the transactions' refer­
ence behavior to route transactions with an affinity to
the same data base portions to the same node. In this
way, it strives to achieve what we call node-specific
locality of reference, which requires that transactions
running at different nodes should mainly access disjoint
portions of the data base. Thus, affinity-based routing
can substantially improve performance for transaction
processing.

• Node-specific locality can significantly reduce the
frequency of internode communication by assigning
transactions to a node where they are largely locally
executed. This aspect depends on various factors,
e.g., the underlying system architecture, and is dis­
cussed further in section 3. Reduced internode com­
munication improves throughput (less overhead) and
response times. Shorter response times also reduce
data contention (lock-holding times).

• Improved locality of reference can be used by the
data base buffer manager to reduce I/0 overhead and
delays (better hit ratios).

J. SYSTEMS SOFTWARE
1992; !8:17!-!90

173

• Most concurrency control conflicts occur between
transactions running on the same node. These local
conflicts can be resolved faster than global conflicts
(e.g., shorter lock waits).

Since it is not generally feasible to predict the data base
references of individual transactions, affinity-based
routing is based on transaction types or workload groups
for which homogeneity is assumed (i.e., transactions of
the same workload group exhibit similar reference
characteristics and resource requirements). For canned
transactions, information on the reference behavior and
resource requirements is generally available a priori or
can be collected via monitoring. Node-specific locality
is hard to obtain if the references of a transaction type
are spread over the entire data base, if some data base
areas are referenced by most transactions, or if there
are dominant transaction types that cannot be processed
by a single node without overloading it. Additionally,
the more nodes to be used, the less node-specific
locality may be achievable.

Load balancing. Load balancing is the second key
objective of effective routing strategies. It strives to
find a load allocation that avoids overloading individual
nodes, which would cause excessive queuing delays for
the bottleneck resources (CPU, main memory, etc.).
This is particularly difficult during peak load periods,
when all nodes must be highly utilized to sustain the
required transaction rate, but without coming into
the thrashing region of resource contention.

While other studies of workload allocation in dis­
tributed systems [3-6] have concentrated solely on load
balancing, in general we have to support load balancing
as well as affinity-based routing. This is because trans­
action response times are often determined more by
data base-related factors like I/0 delays, lock waits, or
remote requests than CPU waits or paging delays.
Unfortunately, supporting node-specific locality and
balancing the load are often contradictory goals (e.g., a
dominant transaction type may have to be assigned to
multiple nodes), making workload allocation addition­
ally difficult.

Classification Criteria

Finding a strategy for transaction routing that satisfies
the above requirements is difficult and is influenced by
many factors. We present a framework for workload
allocation in distributed TP systems that attempts to
clarify the most important dependencies and illustrate
the spectrum of possible solutions.

Figure 1 provides an overview of our classification
criteria. We separate the schemes into two categories,
namely affinity-based routing strategies and load-

174 J. SYSTEMS SOFTWARE
1992; 18:171-190

balancing schemes. Load-balancing schemes only aim
at balancing the load; most strategies proposed for
general distributed systems (not considering transaction
processing/data base aspects) belong to this class.
Affinity-based approaches, on the other hand, strive to
achieve load balancing as well as affinity-based routing
by considering the reference behavior of transactions
and other dependencies. The next four criteria in
Figure 1 refer to implications for workload allocation
from the underlying system architecture, the allocation
of transaction programs and the data base, and the
transaction execution model. These dependencies will
be outlined in section 3. The remaining classification
criteria deal with structural and implementational
aspects and alternatives for transaction routing and will
be discussed in sections 4 and 5, respectively. Natu­
rally, some of our classification criteria overlap with
the taxonomies of load-balancing schemes [3, 5]. Fur­
thermore, transaction routing has similarities to mes­
sage (packet) routing in communication networks,
where the goal is to minimize packet transfer times and
maximize network throughput. Tanenbaum [8] distin­
guishes between nonadaptive (static) and adaptive
schemes as well as between centralized, isolated, and
distributed policies for network routing.

3. INFLUENCE OF SYSTEM ARCHITECTURE

This section discusses the impact of different architec­
tures for distributed transaction processing on workload
allocation. In section 3.1, we present a brief classifica­
tion of distributed TP systems and discuss the role
of workload allocation in the various approaches. In
section 3.2, we outline the relationships among work­
load, program, and data allocation. Section 3.3 dis­
cusses the influence of the transaction execution model
and compares the data partitioning and data sharing
approaches with respect to workload allocation.

distributed TP systems

functionally homogeneous systems

E. Rahm

1) Affinity-based routing schemes vs.load balancing schemes

2) System architecture and execution model
* System architecture (shared disk, shared nothing, etc.)
* Program allocation (distribution, partial replication, full

replication)
* Data allocation (partitioning, partial replication, full

replication)
* Transaction execution model

3) Structural aspects for transaction routing schemes
* Location of the global scheduler (front-end or back-end

approach)
* Centralized or decentralized organization
* Isolated or cooperative approach
* Message-based or storage-based communication
* Source- or server-initiated routing
* Preemptive or non-preemptive transaction assignment

4) Implementation aspects for transaction routing
* Static, dynamic or semidynamic schemes
* Adaptive or non-adaptive
* Individual or (workload) group-based routing
* Deterministic or non-deterministic
* Solution method for determining the destination

processor
* Amount of information used

Figure 1. Classification criteria for transaction routing
schemes.

3.1 Classification of Distributed TP Systems

For a rough classification of distributed TP systems, we
distinguish between homogeneous architectures, where
every node has the same functionality with respect to
transaction processing, and (functionally) heteroge­
neous architectures such as client-server models
(Fig. 2). The first subclass is usually further subdivided
into shared memory, shared disk (SD), and shared
nothing (SN) architectures [9].

Shared memory (shared everything). This class
refers to transaction systems running on a tightly
coupled multiprocessor where all processors share a

client/server systems

shared shared disk shared nothing single homogeneous heterogeneous
servers memory (SD) (SN) server servers

Figure 2. Classification of distributed transaction processing systems.

A Framework for Workload Allocation

common main memory as well as peripheral devices
(terminals, disks). Typically, there is only one copy of
the application and system software, which is accessi­
ble to all processors via the shared memory. This
approach is applicable to conventional (centralized)
TP systems with few or no software changes. This
approach has become increasingly popular for UNIX­
based systems running on tightly coupled micro­
processors (Sequent, Encore, Sequoia, Elxi, etc.).

Shared disk (data sharing). In data-sharing sys­
tems, the nodes are autonomous (no shared main mem­
ory; separate copies of operating system, TP monitor,
DBMS, etc.) and share the common data base at the
disk level. Every node in such a system may be a
tightly coupled multiprocessor. Internode communica­
tion takes place by means of message passing (loose
coupling) or via common semiconductor stores, which
offer higher fault isolation than shared main memory
and much faster access than disks (close coupling).
Data (disk) sharing is only applicable if all nodes are in
physical proximity. Existing SD systems include mM's
IMS data-sharing facility [10] and TPF [2] and DEC's
DBMS for Vax Clusters [11].

Shared nothing (disk partitioning), SN systems
also consist of a set of autonomous nodes which are
loosely coupled, in general. Disks are partitioned among
all nodes; the data base may be partitioned, too (data
partitioning), or replicated. This approach is used in
(geographically) distributed data base systems as well
as in locally distributed TP systems. Fully or partially
replicated data bases are of primary interest in
geographically distributed systems to improve data
availability and reduce the frequency of slow read
operations at remote nodes. In local environments, the
data partitioning approach (no replication) is more
common. Existing SN systems include IBM's CICS
[12] and Tandem's Encompass [13] and NonStop
SQL [14].

The client/server approach is often used in
workstation/server environments where the application
programs are executed on workstations (or PCs) and
data base services are provided by single or multiple
homogeneous or heterogeneous server nodes. Data base
machines can be considered as special data base servers
where the clients (executing the application programs
and submitting data base operations) are either worksta­
tions or general-purpose computers (hosts). Similarly, a
distributed server may be based on any of the three
homogeneous multisystem architectures above. Exam­
ples of client/server architectures for transaction pro­
cessing include Camelot [15], Sybase, and SN data
base machines like Teradata's DBC/1012 [16). Remote

J. SYSTEMS SOFTWARE
1992; !8:171-190

175

data base access (RDA) is a SQL-based communication
protocol currently under standardization, that allows a
single program to submit data base operations to multi­
ple heterogeneous servers with different hardware, op­
erating systems, and DBMS [17].

For workload allocation, the SD and SN homoge­
neous approaches promise the highest flexibility. Work­
load allocation in shared memory architectures is usually
handled by the operating system and thus is transparent
to the TP system. In addition, SD and SN are more
powerful than shared memory, since each node in these
systems may be a tightly coupled multiprocessor. In
client/server architectures, data base operations instead
of transaction requests are usually submitted by the
client (user, transaction program). However, this re­
sults in an increased number of work requests and thus
increased communication overhead. Furthermore, some
proposals for client/server cooperation (e.g., RDA) do
not permit free selection of a server, but require the
application programmer to specify the server(s) with
which a connection should be established (fixed work­
load allocation, no location transparency). In the case
of a single server, there is also no potential for work­
load allocation, since this node has to process all data
base operations (potential bottleneck, limited expand­
ability, single point of failure). With functionally spe­
cialized processors within a data base machine (e.g.,
sort processor, join processor, etc.), similar disadvan­
tages exist unless these components. are replicated.

