in: Proc. 9. ITG/GlI MMB97 conf. (Messung, Modellierung und Bewertung von
Rechen-und Kommunikationssystemen), VDE-Verlag, 1997.

Goal-oriented performance control for
transaction processing

Erhard RahmUniv. Leipzig, E-Mail: rahm@informatik.uni-leipzig.de

Abstract

The performance of current transaction processing systems largely depends on human experts
for administration and tuning. These experts have to specify a multitude of internal control pa-
rameters in different subsystems for which finding appropriate settings is very difficult. Another
shortcoming of manual system administration lies in its inability to quickly react to changing
system and workload conditions. In order to overcome these limitations we advocate for an au-
tomatic and adaptive performance control. To simplify the administration we pursue a "goal-
oriented" approach that aims at automatically enforcing external performance objectives, in par-
ticular response time goals. The effective implementation of such a scheme poses a multitude
of largely unsolved challenges. Our approach is based on a feedback loop for automatic detec-
tion and correction of performance problems and requires comparatively few extensions over
existing TP systems. We have implemented various control strategies for bottleneck determina-
tion and resolution within a detailed simulation system. Results of some initial simulation ex-
periments are analyzed.

1 Introduction

On-line transaction processing (OLTP) systems provide access to a shared database for many
concurrent users [GR93]. They are used in a variety of business applications such as airline res-
ervation, electronic banking, securities trading, communicating switching, etc. to enable the on-
line user to execute pre-planned functions (canned transactions). These functions are imple-
mented by transaction programs that access a database. The database can also be accessed "di-
rectly” (without invoking an application program) by using an interactive query language (e.g.,
SQL) or front-end tool. The essential software components of a OLTP system are the set of
transaction programs, the database management system (DBMS) and the so-called TP-monitor.
The TP-monitor controls the execution of transaction programs and supports their interaction
with the terminal and the DBMS. Typically, TP-monitor and DBMS run on a server system con-
sisting of one or multiple processing nodes.

A major problem of such OLTP systems is their complex administration requiring highly skilled
people, in particular for controlling workload and resource allocation and for performance tun-
ing. The current situation and the associated problems can be characterized as follows:

- System control mainly relies on manual interactions. This does not allow a flexible and fast
adaptation of control parameters to changing conditions. Detection of performance prob-
lems and appropriate tuning actions also depend on human interaction. So, it may take a
long time until the underlying causes of a performance problem are identified and correc-
tive actions can be initiated.

- Administration is complicated by the prevalence of low-level control interfaces which are
difficult to understand and use. System administrators have to specify for every workload
class a multitude of internal parameters like dispatching priorities, memory requirements
etc. to instrument (low-level) resource managers of the operating system (CPU dispatcher,
main memory manager). Similarly difficult administration requirements are posed by high-
er-level resource mangers running on top of the operating system, e.g., the DBMS, TP-
monitor or batch and time-sharing subsystems. So, the TP-monitor has to be provided with

parameters like multiprogramming level, buffer sizes, internal priority for every transac-
tion type, etc. These parameter settings have to be chosen in accordance with the current
hardware and software configuration, the anticipated load profile, estimated resource re-
guirements and response times, etc.

- There is only a limited cooperation between the control components of the various resource
managers. For instance, the operating system supports priorities only for processes, while
the TP-monitor uses transaction priorities; the DBMS typically offers no priority support
at all. A manual coordination of the various components by appropriate parameter settings
is very difficult and not always possible.

- The server workload becomes increasingly complex and heterogeneous making it much
more difficult to obtain high performance. In addition to short OLTP transactions of di-
verse transaction types, the amount of unplanned data- and compute-intensive decision
support queries is rapidly growing in many application domains. Large queries require
enormous CPU, memory and bandwidth resources and can thus drastically reduce OLTP
performance without proper resource allocation strategies. Furthermore, workloads are
highly dynamic (e.g., exhibiting frequent load surges) making it difficult to predict current
resource requirements.

- If multiple processing nodes have to be utilized and controlled, administration becomes
even more complex making it more difficult to effectively utilize the additional resources.
New problems include how to allocate data, application programs and user jobs (transac-
tions) among the multiple nodes so that minimal overhead (e.g., for communication) is in-
troduced and load balancing is achieved.

