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Abstract We provide an overview of Dedoop (Deduplica-
tion with Hadoop), a new tool for parallel entity resolution
(ER) on cloud infrastructures. Dedoop supports a browser-
based specification of complex ER strategies and provides a
large library of blocking and matching approaches. To sim-
plify the configuration of ER strategies with several similar-
ity metrics, training-based machine learning approaches can
be employed with Dedoop. Specified ER strategies are au-
tomatically translated into MapReduce jobs for parallel ex-
ecution on different Hadoop clusters. For improved perfor-
mance, Dedoop supports redundancy-free multi-pass block-
ing as well as advanced load balancing approaches. To illus-
trate the usefulness of Dedoop, we present the results of a
comparative evaluation of different ER strategies on a chal-
lenging real-world dataset.

Keywords MapReduce - Hadoop - Entity Resolution -
Blocking - Data Skew - Load Balancing

1 Introduction

Deduplication or entity resolution (ER) is the task of iden-
tifying entities referring to the same real-world object [6].
It is a pervasive problem and of critical importance for data
quality and data integration, e.g., to identify duplicate cus-
tomers in enterprise databases or to match product offers for
price comparison portals. ER techniques usually compare
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pairs of entities by evaluating multiple similarity measures
to make effective match decisions. As a consequence, ER
is an expensive process that can take several hours or even
days [16] for large datasets as it is typical for “Big Data” ap-
plications. A common approach to improve efficiency is to
reduce the search space by adopting so-called blocking tech-
niques [2]. For example, Standard Blocking (SB) utilizes a
blocking key, derived from the values of one or several entity
attributes, to partition the input data into multiple candidate
sets (called blocks) and restricts the subsequent matching
to entities of the same block. However, ER remains a costly
process and, thus, is an ideal problem to be solved in parallel
on cloud infrastructures.

We present Dedoop (Deduplication with Hadoop), an
ER framework based on MapReduce (MR). The MR pro-
gramming model is well suited for ER because it supports
the parallel matching of entities. As illustrated in Figure 1, a
single MR job can be utilized for blocking-based entity res-
olution. Several map tasks on different nodes read the par-
titioned input data and apply the map function to determine
the blocking key (product type in the example) per entity.
All entities are dynamically redistributed among the reduce
tasks such that all entities with the same key are assigned
to the same reduce task. The reduce tasks perform block-
wise entity resolution in parallel by comparing all entities
per block with each other to determine the matching entity
pairs.

While the sketched use of MR for parallel entity reso-
lution is conceptually simple, it turns out that the manual
specification of MR jobs and their deployment on different
infrastructures is a tedious and time-consuming process. The
parallelization of ER strategies is further complicated by the
fact that different blocking approaches imply different ap-
proaches for data redistribution within MR jobs. Further-
more, MR can not always guarantee high performance, e.g.,
in the case of skewed block sizes (leading to load imbalances
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Fig. 1 Simplified MR workflow for entity resolution (product offers)
using two map and two reduce tasks on different nodes.

between reduce tasks) or due to redundant pair comparisons
in the case of overlapping blocks. Dedoop addresses these
issues by providing the following features:

e Dedoop lets users easily specify advanced ER strategies
in a Web browser. Users can thereby choose from a rich
set of common ER components (e.g., blocking techniques,
similarity functions etc.) including machine learning for
automatically building match classifiers.

e Dedoop automatically transforms the specification into an
executable MapReduce workflow and manages its sub-
mission and execution.

e Dedoop is designed to serve multiple users that may si-
multaneously execute multiple workflows on the same or
different Hadoop clusters.

e Dedoop provides load balancing strategies to evenly uti-
lize all nodes of the cluster. It is also able to avoid unnec-
essary entity pair comparisons that result from the utiliza-
tion of multiple blocking keys.

Previously, we have already described several of the MR-
based approaches incorporated into Dedoop, in particular
the MR-based Sorted Neighborhood blocking approach [14],
the load balancing approaches [13], the support of learning-
based matching [10], and the approaches for avoiding re-
dundant entity comparisons [12]. Dedoop makes these ap-
proaches usable in a unified easy-to-use system that includes
additional blocking and matching approaches. In addition to
providing an overview of the main features of Dedoop, we
show the versatility and utility of the tool by presenting a
comparative evaluation of different ER strategies on a chal-
lenging real-world dataset.

In the following, we first discuss related work and then
give an overview of Dedoop (Section 3). We summarize De-

doop’s techniques for load balancing in Section 4 and for
avoiding redundant pair comparisons in Section 5. In Sec-
tion 6, we present the evaluation results for the parallel pro-
cessing of different ER strategies and analyze the scalability
of Dedoop.