In geographically distributed SN systems, terminals
are usually directly assigned to the physically closest
node to limit the communication delay for transaction
requests. Although this fixed transaction allocation may
be justified by strong geographic locality of reference,
it does not guarantee high performance because load
balancing may be poor (e.g., some nodes may be
overloaded while others are idle). Instead of assigning a
transaction to an already loaded system, it could be
more effective to route it to a different node even it its
execution would require more communication there.

Load balancing is generally more difficult to achieve
in a geographically distributed system than in a local
system. This is because communication overhead and
delays are very high for wide-area networks, making it
impossible to keep (almost) up-to-date information on
resource utilization of remote nodes. In locally dis­
tributed systems with a high-speed interconnect, com­
munication delays are almost negligible, so that routing
decisions can be based on the current utilization of all
nodes. In addition, slow communication is limited to
the input from and response to the terminal, while
remote requests during the execution of a transaction
can be satisfied much faster than over a wide-area
network. Furthermore, system administration is rela·

176 J. SYSTEMS SOFTWARE
1992; 18:171--190

tively easy compared with geographically distributed
systems.

Our discussion will therefore concentrate on locally
coupled SD and SN systems offering the greatest poten­
tial for effective workload allocation. To compare these
two approaches, we discuss the influence of program
and data allocation on workload allocation for both
architectures. In addition, differences in the transaction
execution model and their implications for workload
allocation are analyzed in section 3.3.

3.2 Influence of Program and Data Allocation

In contrast to centralized systems, distributed TP sys­
tems based on SD or SN architecture have to solve
three allocation problems: workload, program, and data
allocation (Figure 3). Workload allocation depends on
program allocation, since a transaction should only be
assigned to one of those nodes that can execute the
corresponding application program. Data allocation is
also important for workload allocation, since a transac­
tion should preferably be assigned to that node where
most of the required data is directly accessible (without
communication delay). Thus, program and data alloca­
tion may limit the set of nodes where a transaction can
or should be processed, resulting in a reduced potential
for load balancing. As shown in Figure 4 and discussed
below, the allocation of programs and data also depends
on the system architecture (SD or SN).

Program allocation. Transaction programs may be
allocated to nodes in one of the following ways:

E. Rahm

work (transaction} requests

l

common database
Figure 3. Allocation problems in distributed transaction
processing systems.

• distribution

• partial replication

• full replication

Program distribution means that each application pro·
gram (transaction type) is assigned to only one node. In
this case, workload allocation is trivial and determined
by the program allocation. A major problem of this
approach is that dominant transaction types (e.g.,

system
lll'chitecture

shared disk
(SD)

shared nothing
(SN)

program
allocation

data
allocation

I
full

J~l:n

I
logical data

partitioning •

(dynQmicdala
r~plication in
main memory)

• if primary copy locking is wed
for coocurren(:y control

program partial
distribution P~1 t•

~~
full

program
replication

~
data partial full

partitioning rep~=tion rep:~n

Figure 4. Program and data allocation in SD and SN systems.

A Framework for Workload Allocation

debit-credit) can easily overload single nodes and thus
prevent good utilization of all nodes. With full replica­
tion, each node can start all application programs. This
leaves the greatest Hexibility for workload allocation,
since each node is eligible for assignment of any trans­
action request. With partial replication, some programs
are replicated on multiple or all nodes.

Program allocations tend to be static, since relo­
cations require manual interaction. Therefore, full
program replication seems most promising from the
perspective of workload allocation, since otherwise a
(partially) static load distribution would be prescribed.
Note that system software (DBMS, TP monitor) is also
fully replicated in homogeneous architectures like SD
and SN.

Full program replication is easily supported for data
sharing by storing the programs on the shared disks. In
SN systems, program replication requires the redundant
storage of programs on the disks of different nodes and
is thus more expensive than with SD. As a conse­
quence, existing SN systems often apply partial pro­
gram replication or program distribution, thus limiting
the selection of destination nodes for automatic transac­
tion assignment. Furthermore, administration becomes
significantly more complicated since the program allo­
cation (as well as the data allocation) has to be deter­
mined and adapted by system personnel.

Data allocation. In the case of data sharing, all
nodes physically share the same disks and, thus, the
data base. Data may be dynamically replicated in main
memory due to caching of data base objects (which
introduces the problem of buffer invalidations).
Although the data base is physically shared, there may
be a logical allocation of data base partitions with data
sharing, e.g., for concurrency control purposes. This
is the case in the primary copy-locking protocol,
where the lock authority is distributed among all
nodes [18].

In SN systems, data base partitions and replicas
reside on disks and therefore constitute physical assign­
ments to nodes. In contrast to logical data allocations
represented by internal control information (e.g., in the
case of data sharing with primary copy locking), physi­
cal data allocations in SN systems are relatively static,
since cables and large data base portions are typically
hard to move. The data allocation has to be determined
by the system administrator and must be coordinated
with the program allocation so that programs are
assigned to the nodes where the data base portions they
access are locally accessible. SN with fully replicated
data bases permits a local processing of all read­
only data base operations and thus has a high poten­
tial for load balancing. On the other hand, this

J. SYSTEMS SOFTWARE
1992; 18:171-190

177

approach requires n-fold disk capacity and makes
update operations very expensive. As pointed out above,
locally coupled SN systems are therefore usually based
on the data partitioning approach (no replication).

The Hexibility of work distribution is also infiuenced
by the units of data allocation, or fragments. If only
coarse fragments are supported, e.g., entire files or
record types, the reference distribution against data
base partitions may be highly skewed, making it diffi­
cult to achieve load balancing (dominant data base files,
etc.). Data partitioning for nonrelational data bases is
usually restricted to such coarse fragments and requires
that every data base operation must not spawn multiple
partitions. Relational data bases permit smaller frag­
ments with horizontal or vertical partitioning of rela­
tions [19]. Data sharing does not require a physical data
allocation of partitions; a logical data allocation can be
based on arbitrarily small fragments, even for nonrela­
tional data bases (e.g., page or record ranges).

In the past, much research has been devoted to the
data allocation problem in distributed systems (see
the survey in [20]). The heuristics proposed in [21] use
prior knowledge of query processing strategies to
determine a suitable fragmentation and allocation of the
data base.

3.3 Distributed Transaction Execution Schemes

The main form of load distribution we have discussed
so far is transaction routing, i.e., the assignment of
entire transactions to nodes. Though it would be desir­
able from a performance point of view to completely
process a transaction locally after its assignment to a
node (to avoid communication overload and delays),
this cannot generally be achieved if resources (applica­
tions, data) are to be shared between nodes. However,
a distributed transaction execution introduces additional
and smaller load distribution units than transactions.
Given that a TP system mainly consists of transaction
programs, TP monitor, and DBMS, we have basically
three levels with different distribution units where com­
munication/cooperation can take place. At the program
level, a distributed transaction execution is possible by
remote procedure calls of external program fragments.
The next finer distribution granule are data base opera­
tions which may be submitted to the DBMS on the
same or a remote machine. This shipping of data base
operations can be done by the TP monitor or the
DBMS. Finer distribution units than data base opera­
tions (e.g., suboperations or lock requests) require
cooperation. between the DBMS of different nodes. In
the first two cases (distributed programs and TP moni­
tors), the underlying system architecture is basically

178 J. SYSTEMS SOFTWARE
1992; 18:!71-190

SN, while DBMS-to-DBMS communication assumes
either SN or SD.

Program-to-program communication (distributed
programs). In this case, a transaction program can
invoke other transaction programs which may reside on
different machines (remote procedure call). This mech­
anism is to be supported by the TP monitor (and
DBMS) since it requires a distributed commit protocol
at the transaction's end. Applications based on the TP
monitors CICS and UTM can make use of this ap­
proach, however without location transparency for the
application programmer. Tandem, on the other hand,
supports this approach with full location transparency
for the programmer. Its TP monitor Pathway keeps
track of the location of called programs (servers) and
routes requests automatically to a node where the called
function is available [22].

In principle, this approach permits a distributed
transaction execution without support by the DBMS if
each program fragment (function) is only permitted to
access local data. In this case, however, we would have
a collection of centralized DBMS requiring a data base
and application design with multiple data bases and
independent schemas. Apparently, this approach is very
inflexible since, data base relocations generally intro­
duce schema and program modifications. Furthermore,
the data base splitting results in a distribution (no
replication) of programs, leaving no potential for a
dynamic workload allocation.