Overcoming these limitations is a complex challenge that requires an automatic, self-tuning ap-
proach to performance control. To simplify system administration we are pursuing a so-called
goal-oriented performance contrdh this approach, administrators or users only spedifgt

the performance goals are, Imatt howto achieve these goals [NFC92]. So the administrator
should only define external, human-oriented performance goals like response time or through-
put requirements instead of having to translate them into many internal, machine-oriented pa-
rameter settings. Performance goals are associated with workload groups (transaction types,
guery types etc.) and should automatically be mapped to lower-level control parameters by ap-
propriate resource allocation and control schemes.

Problems to be addressed for implementing such an automatic control approach include

- How can performance problems and the underlying bottlenecks be detected automatically?

- Which control parameters should be adapted in which way to improve performance and
meet the defined performance goals ?

- Which monitor information needs to be dynamically collected and evaluated ?

- How can stability of the control approach be achieved even in overload situations ?

In the next section, we briefly discuss related work on automatic performance tuning for trans-
action processing. Section 3 provides an overview of our approach to goal-oriented perfor-
mance control in centralized transaction systems. We have implemented various control
policies within a simulation system that is described in Section 4. The approaches aim at en-
forcing response time goals and support automatic treatment of several bottleneck types. The
results of some initial simulation experiments are analyzed in Section 5.

2 Related work

A huge amount of work has been done on resource allocation in both centralized and distributed
systems. However, most of these studies are limited to one specific subproblem like CPU sched-
uling or memory management. This is also true for most load control studies in the database and
transaction processing area that have appeared more recently. For instance, several papers pro-

posed and evaluated a dynamic adaptation of the multiprogramming level (number of concur-
rent transactions) in order to control lock contention [CKL90, MW92, Th93]. Other studies
proposed dynamic policies for memory allocation between OLTP transactions and complex da-
tabase queries [JCL90, ZG90, BCL93, PCL93, DG94].

The COMFORT project represents one of the most comprehensive studies so far on automatic
performance tuning of database systems [WHMZ94]. It addressed automatic control strategies
for several subproblems including lock contention, memory management for OLTP, and data
allocation within disk arrays. To detect lock bottlenecks the use of a so-catifidt ratiowas
proposed which is defined as the ratio between the total number of locks held by active trans-
actions and the number of locks held by non-blocked transactions. Early simulation experiments
suggested that for any workload a conflict ratio value of 1.3 or higher indicates a lock bottleneck
that must be avoided [MW91, MW92]. While experiments with additional workloads showed
that the critical conflict ratio is not completely load-independent, the critical values still were
confined to a rather small interval ranging from about 1.25 to 1.55 [WHMZ94]. A limitation of
the COMFORT project is that the various tuning policies for different subproblems have not yet
been integrated within a comprehensive control approach. Furthermore, no goal-oriented ap-
proach is followed.

To the best of our knowledge, the idea of an automatic, goal-oriented performance control was
first studied in the late eighties at the IBM T.J. Watson Research Center within a project led by
Christos Nikolaou and in which the author participated for some time [Ra89, NFC92]. This
project concentrated on several subproblems - in an isolated way - like CPU scheduling, trans-
action routing [FNGD93] and buffer management [CFWNT95]. A key metric used was the so-
calledperformance index;®f a workload group i which is defined as=HRT; / g. In this equa-

tion, RT; represents the average response time of class i during the recent past #mel rg-

sponse time goal of group i. A Yalue larger than 1 thus indicates a goal violation for group i
while a value of 1 or less means that the goal has been met. Optimal goal satisfaction can be
achieved by minimizing the maximal performance index over all workload groups which en-
sures that all achievable goals have been satisfied. Apparently, the work at IBM research has
already found its way into commercial products, in particular the MVS operating system [BE95]
and - for transaction routing - within the TP-monitor CICS [CICS96]. Unfortunately, there is
no published description of the algorithms used for performance control in these systems. Goal-
oriented control strategies have also been evaluated at the University of Wisconsin, Madison,
in particular with respect to memory management [BCL93, BMCL94, BCL96].