2 Related work

MapReduce (MR), is a programming model designed for
parallelizing data-intensive computing in cluster environments
[5]. MR implementations like Hadoop rely on a distributed
file system (DFS) that can be accessed by all nodes. Data
is represented by key-value pairs and a computation is ex-
pressed employing two user-defined functions, map and re-
duce, which are processed by a fixed number of map and
reduce tasks.

map : (keyi,,value,) — list(keymp,valuey,)
reduce : (keymp, list(value;y))) — list(keyou, value oy )

For each intermediate key-value pair produced in the map
phase, a target reduce task is determined by applying a par-
titioning function that operates on the pair’s key. The reduce
tasks first sort incoming pairs by their intermediate keys.
The sorted pairs are then grouped and the reduce function is
invoked on all adjacent pairs of the same group. This simple
processing model supports an automatic parallel processing
on partitioned data for many resource-intensive tasks includ-
ing entity resolution.

Entity resolution is an active research topic and many
approaches and frameworks have been developed and evalu-
ated as described in recent surveys [6, 15,3]. Current frame-
works mostly support several methods for blocking, for
matching, and for the combination of individual match re-
sults. The combination of match results may have to be man-
ually specified or can be determined by a classification model
determined by a training-based classifier such as decision
tree or SVM [1]. In Dedoop, we build on this previous work
but the methods in our library have been enabled for parallel
processing within the MapReduce framework. We are not
aware of any other system that comprehensively supports
parallel entity resolution using MapReduce.

There are relatively few approaches that consider paral-
lel entity resolution. The authors of [4] show how the match
computation can be parallelized among several cores on a
single node. Parallel evaluation of the Cartesian product of
two sources is described in [8]. In our previous study [9], we
proposed a general model for parallel entity matching based
on a balanced partitioning of the input data to create match
tasks that can be evaluated in parallel. This work did not
consider the specifics of MR and focused on parallel match-
ing while blocking was not performed in parallel. In addi-
tion to our own approaches utilized in Dedoop, there are a
few further proposals to employ MR for ER (e.g., [24,25]).



Parallel Entity Resolution with Dedoop

— General ER Workflow |

Tc
RxS

x[0,1]

Mach!ne e Blocking S|m||ar|ty M.a.tch - Mc
Learning Computation Classification RxS

Classifier Data . .
T Aty Blocking-based Matching Job

Transformation

ﬂ General Dedoop’s MapReduce Workflow I

Fig. 2 Dedoop’s general entity resolution workflow (upper part) and its transformation into an executable MapReduce workflow (lower part)

These approaches do not support advanced features such
as load balancing or redundancy-free multi-pass blocking.
They also do not support learning-based ER.

Load balancing and skew handling are well-known prob-
lems for parallel data processing but have only recently gain-
ed attention for MapReduce [21,18,19,7]. [21] presents a
theoretical analysis of skew effects for MR but focuses on
linear processing of entities in the reduce phase while ER
has quadratic complexity to compare entities with each other.
[18] proposes a load balancing scheme for scientific tasks
but only deals with computational skew but not with data
skew. SkewTune [19] is a generic load balancing approach
that is invoked for a MapReduce job as soon as the first map
(reduce) process becomes idle and no more map (reduce)
tasks are pending. Then, the remaining keys (keygroups) of
running tasks are tried to redistribute so that the capacity of
the idle nodes is utilized. The approach in [7] is similar to
our previous load balancing work [13] as it also relies on
cardinality estimates determined during the map phase of
the computation. This study as well as SkewTune are not
focusing on entity resolution and cannot handle skew prob-
lems introduced by dominating blocks or key groups that
need to be distributed among several reduce tasks.

Dedoop also supports multi-pass blocking techniques
where entities can be clustered according to multiple block-
ing keys. On the one hand, compared to single-pass block-
ing, such approaches reduce the risk that matching pairs are
erroneously eliminated by the pruning of the search space.
On the other hand, multi-pass blocking typically results in
overlapping blocks and, thus, redundant comparisons of the
same entities. One of the few studies to eliminate such re-
dundant pair comparisons is [23]. They focus on the non-
distributed case and propose a complex block restructuring
to avoid redundant comparisons. Another recent work for
MR-based blocking and matching uses two additional MR
jobs for removing duplicate entity pairs from the match re-
sult that originate from overlapping blocks [22]. Dedoop in-
cludes a method for avoiding redundant match comparisons
without such additional MR jobs (Section 5).