Shipping of data base operations. This coopera­
tion level is supported by the function request shipping
facility of CICS, which is also referred to as DB call
shipping. Data base operations are "shipped" by the
TP monitor to a local or remote DBMS. In the case of a
remote request, the remote TP monitor starts a mirror
transaction and submits the operation to the DBMS
component at its node. CICS provides location trans­
parency to the application program by maintaining
appropriate directories.

In contrast to pure program-to-program communica­
tion, function request shipping permits a transaction
program to access remote data bases. On the other
hand, the smaller distribution unit may result in an
increased number of remote requests. Furthermore,
there is still no communication between the DBMS
components, so that each data base operation must be
completely processed by one DBMS. This is a severe
restriction for relational DBMS, where operations such
as joins may have to process multiple relations (all
relations that may be accessed by a single operation
would have to be stored at the same node.)

E. Rahm

DBMS-to-DBMS communication. This approach
offers the highest flexibility for workload, program,
and data allocation (and thus for distributed transaction
processing), albeit at the expense of the highest imple­
mentational complexity. Application programming is
considerably simplified compared with the previous
approaches, since the programmer sees only one logical
data base (one data base schema). Intersystem commu­
nication is handled by the DBMS and is thus trans­
parent to the program. Also, there are no a priori
restrictions for data, program, and workload allocation,
although full program (and data) replication is more
expensive for SN than for SD (see above).

With data partitioning, communication takes place if
the processing of a data base operation requires access
to the data partition of another node. A simple approach
to get the data is 1/0 request shipping, where each
external object is explicitly requested (and returned in
the case of a modification). This strategy is generally
limited to simple data base operations that require few
data accesses. For more complex operations, an execu­
tion plan has to be generated that determines a distribu­
tion of suboperations (e.g., selection, projection, join,
etc.) that tries to limit the number of remote requests as
well as the amount of data to be transferred. However,
the execution location of these (sub)operations gener­
ally is independent of where a transaction is routed to,
but is determined by the physical data base allocation.
If a data base operation is started on a node not owning
the required data, no load balancing advantage can be
gained and only overhead is created for shipping the
operation to the data owning system and returning the
results. Since every node has to process all operations
of local and remote transactions against its partition,
there is very little potential for load balancing with data
partitioning. Thus, imbalanced system utilization and
overloaded nodes are possible. On the other hand, the
known data allocation makes affinity-based routing
comparatively easy if the reference distribution of
transaction types is known. In this case, transaction
types are simply assigned to the node that controls the
data partition to which most accesses are directed. This
assignment is relatively static, given that the data allo­
cation cannot be changed frequently and the reference
distribution is also stable, and may even be achieved
with program distribution.

With data sharing, the entire processing of data base
operations is local (and does not require development
of distributed execution plans), since all data is directly
accessible. Communication is required for concurrency
and coherence control (treatment of buffer invalida­
tions). Our previous investigations have shown that the
primary copy scheme permits a very efficient concur­
rency and coherence control for data sharing [23, 24).

A Framework for Workload Allocation

It uses a logic partitioning of the data base such that
each node is assigned the synchronization responsibility
or primary copy authority (PCA) for one partition. By
coordinating load and PCA allocation, a transaction can
often be assigned to a node where most of its references
can be locally synchronized. In this way, the prim­
ary copy scheme can use node-specific locality of refer­
ence to limit the number of remote lock requests.
Coherence control can be fully integrated into
the concurrency control protocol to avoid extra
messages [18, 24].

The determination of the preferable destination node
is as simple as for data partitioning if the reference
distribution of transaction types and the current data
(PCA) allocation are known. In contrast to the physical
data allocation in data partitioning systems, however,
the PCA allocation can be dynamically adapted together
with the routing strategy, e.g., when the load profile
changes significantly or the number of systems is
changed. Also, compared to data partitioning, the pri­
mary copy scheme still preserves a high potential for
load balancing since only lock-request processing is
affected by the PCA allocation. However, the largest
part of a transaction can be processed at the node to
which the transaction has been routed. Thus the pri­
mary copy approach combines the load balancing
advantages of data sharing with the ease of affinity­
based routing of data partitioning.

Both architectures, data sharing and data partition­
ing, may employ parallel execution strategies for com­
plex queries and assign independent (nonconflicting)
suboperations to different nodes in parallel. With data
partitioning, the physical data distribution determines
whether a parallel execution is applicable for a given
operation. This limitation is removed for data sharing;
the same objects can be concurrently read in different
nodes, thus increasing the flexibility for parallel pro­
cessing models. Khosafian and Valduriez [25] discuss
parallel execution strategies for SN systems with hori­
zontally partitioned data bases. In [26], the pros and
cons of SN and SD for parallel query processing are
discussed in more detail.

Summary. The discussion in this section has shown
that the homogeneous SN and SD architectures offer
the highest potential for effective load distribution.
Furthermore, only distributed TP systems with DBMS­
to-DBMS communication support flexible load, pro­
gram, and data allocations. Data sharing offers a higher
potential for load balancing than data partitioning, since
each program and data base operation can largely be
locally processed (full program replication, directly
accessible data base). System administration is also
simplified, since no program or physical data allocation

J. SYSTEMS SOFTWARE
1992; 18:171-190

179

have to be determined and adapted. In addition, data
sharing simplifies query processing (no distributed exe­
cution plans) and may offer increased flexibility for
parallel execution strategies.

4. STRUCTURAL CLASSIFICATION ASPECTS
FOR TRANSACTION ROUTING

Four alternatives characterize the physical architec­
ture of the transaction routing component or global
scheduler: front-end (FE) or back-end (BE) approach,
centralized or decentralized realization, isolated or
cooperative policy, and message- versus storage-based
communication. The resulting 12 approaches (the
differentiation between isolated and cooperative
schemes is only applicable for decentralized routing)
together with examples of existing implementations are
shown in Figure 5. Two other organizational aspects
are orthogonal to these alternatives and deal with the
distinction between source- and server-initiated and
preemptive and nonpreemptive load distribution.

4.1 Location of the Global Scheduler (BE vs. FE
Approach)

The location of the global scheduler influences where
the terminals are allocated. In the BE approach usually
found in existing TP systems, terminals are directly
attached to the transaction processing nodes. In this
case, the global scheduler can be seen as part of every
local (BE) TP monitor that determines to which system
an incoming transaction request should be routed for
processing. Typically, the output message for the ter­
minal user has to be returned via the node to which the
terminal is attached. The transfers of transaction
requests and output messages between BE nodes can
incur a substantial communication overhead.

The BE approach is employed by IMS MSC (multi­
ple systems coupling) [27], CICS ISC (intersystem
communication) [12], and Tandem. IMS MSC and
CICS are based on a distribution of programs (no
replication), so that the routing destination is deter­
mined by the program allocation. Tandem supports a
partial program replication, although it is unclear from
the available documents how the destination node is
selected when more than one node can process a given
transaction type. IMS MSC has the additional restric­
tion that every transaction program may access only
local data. CICS and Tandem are based on the data
partitioning approach and support a shipping of data
base operations (in the case of CICS "function request
shipping") or suboperations (Tandem NonStop SQL) to
access remote data.

The FE approach allows a dynamic allocation of
terminals /transactions to transaction processing nodes

180 J. SYSTEMS SOFTWARE
1992; 18:171-190

E. Rahm

/approa~ /woac~

centralized decentralized centralized decentralized

message-based
communication

(mbc)

DEC Vax Ouster
IBM NEF

1\
isolated cooperative

1\ I\
storage-based

communication mbc sbc mbc sbc
(sbc)

Figure 5. Workload allocation-structural aspects.

mbc

MVS JES3

that considers the current load situation at the BE
nodes. Here the terminals are basically attached to the
FE system from where connections to any BE node can
be established. The FE processors are typically com­
munication controllers, which may provide optimized
communication primitives (compared to the communi­
cation among BE nodes) to route transactions to the BE
systems and to receive response messages. Another
advantage of the FE approach is that message process­
ing (routing overhead, logging of input messages, etc.)
can be partially otHoaded from the BE nodes to the FE
nodes. Furthermore, failure of a BE node no longer
requires that connections to a large number of terminals
be reestablished.

Some existing TP systems already use the FE ap­
proach for transaction routing. For instance, a large
U.S. bank is using ffiM TPF (transaction processing
facility) as a FE message switcher to multiple BE IMS
systems [28]. The routing decisions are based on the
account number found in the input messages. The IBM
Network Extension Facility (NEF) for communication
controllers supports transaction routing by user-selected
criteria as well as fast session starts and restarts [28].
The DEC Vax Clusters have a special terminal server
as a FE that tries to route user requests to the least
utilized node to achieve load balancing [11].