3 Dedoop overview

The Dedoop tool [11] provides a Web interface to specify
entity resolution strategies for match tasks and to schedule
them on Hadoop clusters. The main steps involved for this
are as follows:

e First, the files containing the input data to be matched are
specified. Duplicates can be identified either within a sin-
gle dataset or between two entity sets.

e The user can choose to evaluate the Cartesian product or
select a blocking strategy to reduce the search space. Cur-
rently, Dedoop provides MR-adapted versions of Stan-
dard Blocking (SB) as well as of Sorted Neighborhood
(SN) based on user-specified keys. Both blocking strate-
gies allow to choose a multi-pass variation (multiple keys)
for improved match quality.

e Users can select multiple similarity metrics to evaluate
the similarity of entity pairs. To derive a match or non-
match decision per pair, users can choose among several
match classification strategies. A large set of numerical
and string similarity measures, that can be applied to com-
parable attribute values, is supported. The match decision
can be based on manually specified match rules, for ex-
ample, in the form of a conjunction of similarity condi-
tions (e.g., the manufacturer and product name of match-
ing product offers should exceed certain thresholds) or
by requesting that the weighted average of attribute-wise
similarity values should exceed a threshold. Alternatively,
the match decision can be determined by a classifier that
has been trained by a machine learning algorithm (e.g.,
SVM, decision tree, or logistic regression) for which we
rely on existing libraries such as WEKA. In the latter case,
the training data has to be provided as well.

e The user can finally submit Dedoop-generated MR work-
flows implementing the specified entity resolution strat-
egy on different Hadoop clusters and monitor their exe-
cution.

In the following, we provide more details on the gener-
ated MapReduce workflows and their execution.
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3.1 MapReduce jobs for entity resolution with Dedoop

Figure 2 shows the general ER execution pattern of Dedoop
in the upper layer for two input datasets R and S. The first
step on the left is only relevant for the learning-based match
approaches; it uses a subset of the entity pairs for training to
learn a classification model. The main part of the ER work-
flow consists of three consecutive steps: blocking, similarity
computation, and the actual match decision that provides the
output M consisting of all pairs from the Cartesian product
of input entities that are considered to match.

The lower layer of Figure 2 shows the MapReduce jobs
that are generated and scheduled for execution by Dedoop
for the specified entity resolution strategy. The first two jobs
are optional while the last MR job, similarly as sketched in
the introduction, implements parallel blocking and match-
ing. This job is mandatory and by far the most time-con-
suming job. The first MR job (Classifier Training) is sched-
uled for learning-based matching to train a classifier based
on a set of labeled examples. Dedoop employs the speci-
fied classifier and ships the resulting classification model to
all nodes using Hadoop’s distributed cache mechanism. The
second MR job (Data Analysis) supports the load balancing
algorithms of Dedoop by analyzing the data distribution for
a specified blocking key. As we will see in Section 4, this
analysis information helps to define a tailored data redistri-
bution to avoid data skew effects during matching.

The details of the main MR job depend on the chosen
blocking strategy, the load balancing scheme (Section 4),
the selected approach for matching, and match classifica-
tion. We already discussed in the introduction the use of SB
that is realized within the map phase. The map function can
be used to determine for every input entity its blocking key
and to output a key-value pair (blocking_key, entity). The
partitioning operates on the blocking keys and distributes
key-value pairs among reduce tasks so that all entities shar-
ing the same blocking key are assigned to the same reduce
task. Finally, the reduce function is called for each block and
computes the similarities for all entity pairs within its block.

SN is conceptually different from SB and requires the
input entities to be sorted according to a selected block-
ing key. The assumption is that all matching entities are in
close neighborhood according to the sort order of the se-
lected key. It, thus, only compares entities within a window
of a predetermined size w. A MR-based implementation of
SN must ensure that reduce tasks can evaluate the entities in
sort order and that the windows of neighboring entities are
available despite the need to distribute entities among differ-
ent reduce tasks. Dedoop uses the RepSN algorithm of [14]
for this purpose. The map function determines the blocking
key for each input entity and applies a specific range parti-
tioning function to redistribute entities among reduce tasks
so that the sort order according to the blocking key is pre-
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Fig. 3 Dedoop components for executing MapReduce workflows on
different Hadoop clusters.

served. The reduce tasks implement a sliding window ap-
proach for comparing the entities within their data partition.
To allow for comparing entities within the window distance
that spread over different reduce tasks, we extend the orig-
inal map function. Entities close to partition boundaries are
replicated and repartitioned not only to the respective reduce
task but also to its successor (or even to further succeeding
reduce tasks, if necessary for large window sizes exceeding
the number of entities per reduce task).

3.2 Submission and execution of MapReduce jobs

Dedoop allows multiple users to simultaneously specify and
execute multiple MapReduce workflows on the same or dif-
ferent Hadoop clusters. Figure 3 illustrates the Dedoop com-
ponents involved in the execution of MR workflows. Users
can interactively submit and monitor the execution of their
workflows within a browser-based GUI. Different Hadoop
clusters, e.g., on local machines or Amazon EC2, can be in-
teractively configured and launched for use with Dedoop.
For each connected cluster, Dedoop maintains a workflow
executer and a queue for workflows to be executed. User
clients periodically poll the workflow executer pool to mon-
itor the progress of their workflows and update the GUI with
the current information about the execution. The submission
of workflows and data handling is greatly simplified by user
services such as an integrated graphical file manager sup-
porting common file operations (e.g., upload, download, de-
compress, inspect) on HDFS and Amazon S3.

A major simplification for users is that Dedoop fully
supports Hadoop clusters running on Amazon EC2. Dedoop
automatically spawns and terminates SOCKS proxy servers
on the machine it is hosted on to pass connections to Hadoop
nodes on EC2. This is required to invoke HDFS commands
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and to submit MR jobs from outside EC2, mainly due to
EC2’s use of internal IPs. The GUI expedites the recurring
and laborious task of launching a set of virtual machines
(VM) and spawning a new Hadoop cluster on it. The user
therefore can specify a Linux-based Amazon Machine Im-
age (AMI) stored in S3. The AMI must contain a distribu-
tion of Hadoop, a Java Virtual Machine, the command line
utility xmlstarlet!, and an ssh server with a secret private
key. The ssh server must be configured to permit ssh ac-
cess for the contained private key. On the one hand, this al-
lows password-less ssh connections between VMs created
from the AMI and on the other hand, enables Dedoop to
modify the Hadoop configuration files (e.g., IP addresses,
map/reduce task capacity, JVM child args) by submitting
xmlstarlet commands via ssh. This approach allows for a
more fine-grained configuration of the launched Hadoop clus-
ter by Dedoop’s GUI compared to using Amazon’s Elastic
MapReduce service.

4 Load balancing
4.1 Data skew problem

Data skew can significantly limit the scalability of MR pro-
grams. In particular, the key-based redistribution of data be-
tween map and reduce tasks can lead to large differences
in the size of so-called keygroups that are to be processed
by different reduce tasks. As a consequence, the scalabil-
ity is limited by the time required for processing the largest
keygroup. Additionally, the complexity of reduce functions,
e.g., pairwise similarity computation, may be non-linear w.r.t.
the input size. Hence even only slightly varying keygroup
sizes can lead to noticeable runtime differences. For instance,
in the initial example from Figure 1, the second reduce task
has to process only three entities more than the first reduce
task. However, the number of entity comparisons of the sec-
ond reduce task is more than twice the number of com-
parisons of the first reduce task (13 vs. 6). The only load
balancing mechanism supported by MapReduce is the ad-
justment of the partitioning function, e.g., one could assign
all consoles to the first reduce task as well. Although this
would balance the reduce task for the example, it does not
remove the limitation that the largest keygroup marks the
lower bound of the execution time. Furthermore, a detailed
knowledge about data characteristics is required. Because
real-world data is skewed, it is of crucial importance for MR-
based entity resolution to distribute the processing of large
blocks among several reduce tasks.

! nttp://xmlstar.sourceforge.net/
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Fig. 4 BlockSplit load balancing scenario.

4.2 Dedoop’s load balancing mechanism

Dedoop’s load balancing approaches use an additional MR
job that is executed right before the actual matching job in
order to analyze the input data with respect to the specified
blocking keys. The analysis job determines a so-called block
distribution matrix (BDM) that indicates for every blocking
key and every (map) input partition the number of entities.
This information reveals block-specific data skew and al-
lows for a unique enumeration of blocks, entities of a block,
and even of entity pairs to compare. It is then used by a
subsequently executed MR job that realizes load balancing
in the map phase by devising a tailored data redistribution
among reduce tasks that perform the entity comparisons. All
of our load balancing strategies exploit the fact that entity
pairs can be processed independently from each other.