4.2 Centralized vs. Decentralized Organization

With the BE approach, transaction routing is usually
decentralized (distributed), since it makes little sense to
allocate all terminals to a single transaction processing
node. This would leave little capacity at this node for
transaction processing and result in a high comrnunica-

sbc

1\
isolated cooperative

I\ I\
mbc

Tandem
!MSMSC
crcs rsc

sbc mbc sbc

tion overhead for routing transactions to and receiving
response messages from the other systems. ffiM's JES3
[29], however, uses the centralized BE approach for
allocating batch jobs, typically submitted by operators
instead of terminal users. It supports workload alloca­
tion among up to eight nodes, including the global
processor that controls load distribution and provides a
single system image to the operator. Since batch jobs
have to specify the resources (e.g., files) they want to
access, JES3 can prevent scheduling jobs simultane­
ously that are going to update the same data.

Running the global transaction scheduler on a single
node may be more appropriate with the FE approach,
provided that no bottleneck is created. The main advan­
tage of the centralized approach is simplicity: one
instance controls the entire system (BE nodes, termi­
nals, etc.), thus facilitating the provision of a single
administration interface. In addition, it guarantees a
single node image to the network [30]. While availabil­
ity problems may be resolved by a (passive) standby
system, a single FE system could become a bottleneck
with growing transaction rates. This is especially a
problem if the FE node is used not only for message
switching but also for other tasks such as monitoring
the BE systems and arrival rates or logging input
messages.

4.3 Isolated vs. Cooperative Strategies

Decentralized routing schemes may be cooperative or
isolated depending on whether the components of the
global scheduler coordinate their routing decisions. In
isolated decentralized routing schemes, there is no
communication between the load distribution compo­
nents for exchanging status information or adapting the

A Framework for Workload Allocation

routing policy. This uncoordinated approach is used in
existing TP systems such as IMS MSC, CICS ISC, and
Tandem. Note, however, that in the case of a decentral­
ized FE approach, status information may be exchanged
between the transaction processing nodes and the FE
nodes performing transaction routing. In addition, ev­
ery node taking part in transaction routing may
adapt its own routing strategy based on its local state
information.

In cooperative decentralized schemes, there is a com­
mon routing policy and explicit cooperation to exchange
status information or adapt the routing strategy. One
coordination approach would be to store global control
information in a shared memory segment accessible by
all processors participating in transaction routing (close
coupling). This may be more efficient than explicit
message exchange and avoids the problems associated
with using global information at different levels of
actualization. Cooperation may also be facilitated by
using a central coordinator for global control decisions
in addition to the load distribution components [31].
The common routing policy is then determined and
adapted by the global coordinator, which communicates
with the load distribution components, e.g., to bring a
new routing strategy into effect. The globiu control
component can provide a single administration interface
to the outside and cooperate with local load control
components to get monitoring information and coordi­
nate local and global scheduling decisions [31].

4.4 Message- vs. Storage-Based Communication

Communication for workload allocation purposes
is needed for transferring input and output messages
(assigning work requests to the destination node
and returning results) and for exchanging control
information. Control information may be exchanged
between local and global load control components
(e.g., monitoring data), or between global scheduler
components in the case of cooperative decentralized
transaction routing (e.g., to adapt the routing policy).

If all processors are loosely coupled, internode com­
munication takes place by means of message passing,
i.e., sending and receiving messages over communica­
tion lines. This approach does not rely on shared
memories, and thus provides good failure isolation and
is not susceptible to memory bottlenecks. On the other
hand, message passing often causes a high CPU over­
head-even in local systems-and global information
needed in multiple systems has to be stored and updated
redundantly, thus introducing additional messages.
Ferguson et al. [4] distinguish between broadcast,
polling, and diffusion schemes for propagating control
information between processors.

J. SYSTEMS SOFTWARE
!992; 18:171-190

181

The disadvantages of message passing can be over­
come by a close coupling using shared (semiconductor)
stores. Such a shared memory segment can be used for
maintaining shared message queues, which allow an
efficient propagation of messages (transaction requests,
response messages) between systems. If the shared
store is nonvolatile, logging of messages can also be
achieved with little or no extra overhead. In a decen­
tralized organization of the global scheduler, the shared
store can be further used for keeping global state and
routing information.

Of course, these uses require a store with appropriate
access and synchronization primitives that provide bet­
ter failure isolation than is typically found for shared
main memory in tightly coupled multiprocessors. Also,
access times of a few microseconds should be possible
to enable synchronous memory accesses without pro­
cess switches. Finally, the number of nodes that can be
connected to the shared store(s) should be high enough.
If, for instance, only four systems can be connected to
the store, a distributed FE approach would be restricted
to two FE and two BE nodes. An alternative in this
case would be to use the common store only within
the FE system (for holding global state and routing
information), and relying on message passing for
communication with the BE nodes.

4. 5 Source- vs. Server-Initiated Routing

The distinction between source (sender)- and server
(receiver)-initiated routing stems from work on global
load-sharing schemes [5]. In our context, the source is
that (FE or BE) processor to which the terminal issuing
a transaction request is attached, while the server is the
(BE) node where the transaction program is started.
With the source-initiated strategy, usually found in
existing transaction systems, the source node deter­
mines where a transaction is routed. The routing deci­
sion is typically made at transaction arrival time
(immediate routing of a transaction) so that queues tend
to form at the server nodes. In a server-initiated algo­
rithm, on the other hand, the servers go looking for
work at the source node(s), e.g., when they have
completed another transaction or the available resource
capacity allows for additional work. Accordingly,
queues tend to form at the source node(s).

Shared message queues in a common store (storage­
based communication) can be used by source- as well
as server-initiated routing schemes. In the former case,
there may be separate input and output queues for
every node in the shared store. To assign a transaction,
the source writes the input message to the (input) queue
of the destination node. These input queues are either
periodically checked by the transaction processing nodes

182 J. SYSTEMS SOFTWARE
1992; 18:171-190

to pick up and schedule waiting requests, or the source
sends a short notification interrupt to the server node
indicating that a transaction request has been inserted
in its input queue. Output messages are written to
the (output) queue of the node, which has to send it
to the terminal. In the BE approach for routing, a node
may have an input as well as an output queue, whereas
otherwise output messages are associated with FE nodes
and input messages with BE nodes.

In the case of a server-initiated scheme, the source
writes input messages either into a single input queue
for all server nodes or into a specific queue if there are
separate input queues for different transaction types or
workload groups. The server nodes pick up requests
from the input queue(s) when they are willing to pro­
cess a new transaction.

The basic advantage of server-initiated routing is that
overloaded nodes are easily avoided, thus giving advan­
tages for load balancing. Furthermore, every server can
directly use information on local conditions, e.g., data
base buffer contents or lock ownerships, to pick a
transaction request that can be processed with little I/0
and communication overhead. On the other hand, there
may be long waiting times for transactions at the source
until a server is willing to process them. This could
lead to "starvation" for some transactions, or at least
to missed response time limits. In addition, selection
of waiting transactions cannot be based solely on
local conditions but must be globally coordinated
by the global scheduler. In this respect, the source­
initiated approach seems superior, though the
server-initiated scheme can be extended to overcome its
problems (e.g., by limiting the selection of waiting
transactions according to global priorities or by forcing
servers to process long-waiting transactions).

All system examples in Figure 5, except JES3, sup­
port a source-initiated workload allocation. JES3 is
based on the server-initiated approach, where server
nodes send job requests to the global processor. The
global processor maintains job information for waiting
batch jobs on a shared (spool) disk device and specifies
in a response message to the requester which job from
the spool queue can be processed [29].

4.6 Preemptive or Nonpreemptive Transaction
Assignment

Another aspect of load distribution is whether migra­
tion of transactions is allowed, i.e., that a transaction
can be rerouted from one processor to another in
mid-execution for load balancing reasons. The distinc­
tion between migration (preemptive) and placement
(nonpreemptive) strategies has been made in related
work on load balancing [32]. Transaction migration

E. Rahm

seems difficult to realize since locks, data base pages,
or terminal control blocks associated with the transac­
tion would have to be moved, too. The migration
overhead is not likely to pay off for short transactions,
but may be acceptable for complex queries to improve
load balancing. Currently, migration is not supported in
distributed transaction and data base systems.

5. ADDITIONAL CLASSIFICATION ASPECTS

Six additional classification aspects coping with imple­
mentation alternatives and the used information com­
plete our framework for transaction routing protocols.
As shown in Figure 6, four of these implementation
criteria allow us to separate ten families of algorithms
for which examples from the literature and existing
systems are specified. In addition to these four criteria,
we discuss which solution methods are applicable to
determine a transaction's destination node and which
types of information can be used by different routing
schemes. Individual algorithms will be discussed in
section 6.

5. 1 Static, Dynamic, or Semidynamic Routing
Schemes

There is no general consensus about the definition of
static and dynamic workload allocation schemes. A
simple approach would be to consider a routing scheme
as dynamic if it uses dynamic information for routing
decisions, i.e., information about the current system
state, and static if the current system state is not taken
into account. For instance, Eager, Lazowska, and
Zahorjan [33] consider a scheme as static if it uses only
information about the average behavior of the system,
ignoring the current state. Casavant and Kuhl [3] use
the time at which the assignment decisions are made to
separate static and dynamic schemes (predetermined
destination vs. routing decisions at job arrival time). In
this article, we will adhere to definitions in [4] that
allow us to distinguish between three categories: static,
dynamic, and semidynamic policies.