Dedoop supports two load balancing schemes for SB,
BlockSplit and PairRange, and one for SN within the RepSN
algorithm. All approaches utilze the BDM information de-
termined by the analysis job. We only sketch the main ideas
of the approaches in the following and refer to [14,13] for
more detailed descriptions.

Figure 4 illustrates the BlockSplit load balancing ap-
proach for the example from Figure 1. The BDM, shown at
the top right, specifies the number of entities and entity pairs
to evaluate per block. BlockSplit focuses on large blocks
that would lead to skewed execution times, i.e., those blocks
whose number of pairs exceeds the average workload per re-
duce task. For the example and two reduce tasks, this only is
the case for block (product type) Tablet (10 > 19/2 =9.5).
Such blocks are split into m sub-blocks, according to their
input partitioning among the m match tasks. For split blocks,
several match tasks are generated and distributed among re-
duce tasks. Each sub-block is (like any unsplit block) pro-
cessed by a single match task. Furthermore, pairs of sub-
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Fig. 5 PairRange’s global enumeration of all pairs for the example of
Figure 1. The two different shades indicate the assignment of pairs to
reduce tasks.

blocks are processed by match tasks that evaluate the Carte-
sian product of their entities. This ensures that all compar-
isons of the original block will be computed in the reduce
phase. For the example, we split block Tablet into two sub-
blocks and generate three match tasks (one per sub-block
and one to compare the two sub-blocks) as shown in the
middle of Figure 4. The map function replicates a particu-
lar entity for each match task the entity is contained in and
sends it to the responsible reduce task. BlockSplit assigns
match tasks in descending order of their size among reduce
tasks. This guarantees that the largest match tasks are pro-
cessed first to make it unlikely that larger delays occur at the
end of the computation when most nodes are already idle.
For the example, we achieve a balanced distribution of the
workload with 10 and 9 pairs per reduce task.

The PairRange algorithm aims at a more fine-grained
control to balance the number of entity comparisons be-
tween reduce tasks. For this purpose, it virtually enumerates
all entities and entity pairs to be compared based on the in-
formation from the BDM. This is illustrated in Figure 5 for
our example where the 19 pairs are numbered block-wise
from 0 to 18. For load balancing, PairRange splits the set
of pairs into r equally-sized pair ranges and assigns the /"
range to reduce task i (r is the number of reduce tasks). This
distribution is derived from the BDM and known to every
map task so that the map function can decide to which re-
duce tasks an entity has to be sent or replicated. For the ex-
ample, the distribution of work (pair ranges) among two re-
duce tasks is illustrated in Figure 5. The last matrix shows
that the second tablet is needed for evaluating both pair ranges.
Thus, the map function will replicate this tablet entity to the
first and to the second reduce task. The evaluation in [13]
showed that BlockSplit and PairRange perform similarly
well. PairRange performs slightly better for large datasets
and is less dependent on the initial data partitioning.

In contrast to SB, SN inherently is less susceptible to
load imbalances since the number of pairs to evaluate is only
determined by the window size w and independent from the
blocking keys. Hence, there are no large blocks whose pro-
cessing may dominate the overall execution time. However,
the MapReduce realization of SN needs to ensure that the re-
distribution of entities among reduce tasks observes the sort

avee g
[8]9]1011]12]
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Fig. 6 Scenario for RepSN-based load balancing for Sorted Neighbor-
hood (r =2, w=3).

order for the chosen blocking key and, thus, applies a range
partitioning on the blocking keys. As a consequence, all en-
tities having the same blocking key value will be assigned to
the same reduce task. Since blocking keys of real-world data
sets are skewed, this causes a varying number of entities per
reduce task and, thus, unbalanced workloads. Even without
dominating key values, it is very challenging to determine a
range partitioning for data redistribution that preserves the
sort order of the blocking key and leads to similarly-sized
partitions per reduce task, especially for a large number of
reduce tasks.

Dedoop’s RepSN approach therefore uses the informa-
tion from the BDM and follows a similar entity enumeration
scheme as PairRange to assign evenly-sized entity ranges to
the different reduce tasks. The only difference is that the
enumeration is based on the sort order of the blocking key.
The map function assigns the " entity to reduce task [i- 2 |
(n is the number of entities). Additionally, the last w — 1 enti-
ties that are assigned to reduce task i have to be replicated to
reduce task i+ 1 (or even to further succeeding reduce tasks
if w> 7) to allow the comparison of boundary entities that
are spread over different reduce tasks. This is illustrated for
our example in Figure 6 where entities are sorted according
to the product type. The first six entities are assigned to the
first, the remaining six to the second reduce task. For win-
dow size w = 3, the boundary entities 5 and 6 are replicated
to the second reduce task as well to allow the comparison
with entities 7 and 8.

5 Redundancy-free matching

Using a single blocking key may not sufficiently allow find-
ing all duplicates. Especially with dirty input data and miss-
ing attribute values, matching entities can often be assigned
to different blocks so that they are not compared with each
other with a single-pass blocking approach. Dedoop there-
fore supports multi-pass blocking where entities are grouped
into blocks according to multiple blocking keys derived from
different attributes. The likely improvements in match qual-
ity come at the price of additional comparisons due to the
increased number of blocks. However, some of these addi-
tional comparisons are redundant if the blocks overlap so
that the same pairs of entities are repeatedly compared with
each other. To improve the performance for multi-pass block-
ing, it is, thus, important to eliminate such redundant com-
parisons.
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Fig. 7 Example of overlapping entity pairs for two-pass blocking. The
entities are partitioned by the product type (gray shaded) as well as by
manufacturer (black bordered).

Figure 7 illustrates the problem for a small set of seven
product entities and two-pass SB. The first blocking key par-
titions the entities by their product type (Console, Phone)
and the second by manufacturer (Sony, Nintendo, Samsung).
By considering only the product type, we would miss the
matching entity pair (2,6) (a smartphone for gamers). How-
ever, as a consequence 3 out of 16 entity pairs overlap and
they should not be compared redundantly.

Without the avoidance of redundant comparisons, the
support multi-pass blocking is straight-forward. The map
function can repeatedly output each entity for every pass.
It thereby prefixes the blocking keys with the pass numbers
to obtain a combined key? for data distribution among re-
duce tasks. Hence, all blocks of all passes are processed in
parallel. To avoid redundant comparisons, we have to un-
ambiguously determine which reduce task is “responsible”
for any pair comparison. The key idea is to (virtually) enu-
merate the entities’ candidate sets (i.e., blocks or windows)
and to compare each entity pair for their smallest common
candidate set index only. This can be achieved by slightly
extending the map output value with some additional meta-
data. The enrichment of an entity with information about
its candidate sets allows the reduce function to determine
whether the current reduce task is responsible for compar-
ing a certain entity pair.

For SB, this is realized as follows. The map function de-
termines the list § of blocking keys (signatures) and outputs
an (s, entity) pair for each s € S. It further enriches the entity
with the sublist of blocking keys that are smaller than the
current key s. For two entities, the reduce function checks
whether their signature sublists overlap. The evaluation of
the pair is skipped when there is a common blocking key
in the sublists (smaller than the current one) since this in-
dicates that another reduce task performs the comparison.
For our example in Figure 7, there will be two map out-
puts per product entity, one for the product type and one
for the manufacturer blocking key. For the first entity, map
outputs a pair (1_Console, [1, 0]), i.e. the sublist for entity
1 is empty for key 1_Console. Additionally, map outputs a

2 Internally, Dedoop prefixes each blocking key with its (zero-
padded) pass number to force blocking keys of pass i to be lexico-
graphically smaller than keys of pass j > i. In favor of readability, this
has been omitted in the previous sections.

(2_Sony, [1, {1-Console}]) pair, i.e., the sublist indicates
that the entity’s blocking key 1_Console is (lexicographi-
cally) smaller than the current key 2_Sony. Similarly, map
outputs for the second entity the pairs (1_Console, [2, 0])
and (2_Sony, [2, {1_Console}). With this information, re-
duce skips the comparison of both entities for the signature
2_Sony since they have a common smaller signature.

For SN, there is a slight modification since entity pairs
are not considered based on a common blocking key but
on whether their relative position in the key’s sort order is
within the window distance. Therefore, we annotate entities
not with their (smaller) blocking keys but by their position
index in the sorted entity list for each preceding pass. For
an entity pair, the reduce function then checks the two lists
whether for a preceding pass the absolute difference of the
two indexes is less than window size w. In this case, the com-
parison is skipped as it is already performed for a previous
pass.

The evaluation of the approaches in [12] showed that
the additional checks in the reduce function are by far out-
weighed by the savings of avoiding redundant comparisons
and match decisions.

6 Evaluation

To demonstrate the versatility and efficiency of Dedoop, we
analyze the results for two experiment series. The first ex-
periment uses Dedoop for a comparative evaluation of dif-
ferent blocking and matching approaches w.r.t. both match
quality and runtime for the same real-world ER task on the
same MapReduce platform. The second experiment focuses
on efficiency and scalability for large Hadoop clusters.