As in previous work, we consider a scheme as static
if it does not consider the current system state for
routing decisions but employs a predetermined alloca­
tion strategy. Such an approach is not capable of auto­
matically adapting to changing situations but requires
manual interactions to change the static load assign­
ment. We separate routing policies that take the current
system state into account into dynamic and semi­
dynamic approaches. Dynamic schemes take the
pessimistic view that the system state is constantly
fluctuating and cannot be adequately estimated a priori.
Therefore, they consider the current system state for

A Framework for Workload Allocation

non­
adaptive

/~
group individual

)"'\ rour
deterministic non- non-

deterministic deterministic

CD 0 0
(44] (46] random
(45] Tandem splitting

IMSMSC
CICS ISC

non-
adaptive

/~
gro':lp individual

illng Tng

ILOO· non-
deterministic deterministK:

0 0
1~9] 1411
(40] (42)

least-
utilized-
no<h

non- non-
deterministic deterministic

@ 0
14~]

Figure 6. Workload allocation-implementational aspects.

every transaction assignment. Semidynamic policies are
a compromise between static and dynamic schemes.
They have a static phase in which a common routing
policy is applied to all transactions, and a dynamic
phase in which the current system state is considered to
adapt the routing policy. In the dynamic phase, the
current system state is examined and, if deemed neces­
sary, the routing policy is changed. Typical reasons for
such an adaptation are performance problems (e.g.,
missed response time limits) and changes in the load
profile or configuration (e.g., node failure).

The main advantage of static schemes is efficiency
(low overhead), since no dynamic information has to be
gathered and analyzed. On the other hand, effectiveness
may be poor since no automatic adaptation to changing
conditions is possible. Administration is difficult since
system personnel must determine and adapt the work­
load allocation. On the other hand, dynamic routing
schemes may introduce significant overhead, depending
on how much dynamic information is to be provided
and analyzed. Semidynamic policies may thus be a
reasonable compromise if there are stable phases
where the load profile and system state do not change
significantly.

5.2 Adaptive vs. Nonadaptive Policies

Changes in the load profile and system configuration
(changed number of nodes, new applications) or tuning
measures make adaptations of the workload allocation
necessary. Adaptive workload allocation schemes are
capable of an automatic adaptation to changing condi­
tions [34], while nonadaptive schemes require manual
interactions for any allocation change. By definition,
semidynamic schemes are always adaptive, and static

adaptive

/~
group
routing

/~
detenninisti¢ LLOO-

deterministic

0 ®
[7) [47]

individual

iting

1\0LL•

deterministic

@

J. SYSTEMS SOFTWARE
1992; 18:171-190

183

schemes are nonadaptive (Figure 6). Dynamic policies
may be adaptive or nonadaptive depending on whether
the policy itself is modified according to changed condi­
tions. For instance, a strategy that always assigns a
transaction to the least used node is dynamic (since it
considers the current system state for every transaction),
but not adaptive.

Adaptive policies require dynamic information, i.e.,
a continuous monitoring of the system state. To control
the system, they typically apply feedback loops, which
consist of analyzing the current system state, determin­
ing whether performance problems exist or are likely to
occur in the near future (e.g., due to changes in the
reference behavior), determining the underlying causes
of problems (bottlenecks), and initiating corrective
actions. To limit the control overhead, monitoring
may be done on a sampling basis and the feedback
loop may be executed only periodically or after special
events such as node failures. The average time interval
between successive executions of the control loop is a
tuning parameter that determines the overhead as well
as the responsiveness of the control scheme.

The main corrective action is an adaptation of the
workload allocation policy by changing the algorithms
and/or adjusting control parameters used to implement
the routing policy (e.g., routing table) [32, 34]. With
data sharing and primary copy locking, the data alloca­
tion can also be adapted automatically. Another option
for data sharing (proposed in [35]) is to adapt the
number of transaction processing nodes to current per­
formance requirements (this is typically not possible for
data partitioning since all data base partitions must stay
accessible). This idea seems appealing since the maxi­
mal capacity is generally only needed during periods of
peak transaction rates, so that available resources can
be assigned to other applications (e.g., numeric com-

184 J. SYSTEMS SOFTWARE
1992; 18:171-190

putations) during off-peak periods. If automatic
corrections do not prove effective, the operator can be
informed of the problem as a last resort.

5.3 Individual or (Workload) Group-Based Routing

Group-based routing schemes categorize all trans­
actions into workload groups and use the same assign­
ment policy for all transactions in the same
group. Typically, a workload group consists of trans­
actions with similar reference behavior and resource
requirements that can thus be considered collectively.
A transaction's workload group is derived from inform­
ation associated with the transaction request, i.e., trans­
action type, input parameters, and terminal identifica­
tion. This information allows a flexible definition of
workload groups (by the administrator). For instance, a
workload group can consist of

• all transactions of one or more transaction type

• a fraction of a dominant transaction type determined
by a value range of input parameters (e.g., account
ranges for debit-credit transactions)

• transactions from a specified set of terminals

• combinations of the above alternatives.

In the simplest case, all transactions of a workload
group are assigned to the same node. If this is not
possible for load-balancing reasons, a workload group
can also be allocated to multiple nodes according
to a specified rule (deterministic vs. nondeterministic
schemes; see below). Table-driven routing schemes are
an example of group-based allocation policies where a
routing table determines the determination for every
workload group. This approach is considered adaptive
if the routing table can automatically adapt to changing
conditions (e.g., relocation of a workload group from
an overloaded node to a less utilized one).

Individual routing schemes do not aim at a common
routing strategy for workload groups but treat transac­
tions independently of one another. Since these individ­
ual routing decisions are usually more expensive than
just a table look-up, they may introduce substantially
more overhead than group-based schemes.

5.4 Deterministic vs. Nondeterministic Routing
Schemes

For group-based routing schemes, this aspect separates
the cases in which a workload group is assigned to
exactly one node (deterministic) or multiple nodes
(nondeterministic). Assignment to a single node is
desirable to support node-specific locality of reference

E. Rahm

(affinity-based routing) and simplify the routing deci­
sions. Unfortunately, this restriction leads to overused
nodes if the processing requirements of a single work­
load group exceed the capacity of one node (dominant
transaction type, unexpectedly high arrival rates, etc.).
Therefore, load-balancing considerations often pre­
scribe a nondeterministic scheme in which the destina­
tion node may be different for transactions of the same
workload group. Probabilistic routing schemes are a
typical example of nondeterministic policies in which
the transaction assignment is controlled by some proba­
bilistic distribution (e.g., 80% of group X transactions
are routed to node 1, 20% to node 2).

Individual routing schemes are generally nondeter­
ministic since the workload is to be distributed among
multiple nodes.

5. 5 Solution Method for Determining Processor
Allocation

According to [3], we can here distinguish between
optimal and suboptimal solutions, and in the latter
case approximative and heuristic approaches. Optimal
and approximative approaches formalize the transaction
routing problem within a computational model and try
to find solutions by one of the following methods [3]:

• queuing theory

• graph theory

• mathematical programming

• solution space enumeration and search.

Optimal schemes assume complete knowledge about
the state of the system and resource needs and deter­
mine a processor allocation that optimizes a certain
objective function such as minimal communication
overhead or highest throughput. Their main disadvan­
tages are the typically enormous computation overhead
and the fact that they are necessarily based on a number
of simplifying assumptions. Approximative schemes
only try to find a good instead of the best solution in
order to avoid searching the entire solution space.
Although they are more efficient than optimal schemes,
they generally also use an (over)simplified compu­
tational model of the transaction system. Heuristic
approaches, on the other hand, depend to a lesser
degree on the accuracy of the underlying models. They
try to find a processor allocation even more efficiently
than approximative solutions by avoiding computation­
ally expensive methods and using some intuitive opti­
mizations. For instance, clustering group of processes
that interfere with or communicate heavily to the same
processor [36] generally helps to decrease the commu­
nication overhead; even so, its effect on response times
may not be directly predictable.

A Framework for Workload Allocation

5.6 Amount of Information Used for Transaction
Routing

The information which may be used for load distribu­
tion can be characterized along two lines:

Static versus dynamic information. None of the
information relevant for transaction routing is com­
pletely static, but is subject to change. Nevertheless,
for simplicity and efficiency, some information is
assumed to be static or to change infrequently. Typical
examples are the number of nodes and their respective
CPU capacity or the number of transaction types
(workload groups) and their average resource require­
ments. Dynamic information is collected while the load
is being executed (via monitoring) and used for subse­
quent routing decisions. This kind of information may
change quite frequently. Examples are the current CPU
utilization, response time information per transac­
tion type derived from recent executions, or information
about which data base pages are currently held in the
data base buffers. Static routing schemes use only static
information, while dynamic and semidynarnic schemes
may use dynamic and static information. Use of static
information complicates system administration since
this information must generally be provided by the
administrator.