Both experiments are conducted on Amazon EC2 using
worker nodes of type cl.medium (providing 2 virtual cores)
and a dedicated master instance of type m1.small. The uti-
lized VMs are based on Ubuntu Server 12.04 with an Or-
acle Java 1.6 64-bit JVM, and Hadoop 0.20.2. Each node
runs two map (reduce) processes to execute map (reduce)
tasks. For load balancing reasons, we generate 5 times as
many reduce tasks than processes (i.e., 10 per node) for the
MR jobs computing the match comparisons. The use of ECs
complicates the measurements of execution times since EC2
provides different hardware within the same instance type.
We therefore generally execute the runs repeatedly using a
new set of VMs per run and average the observed execution
times.

6.1 Comparative evaluation of different ER strategies

In this experiment, we investigate ER strategies for the real-
world dataset GS from [16] containing 64,263 publication
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Fig. 8 Execution times and match quality of different entity resolution approaches for the GS match task.
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Fig. 9 Considered approaches for match classification

records from the Google Scholar search engine. The publi-
cation records are relatively unclean due to the high hetero-
geneity of paper citations and errors for extracting the bib-
liographic information from PDF files. To evaluate match
quality in terms of precision, recall, and F-measure, we de-
rived a gold standard from the manually determined, perfect
match result from [16] that is based on a mapping of the GS
publications to corresponding DBLP publications.

We investigate the relative effectiveness of 20 ER strate-
gies by considering five blocking strategies (single-pass and
two-pass versions for Standard Blocking (SB) and Sorted
Neighborhood (SN) as well as the use of no blocking, i.e.,
the evaluation of the Cartesian product, and the four ap-
proaches listed in Figure 9 to derive a match decision from
the computed similarities. These approaches always evalu-
ate the trigram string similarity of the publication title and of
the author attribute. The similarity computation is done on
normalized attribute values in lower case after the removal
of punctuation and redundant whitespace characters. As rep-
resentatives for non-learning ER strategies, we consider two
simple, manually specified match rules defining the mini-
mal similarity on either only the title attribute (rule;) or for
both title and author (rule;). We also consider two learn-
ing approaches for match classification by applying either
the SVM or the decision tree classifier from the WEKA li-
brary. For training, we only use 500 entity pairs labeled with
their match decision. We apply the ratio approach of [17]
to select the training data and ensure that both matches and
non-matches constitute at least 40% of the training samples.
The reported results for the learning-based approaches are
averages over ten runs with different training datasets.

The table in Figure 8 shows the obtained results for the
20 ER strategies, in particular for recall, precision, and F-
Measure. We also report how many entity pairs have been
compared for the different blocking approaches and the over-
all parallel execution time on a Hadoop cluster with 20 nodes.
Naturally, the best match quality is achieved without block-
ing when we evaluate the complete Cartesian product of
more than two billion entity pairs. The best F-Measure is
only about 80% indicating the hardness of the match prob-
lem (bibliographic ER tasks involving relatively clean data
sources such as DBLP are typically solved with F-measure
values of more than 90-95% [16]). The best match quality
is achieved for the learning-based approach using decision
trees followed by the SVM-based learning approach and,
with comparable quality than SVM, the use of rule;. The
rule; match decision that matches all publications with a ti-
tle similarity of at least 80% turns out as too simple and re-
strictive since it achieves only a recall of at most 52%. This
means that about half of the matching publications have a ti-
tle similarity below 80% which is again an indicator of poor
data quality.

The execution time for evaluating the Cartesian product
is about 25 minutes for the non-learning approaches and 36
- 45 minutes for the learning approaches. With blocking, the
number of entity pairs to evaluate significantly drops (by a
factor 100 - 300) and the execution time is reduced to only
1.7 - 3.3 minutes. These times include the execution of the
classifier training job (if required), the analysis job to sup-
port load balancing, as well as the MR-inherent overhead for
I/O and data redistribution. We use the first three characters
of the author attribute as blocking key for single-pass block-
ing and additionally the first three characters of the title at-
tribute for two-pass blocking. For SN, we employ a window
size w=1000 for single-pass and w=500 for two-pass block-
ing so that nearly the same number of comparisons result in
both cases. For SB, the number of comparisons for two-pass
blocking is much higher than for single-pass blocking (but
lower than for SN). Still, the execution time for two-pass
blocking is only slightly higher than for one-pass blocking
since the actual match work resulted in only a light utiliza-
tion of the 20 nodes.
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Fig. 10 Comparison of the best F-Measure results for match classifi-
cation with rule, and decision tree (DT)

The relative quality of the rule-based and learning-based
ER approaches with blocking is similar to those for the Carte-
sian product, i.e., the decision tree classifier outperforms
the other approaches. The single-pass blocking approaches
based on the author attribute proved to be too restrictive and
lead to a low recall and reduced F-Measure of only 66 %
or less. The two-pass blocking approaches achieve signifi-
cantly improved match quality for both SB and SN (up to
77% of F-Measure).

Figure 10 summarizes the achieved F-Measure results
for the best non-learning approach (using rule,) and the best
learning approach (using decision tree). We observe that the
decision tree consistently outperforms the rule-based clas-
sification. SN performs slightly better than SB in three of
four cases. The two-pass blocking approaches substantially
outperform one-pass blocking and are almost as good as the
evaluation of the Cartesian Product which is less scalable to
larger match problems.

The experiment shows the usefulness of Dedoop for eval-
uating many strategies for parallel entity resolution but is
not meant to allow general conclusions regarding the rela-
tive quality of different approaches. This is because we only
evaluated a single match problem and did not systematically
test different match rules, different blocking keys, differ-
ent training sizes etc. Still, Dedoop facilitates such extended
evaluations since the execution times are significantly faster
than without parallelization and since setting up different ER
strategies is simple.

6.2 Scalability

The second experiment focuses on the scalability of Dedoop
for a larger match problem. We therefore vary the cluster
size for entity resolution from 1 up to 100 nodes. We use the
CiteseerX dataset’ from [24] containing 1,385,532 publica-
tion records. To test Dedoop’s load balancing, we apply both

3 We do not have the perfect match result for this dataset so we could
not use it for the evaluation of match quality.
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Fig. 11 Execution times and speedup using Sorted Neighborhood (SN)
and Standard Blocking for the CiterseerX dataset.

Sorted Neighborhood (SN) in combination with the RepSN
algorithm [14] as well as Standard Blocking (SB) in combi-
nation with the PairRange algorithm [13]. For both strate-
gies, the first three characters of the publication title form
an entity’s blocking key (single-pass blocking). For SN, the
window size was set to w = 5000, resulting in ~6,91 - 10°
entity comparisons. For SB, the blocking scheme leads to
~6.76 - 10° candidate pairs, i.e., only minimally fewer than
for SN. For matching, we compute the trigram similarity on
the title attribute.

Figure 11 shows the resulting execution times and speed-
up values. Both approaches show their ability to evenly dis-
tribute the time-intensive similarity computation across re-
duce tasks and nodes. SN reduces the execution time from
about 25 hours with one node to merely 20 minutes with
100 nodes (speedup of ~74). The speedup behavior is even
near-linear for up to 40 nodes (=36 for n = 40). The some-
what reduced speedup for larger clusters is influenced by
typical factors such as increased likelihood of skewed ex-
ecution times per node and reduced parallelization poten-
tial for smaller tasks. The relatively large window size leads
for more nodes to smaller reduce tasks and to an increas-
ing number of boundary entities to be replicated to several
reduce tasks. SB leads to a largely similar behavior underlin-
ing that the load balancing approach is also effective in this
case. The execution time is almost 28 hours for one node
and reduced to 20 minutes for 100 nodes. The slower exe-
cution for one node leads to a slightly better speedup (~82)
than for SN.

7 Summary and outlook

Entity resolution for “Big Data” is very time-consuming and,
thus, benefits from a parallel execution in MapReduce-based
cluster environments. The presented Dedoop tool realizes
this kind of parallel ER for many blocking and matching
strategies. For improved performance, it supports advanced
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load balancing techniques to deal with data skew and avoids
redundant comparisons for multi-pass blocking. The rich Ul
of Dedoop makes it easy to specify entity resolution work-
flows. The mapping of workflows to MapReduce jobs, their
parameterization, and the submission to Hadoop clusters are
completely transparent to the user. The presented analysis
for 20 ER strategies shows the value of Dedoop for large-
scale evaluations and for determining effective strategies to
solve challenging match tasks. Furthermore, we could demon-
strate the scalability of Dedoop and its load balancing ap-
proaches for large EC2 clusters.

In future work, we plan to integrate new features to De-
doop such as frequency-aware [20] and active learning ap-
proaches. To further improve efficiency, we are currently
working on several low-level optimizations for similarity
computation such as prefix, suffix, and length filtering [26].
Another option is to support the use of the individual nodes’
GPUs to speed up the calculation of string similarity mea-
sures.
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