Other information. This includes

• load characteristics (e.g., arrival rates, resource
requirements, performance goals)

• data base characteristics (e.g., fragmentation)

• processor characteristics (e.g., number of nodes,
resource capacity, utilization).

Some information refers to more than one of these
three categories, e.g., the reference pattern (load and
data base), the current distribution of transaction
requests to nodes (load and processors), or the data/
PCA allocation (data base and processors).

The reference pattern for different workload groups
can be characterized by means of a reference matrix.
Such a matrix shows for every workload group the
frequency of object references with respect to differ­
ent data base fragments over a characteristic period
of time [7].

Resource (CPU, memory, etc.) utilization is dynamic
and can be expressed by different load indices [37, 38].
Examples of load indices include CPU utilization as
observed by a sampling monitor, the length of the
ready queue or average CPU waiting times in the case
of CPU resources, and the paging rate, paging delays,
or hit ratios in the case of memory resources. Routing
schemes that do not use information on resource utiliza-

J. SYSTEMS SOFTWARE
1992; 18:171-190

185

tion are sometimes referred to as load independent;
otherwise they are considered load dependent. Note
that all static schemes are load independent, and that
dynamic and semidynamic schemes may or may not
rely on utilization-based information.

Clearly, many quantities may be useful for workload
allocation. However, practical routing schemes typi­
cally have to base their decisions on comparatively few
parameters because complexity and overhead generally
increase with the amount of information used, though
more effective strategies may result. For the sake of
efficiency, only selected quantities (e.g., CPU utiliza­
tion) can be dynamically monitored and analyzed.

6. SAMPLE APPROACHES TO TRANSACTION
ROUTING

The previous sections showed that the design of a
routing scheme depends on several factors and that
numerous design alternative3 can be chosen. The pre­
sented framework permits us to classify and compare
the various approaches used in existing transaction
systems or proposed in the literature. In section 6.1, we
briefly summarize the characteristics of some allocation
schemes in existing transaction systems. The following
two subsections discuss proposals from the literature
for (pure) load balancing (6.2) and affinity-based rout­
ing (6.3) Due to space limitations, most of these
schemes can only briefly be characterized here; how­
ever, in section 6.3, one class of algorithms (table­
driven, affinity-based schemes) will be discussed in
more detail. At the end of this section, we discuss some
observations from a trace-driven simulation study on
purely table-driven schemes and argue that dynamic,
group-based schemes may be a better approach for
transaction routing.

6.1 Workload Allocation in Existing TP Systems

Workload allocation in current distributed TP systems
has already been characterized in previous sections.
Using our classification criteria, we can summarize the
characteristic features of the various systems as shown
in Figure 7. The criteria are ordered according to
Figure 1 (groups 1-4), although some criteria do not
apply or their value cannot be determined from the
available documentation. Point 1 (load balancing vs.
affinity-based routing) has not been specified for static
schemes that rely on manual assignments. In these
systems, it is up to the administrator and his or her
allocations whether load balancing or an affinity-based
routing can be achieved.

A static terminal allocation with no further load
distribution by the transaction processing (BE) nodes

186 J. SYSTEMS SOFTWARE
1992; 18:171-190

DEC Vax-Ciusters:
1) load balancing (send to least utilized node)
2) system architecture, execution model: SD with

distributed locking protocol [11]
program allocation: full replication

3) centralized FE approach, message-based communi­
cation, source-initiated routing, non-preemptive

4) dynamic, non-adaptive, individual routing
information used: CPU utilization

IMS/MSC:
2) system architecture: SN

program allocation: distribution (no replication)
data allocation: data partitioning (at database/file level)
execution model: local transaction execution

3) isolated decentralized BE approach, message-based
communication, source-initiated routing,
non-preemptive

4) static, non-adaptive (manual), group-based routing
(transaction type), deterministic (destination node deter­
mined by program location)

CICS ISC (Intersystem Communication):
2) system architecture: SN

program allocation: distribution (no replication)
data allocation: data partitioning (at database/file level)
execution model: program-to-program communication

or DB call shipping
3) - 4) as for IMS/MSC

Tandem:
2) system architecture: SN

program allocation: partial replication
data allocation: data partitioning (horizontal fragmen­

tation of relations for NonStop SQL)
execution model: program-to-program and

DBMS-to-DBMS communication (distribution of
suboperations)

3) isolated decentralized BE approach, message-based
communication, source-initiated routing,
non-preemptive

4) static, non-adaptive (manual), group-based routing
(transaction type), non-deterministic (program
replication)

Figure 7. Characteristics of load allocation schemes in exist­
ing TP systems.

can also be classified with our framework. It embodies
a static, nonadaptive, group-based, and deterministic
approach in which the destination node is solely deter­
mined by the terminal identification. This allocation can
easily be established with routing tables in communica­
tion controllers. An adaptive version would result if the
terminals of a crashed node were automatically reas­
signed to one or more of the surviving processors.

6. 2 Load-Balancing Schemes

Many load balancing schemes have been proposed in
the literature. Two of them, random splitting [5] and
"send to least utilized node" (according to some load
index) are classified in Figure 6. These simple schemes

E. Rahm

are not affinity based and therefore not appropriate for
transaction processing. They implicitly assume com­
pletely homogeneous workloads consisting of jobs
(transactions) with similar resource requirements. They
further assume that a transaction can be executed on
any node with no communication, I/Os, or lock con­
tention. Random splitting is a static scheme in which
the destination node is determined at random according
to a prespecified probability function.

Load-balancing schemes for replicated data bases are
discussed in [39-41]. They consider only queries
(read-only operations) to eliminate lock contention as
well as the overhead for keeping all replicas up to date.
Fully replicated data bases are assumed in [39, 41] so
that every node can execute a query without any com­
munication. The main objective in [39, 40] is to bal­
ance the number of CPU-bound and I/O-bound queries
per node, assuming that queries can be grouped in one
of these two categories before their execution.
Thomasian [41] uses queuing models to estimate query
response times and to find the node with the shortest
execution time for a query.

6.3 Affinity-Based Routing Schemes

Affinity-based routing schemes aim at load balancing as
well as supporting node-specific locality to reduce the
amount of communication, I/0, or global lock conflicts
(see section 2). It is most easily achievable for data
partitioning or data sharing with primary copy locking.
In both cases, a transaction is preferably assigned to
that node controlling most of the data base portions the
transactions is likely to access. This is basically a static
decision (permitting a group-based or table-driven rout­
ing scheme) that only needs to be adapted if the data or
PCA allocation or the reference pattern of transaction
types change.

Before discussing the table-driven approaches, we
briefly look at proposals for individual routing [42, 43].
They compare various dynamic routing schemes for
data partitioning systems with a central FE node for
load distribution. The key problem of these schemes
appears to be the overhead associated with the determi­
nation of the destination node. For every incoming
transaction, they calculate a response-time estimate for
every node, and assign the transaction to the processor
with the best estimate. These calculations are fairly
complex (no cost analysis is provided), although a
number of significant simplifications (e.g., no lock
contention) are applied to keep the formulas analyti­
cally tractable. In [43], the nonadaptive algorithms
from [42] are extended by feedback mechanisms to
reduce the dependencies on accurate information about
resource requirements.

A Framework for Workload Allocation

Table-driven affinity-based routing schemes. The
overhead of individual affinity-based routing can be
significantly reduced by using a table-driven (group­
based) workload allocation. On arrival of a transaction,
the destination processor can simply be determined by a
"lookup" in the routing table. On the other hand, the
computation of the routing table itself may be expen­
sive and typically requires extensive a priori informa­
tion (or estimates based on prior measurement data),
e.g., resource requirements or reference behavior.
Typically, table-driven routing schemes are either
semidynamic or static, depending on whether the com­
putation method permits an automatic adaptation of the
routing table to changing conditions. However, we will
consider a group-based approach as dynamic if the
destination node is not solely determined by a routing
table (or equivalent data structure), but the current
system state at transaction arrival time is also taken into
account.

Several methods for calculating a routing table have
already been proposed in the literature. In Figure 8, the
characteristic features of these schemes are summarized
according to the four groups outlined in Figure 1. They
generally assume either a data partitioning system or
data sharing with primary copy locking, since both
approaches allow a similarly good prediction of the
communication frequency (if the transaction reference
behavior is known). The objective function in most of
these schemes is to minimize the number of remote
requests by means of an affinity-based routing while
achieving roughly the same CPU utilization for all
nodes. Main input parameters of the algorithms are the
number of nodes, mean arrival rate per transaction type
(workload group), CPU requirements per transaction
type (average path length), and a reference matrix (or
equivalent). In addition to the routing table, the schemes
generally also determine a suitable data/PCA alloca­
tion. Recall, however, that a dynamic adaptation of the
data/PCA allocation (together with the routing table) is
only possible for data sharing, in general.

Cornell, Dias, and Yu [44] transform the quadratic
optimization problem into a linear one and apply opti­
mal solutions to it. To make this possible, a determinis­
tic (nonprobabilistic) routing is necessitated in which
every transaction type has to be assigned in its entirety
to one node. Apart from this disadvantage, the compu­
tation method is too expensive to allow a dynamic
adaptation of the routing table during transaction pro­
cessing. This method has therefore been classified as
static in Figures 6 and 8. In addition, their computation
method determines the data allocation for which a
frequent adaptation is not possible in data partitioning
systems. The methodology of [44] has also been applied
in [45], but for data sharing and a token ring-based

J. SYSTEMS SOFTWARE
1992; 18:171-190

Cornell, Dias, and Yu [44]:
1) affinity-based routing
2) system architecture: SN

program allocation: full replication
data allocation: data partitioning (data allocation at

database /file level)
execution model: DB call shipping

187

3) centralized FE approach, message-based communication,
source-initiated routing, non-preemptive

4) static, non-adaptive, group-based routing (transaction
type), deterministic
computation method: optimal
solution, mathematical programming
information used:
number of nodes, reference matrix, CPU requirements

Yu, Cornell, Dias, and lyer [45]:
1) affinity-based routing
2) SD with 'pass-the-buck' protocol for concurrency control,

full program replication
3) - 4) as in [44]

Yu, Cornell, Dias, and Tbomasian [46):
1) affinity-based routing
2) system architecture: SN

program allocation: full replication
data allocation: data partitioning (data allocation at

database /file level)
execution model: DB call shipping or 1/0 request shipping

3) centralized FE approach, message-based communication,
source-initiated routing, non-preemptive

4) static, non-adaptive, group-based routing (transaction
type), non-deterministic (probabilistic)
computation method: approximative solution,

mathematical programming + iterative search
information used: number of nodes, reference matrix,

CPU requirements, arrival rates, CPU capacity,
lock conflict probability, 1/0 delay

Reuter [7]:
l) affinity-based routing
2) SD with primary copy locking, full program replication
3) message-based communication, source-initiated routing,

non-preemptive
4) sernidynamic, group-based routing (transaction type),

deterministic
computation method: simple, two-step heuristic

(routing table is determined in step l, PCA
allocation in step 2)

information used: number of nodes, reference matrix,
CPU requirements, arrival rates, CPU capacity

Rabm [47]:
1) affinity-based routing
2) data partitioning (SN) or (SD) with primary copy locking,

full program replication
3) message-based communication, source-initiated routing,

non-preemptive
4) semidynarnic, group-based routing (transaction type),

non-deterministic (probabilistic)
computation method: iterative search heuristic

(coordinated calculation of routing table and
data/PCA allocation)

information used: number of nodes, reference matrix,
CPU requirements

Figure 8. Characteristics of some table-driven transaction
routing schemes.

188 J. SYSTEMS SOFTWARE
1992; 18:171-190

synchronization protocol ("pass-the-buck") used in
IMS data sharing.

To achieve a probabilistic routing, an even more
expensive, approximate determination of the routing
table has been proposed [46]. The scheme works in two
steps. The first step uses the method from [44] to
calculate an optimal nonprobabilistic routing table and
the data allocation. In the second step, an iterative
search procedure has been applied that uses the data
allocation of step 1 and strives to find a probabilistic
routing table that minimizes the average response time.
For this purpose, an analytical model is used during
the search procedure to calculate an estimate for the
average response times.

The computational overhead of both schemes seems
prohibitive for use in an adaptive (semidynamic)
scheduling policy. Also, given that the input data for
the algorithms is based on averages or estimates, and
many important dynamic aspects cannot be considered
a priori (hit ratios, concurrency control conflicts, etc.),
it seems superfluous to try to derive optimal solutions
or to predict the exact response time. Much more
efficient heuristic algorithms to determine the routing
table and data/PCA allocation have been proposed [7,
4 7]. The proposal in [7] is restricted to a deterministic
load assignment and works in two steps. The first step
calculates a routing table such that each node has to
process about the same amount of work (load balanc­
ing). The second step determines a PCA allocation that
minimizes the number of remote requests for the load
allocation of step I. The scheme in [4 7] permits a
probabilistic routing and determines the load and
data/PCA allocation in a coordinated way to achieve a
lower number of remote requests. In each step of this
iterative heuristic, a transaction type (or some part of
it) is assigned to one node such that this node is not
overloaded. This assignment starts with the largest
transaction type and is continued until all workload
groups are allocated. The data/PCA distribution is
adapted in each step of the assignment procedure such
that the load distributed so far can be processed with a
minimum of internode communication.

Routing tables determined with the latter method
were used for load allocation in an empirical simula­
tion study of data-sharing systems [23, 24]. The simula­
tion system was driven by traces of six real-life transac­
tion processing applications and included different
algorithms for concurrency control (among them PCL)
and buffer management. Though substantial perfor­
mance benefits of affinity-based over random routing
schemes could be quantified, the problems of a purely
table-driven routing scheme were also revealed. It
turned out that with the predetermined transaction allo­
cation, load balancing could not generally be achieved

E. Rahm

(routing table and PCA allocation remained unchanged
during a simulation run). Not only great differences in
the CPU utilization of different nodes and overleaded
CPUs were observed, but also significant differences
with respect to I/0, communication, and concurrency
control conflict frequencies. However the algorithms
for calculating a routing table usually (have to) assume
that the frequency of these events and the resulting
CPU overhead and response-time delays are nearly the
same in all nodes (in fact, even the communication
overhead for remote requests is generally ignored in the
calculation of the routing table). As a consequence, the
table-driven routing often failed to achieve a balanced
system utilization. This was particularly a problem for
higher transaction rates, where not only increased CPU
requirements but also increased data contention had to
be dealt with.

In part, these problems may be resolved by dynami­
cally adapting the routing table (semidynamic approach)
and additionally by applying local workload manage­
ment techniques. Also, not all performance problems
can be solved by load control techniques but are influ­
enced by many other factors (data base and application
design, algorithms used for concurrency control and
buffer management, etc.). Still, our experience indi­
cates that a purely table-driven approach is not appro­
priate for achieving load balancing, although it is an
efficient way to support affinity-based routing decisions.
This is because only the average CPU utilization may
be predictable and can thus be balanced by a predeter­
mined routing table, but not the actual utilization. Even
a prediction of the average utilization is difficult and
based on many simplifications and estimates.

A possible solution may be dynamic, group-based
approaches that draw a routing decision from a routing
table and also consider the current system state (e.g.,
CPU utilization) to avoid assignments to already loaded
systems. Such schemes would normally assign transac­
tion requests to the node where they can be processed
with minimal communication overhead. Only if the
preferred destination is already loaded would a different
routing decision be drawn. In this way the number of
nonpreferable assignments can be reduced, particularly
if compared with a nondeterministic routing in which a
transaction type is allocated according to a predeter­
mined probability function. The details and quantitative
evaluation of such an approach, however, are subjects
for future research.

7. CONCLUSIONS

Effective workload allocation is a key factor for high
performance in distributed transaction systems. Apart
from load balancing, transaction routing should support

A Framework for Workload Allocation

transaction processing with a mtmmum of internode
communication, I/0, and lock delays. To this end,
affinity-based transaction routing that tries to achieve
node-specific locality by assigning transactions that
access the same data base portions to the same destina­
tion node(s) should be used. In addition, load distri­
bution should be adaptive to permit a flexible and
automatic adaptation to changing conditions and to
simplify system administration. Current TP systems fail
to provide such load allocation strategies. They gener­
ally apply static workload allocation schemes controlled
by system personnel (e.g., static terminal assignment to
nodes).

Developing effective and efficient transaction routing
policies is difficult. One complication arises from the
fact that load balancing alone is not sufficient for
efficient transaction execution, but that data base­
related aspects (communication, 1/0, data contention)
are generally more important factors. In addition,
there are numerous workload and system dependencies
and realization alternatives to consider, resulting in
a huge design space. The framework presented here is
a first attempt to summarize the major dependencies
and to structure the solution space. The discussion was
based on a classification of alternative system architec­
tures and execution models for distributed transaction
processing. We found that the homogeneous, locally
coupled SN and SD architectures offer the highest
potential for workload allocation. We then described
the major structural and implementation aspects to be
considered and revealed basic design tradeoff's. Finally,
the classification and evaluation of existing implementa­
tions and proposals for transaction routing demon­
strated the usefulness and power of our framework.

So far, implementations and proposals for transaction
routing are mostly based on a source-initiated approach
and message-oriented communication. The discussion
in section 4, however, shows that server-initiated poli­
cies and storage-based communication are viable alter­
natives that deserve serious investigation. While we
have concentrated here on workload allocation for
canned transactions, separate strategies may be neces­
sary for batch transactions and complex ad-hoc queries
because of their large resource requirements, which
may penalize the concurrent execution of short transac­
tions. Local load control measures and their coordin­
ation with global control decisions is another important
area for future research.

REFERENCES

1. A Measure of Transaction Processing Power Datama­
tion 112-118 (April 15, 1985).

2. T. W. Scrutchin, Jr., TPF: performance, capacity, avail-

J. SYSTEMS SOFTWARE
1992; 18:171-190

189

ability, in Proceedings of the IEEE Spring CompCon,
San Francisco, IEEE Computer Society Press, 1987, pp.
158-160.

3. T. L. Casavant and J. G. Kuhl, A taxonomy of schedul­
ing in General-Purpose Distributed Computing Systems,
IEEE Trans. Software Eng. 14, 141-154 (1988).

4. D. Ferguson, G. Leitner, G. Wasilkowski, Y. Yemini,
C. Niko1aou, Dynamic Load Balancing in Distributed
Computer Systems, Technical Report, Columbia Univer­
sity, New York, 1986.

5. Y. Wang, and R. J. T. Morris, Load Sharing in Dis­
tributed Systems, IEEE Trans. Comp. 34, 204-217
(1985).

6. S. Zhou, Performance Studies of Dynamic Load Balanc­
ing in Distributed Systems, Ph.D. Thesis, University of
California at Berkeley, 1987.

7. A. Reuter, Load control and load balancing in a shared
database management system, in Proceedings of the
2nd IEEE International Conference on Data Engi­
neering, Los Angeles, IEEE Computer Society Press,
1986, pp. 188-197.

8. A. S. Tanenbaum, Computer Networks, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

9. M. Stonebraker, The Case for Shared Nothing, IEEE
Database Eng. 9, 4-9 (1986).

10. J. P. Strickland, P. P. Uhrowczik, and V. L. Watts,
IMS/VS: An Evolving System, IBM Syst. J. 21,
490-510 (1982).

11. N. P. Kronenberg, H. M. Levy, and W. D. Strecker,
VAX Clusters: A Closely Coupled Distributed System,
ACM Trans. Comp. Syst. 4, 130-146 (1986).

12. Customer Information Control System (CICS), General
Information, IBM Manual GC33-1055-3, 1987.

13. A. Borr, Transaction monitoring in Encompass: reliable
distributed transaction processing, in Proceedings of the
7th International Conference on Very Large Data
Bases, 1981, pp. 155-165.

14. The Tandem Database Group; NonStop SQL: a dis­
tributed, high-performance, high-availability implemen­
tation of SQL, in Proceedings of the 2nd International
Workshop on High Performance Transaction Sys­
tems, Asilomar, CA, IEEE Computer Society Press,
1987, Lecture Notes in Computer Science 359,
Springer-Verlag, 1989, pp. 60-104.

15. A. Z. Spector, R. F. Pausch, and G. Bruell, Camelot: a
flexible, distributed transaction processing system, in
Proceedings of the IEEE Spring CompCon, San Fran­
cisco, IEEE Computer Society Press, 1988, pp. 432-437.

16. DBC/1012 Data Base Computer Concepts and Facilities,
Teradata Manual C02-0001, 1983.

17. J. Moad, The Database Dimension, Datamation 59-63
(May 15, 1989).

18. E. Rahm, Primary Copy Synchronization for DB-shar­
ing, Infor. Syst. 11, 275-286 (1986).

19. D. Sacca and G. Wiederhold, Database Partitioning in a
Cluster of Processors, ACM Trans. Database Syst. 10.
29-56 (1985).

190 J. SYSTEMS SOFTWARE
1992; 18:171-190

20. A. R. Hevner and A. Rao, Distributed Data Allocation
Strategies, Adv. Comp. 27, 121-155 (1988).

21. P. M. G. Apers, Database Allocation in Distributed
Database Systems, ACM Trans. Database Syst. 13,
263-304 (1988).

22. G. Arceneaux, D. Binger, J. Collins, J. Day, L. Girard,
M. Hughes, R. Kubitz, K. Madsen, M. Noonan, S. Pelt,
R. Wayman, A Close Look at PATHWAY, Technical
Report SEDS-003, Tandem Software Education and De­
sign Support, 1982.

23. E. Rahm, Concurrency Control in Multiprocessor
Database Systems: Concepts, Implementation and
Quantitative Evaluation, Ph.D. Thesis (in German),
Informatik-Fachberichte 186, Springer-Verlag, 1988.

24. E. Rahm, Empirical Performance Evaluation of Concur­
rency and Coherency Control Protocols for Data Shar­
ing, ffiM Research Report 14325, Yorktown Heights,
New York, 1988, to appear in ACM Trans. Database
Syst.

25. S. Khosafian, P. and P. Valduriez, Parallel execution
strategies for declustered databases, in Database
Machines and Knowledge Base Machines, Proceed­
ings of the 5th International Workshop on Database
Machines, 1987 M. Kitsuregawa, H. Tanaka, eds.,
1988, pp. 458-471.

26. H. Pirahest, C. Mohan, J. Cheng, T. S. Liu, P. Selinger,
Parallelism in relational data bases systems: architectural
issues and design approaches, in Proceedings of the
2nd International Symposium on Databases in Paral­
lel and Distributed Systems, Dublin, IEEE Computer
Society Press, 1990.

27. IMS/VS Version 2: Administering the System, ffiM
Manual SC26-4176-l, 1987.

28. ffiM's Transaction Processing Facility: Another SNA
Operating System, SNA Perspective, 8, 2-8 (1987).

29. MVS/Extended Architecture, JES3 Introduction, ffiM
Manual GC23-0049-3, 1987.

30. C. N. Nikolaou, F. N. Eskesen, D. F. Ferguson, N.
Halim, J. A. Pershing, A. Stagg, Issues in the Design of
a Highly Available Multiple Processor Network Attach­
ment, IBM Research Report RC 12594, Yorktown
Heights, New York, 1987.

31. E. Rahm, D. Ferguson, L. Georgiadis, C. Nikolaou, G.
Su, G. Wang, Goal-Oriented Workload Management in
Locally Distributed Transaction Systems, ffiM Research
Report 14712, Yorktown Heights, New York, 1989.

32. P. Krueger and M. Livny, A comparison of preemptive
and non-preemptive load distributing, in Proceedings of
the 8th IEEE International Conference on Distributed
Computing Systems, 1988, IEEE Computer Society
Press, San Jose, pp. 123-130.

33. D. L. Eager, E. D. Lazowska, and J. Zahorjan, Adap-

E. Rahm

tive Load Sharing in Homogeneous Distributed Systems,
IEEE Trans. Software Eng. 12, 662-675 (1986).

34. S. Zhou, A Trace-Driven Simulation Study of Dynamic
Load Balancing, IEEE Trans. Software Eng. 14,
1327-1341 (1981).

35. K. Shoens, Data Sharing vs. Partitioning for Capacity
and Availability, IEEEDatabaseEng. 9, 10-16(1986).

36. N. S. Bowen, C. Nikolaou, and A. Chafoor, Hierarchi­
cal workload allocation for distributed systems, in Pro­
ceedings Parallel Processing, vol. II, 1988, pp.
102-109.

37. D. Ferrari, A study of load indices for load balancing
schemes, in Workload Characterization of Computer
Systems and Computer Networks (G. Serazzi, ed.),
North Holland, 1986.

38. D. Ferrari and S. Zhou, An empirical investigation of
load indices for load balancing applications, in Proceed­
ings of Performance 87, North-Holland, 1987, pp.
515-528.

39. M. J. Carey, M. Livny, H. Lu, Dynamic task allocation
in a distributed database system, in Proceedings of the
5th IEEE International Conference on Distributed
Computing Systems, Denver, IEEE Computer Society
Press, 1985, pp. 282-291.

40. M. J. Carey and H. Lu, Load balancing in a locally
distributed database system, in Proceedings of the ACM
SIGMOD International Conference on Management
of Data, Washington, D.C., 1986, pp. 108-119.

41. A. Thomasian, A performance study of dynamic load
balancing in distributed systems, in Proceedings of the
7th IEEE International Conference on Distributed
Computing Systems, West Berlin, IEEE Computer So­
ciety Press, 1987, pp. 178-184.

42. P. S. Yu, S. Balsamo, andY. Lee, Dynamic Transaction
Routing in Distributed Database Systems, IEEE Trans.
Software Eng. 14, 1307-1318 (1988).

43. P. S. Yu and A. Leff, On Robust Transaction Routing
and Load Sharing, ACM Trans. Database Syst. 16,
476-512 (1991).

44. D. W. Cornell, D. M. Dias, and P. S. Yu, On Multi­
System Coupling Through Function Request Shipping,
IEEE Trans. Software Eng. 12, 1006-1017 (1986).

45. P. S. Yu, D. W. Cornell, D. M. Dias, and B. R. lyer,
Analysis of Affinity Based Routing in Multi-System Data
Sharing, Perform. Eva/. 7, 87-109 (1987).

46. P. S. Yu, D. W. Cornell, D. M. Dias, and A. Thomasian,
Performance Comparison of 1/0 Shipping and Data­
base Call Shipping Schemes in Multisystem Partitioned
Databases, Perform. Eva/. 9, 15-34, (1989).

47. E. Rahm, Algorithms for efficient load control in multi­
processor database systems, Angewandte Informatik
28, 161-169 (1986) (in German).