In contrast to previous studies we strive for a comprehensive and integrated performance con-
trol that is able to deal with many bottleneck situations in different subsystems rather than fo-
cussing on specific subproblems in isolation from the rest of the system. While the latter
approach is easier to follow, it is of limited usefulness for practical systems typically suffering
from many bottlenecks. Furthermore, there are many subtle dependencies between different
bottleneck situations that can only be resolved by an integrated approach. For instance, a disk
bottleneck can block many transactions causing a long input queue at the TP-monitor. A TP-
monitor-specific load control would increase the multiprogramming level to reduce the number
of waiting transactions in the input queue, thereby aggravating the disk bottleneck! An integrat-
ed approach, on the other hand, would be able to identify and resolve the primary bottleneck.
Another distinctive feature of our approach is a differentiation between complete and partial
overload situations. In the former case, almost all workload types are suffering from perfor-
mance problems, while in the latter case only some classes are affected. Considering partial
overload situations requires more complex control strategies but also allows more focussed con-
trol decisions.

3 Overview of control approach

We assume a centralized transaction systehere the workload is executed on a single pro-
cessing node (Fig. 1). The major components like TP-monitor and DBMS typically own a sep-
arate scheduler for assigning the work requests (transactions, SQL statements) to execution
units like processes or tasks. The allocation of hardware resources within a system is controlled
by resource managers of the operating system. To such an environment, we add a special control
process calledocal performance controlwhich is executed periodically or when certain con-
ditions occur. The control program does three things:

- It accesses and evaluates monitor data about the current system state to determine whether
or not an exceptional situation (e.g., performance problem) is given. Furthermore, if cor-
rective actions have been previously initiated, it analyses the monitor data to control the
success of the control measures.

- If a problematic situation is given, the control component tries to determine the reason for
such a situation (bottleneck determination).

- If necessary, corrective actions are initiated to solve the problem ("tuning").

Such an approach corresponds to the use of a feedback loop, a concept which has widely been
applied for adaptive system control [MB61, Re86, WHMZ94]. The general objective of the con-
trol loop is to keep the system in a well-defined state, in our case to ensure that the performance

goals are met.
system é tern&inals,
ce % PCs,
console @ + workstations

TP-monitor
local /
TP performance <—#| DBMS
ﬁ?,[j"g ' control (LPC)
T oS resourceJ
managers
~—online H
monitors

Fig. 1: Major system components for performance control

Local performance control (LPC) cooperates with monitors and schedulers of the TP-monitor
and the DBMS, and the operating system resource managers (CPU dispatcher, memory manag-
er, disk manager). While these scheduler components already exist in current systems, they have
to be extended by an LPC interface in order to exchange monitor data and control operations
(e.g., to adapt control parameters). For example, the DBMS should support transaction priori-
ties, e.g., for resolving lock conflicts or for buffer management. Furthermore, the CPU dispatch-
er should be able to use transaction priorities rather than process priorities. Local performance
control has to determine and adapt these transaction priorities, e.g., derived from the perfor-
mance goals and current state information. Through such a cooperation, LPC can ensure a co-
ordinated scheduling and resource management between TP-monitor, DBMS and operating
system.

* An extension of the model to distributed systems is possible [Ra96] but beyond the scope of this paper.

LPC also supports a single administration interface to the outside. The external interface allows
the administrator to specify the system configuration and performance goals or to request mon-
itoring information about the system. LPC uses this interface to output requested data or to re-
port problems which could not automatically be resolved (e.g., due to permanent hardware
bottlenecks).
The control component reacts
- when performance goals are missed
- in advance to prevent future performance problems (e.g., when the analysis of arrival rates
indicates a significant change in the load profile)
- when configuration changes are performed (additional processor/memory, new transaction
type, etc.), or when the administrator changes the performance goals.
Of course, in general it cannot be guaranteed that all performance goals are met at all times, e.g.
because of temporary overload, insufficient hardware resources, specification of unrealistic
goals, poor database design, etc. For such cases it is essential that not all workload groups suffer
equally, but that acceptable performance is reached at least for the most important transactions.
For this purpose, we specigcondary performance goaiglicating the relative importance of
transaction types. These reduced goals are to be used in overload situations when the primary
goals have been missed.

Discussion

The efficiencyof the approach is largely dependent on the amount of information which is dy-
namically collected and evaluated. Furthermore, the control overhead is determined by how of-
ten the local and global feedback loops are executed. In this respect a compromise must be
found between efficiency (low execution frequency) and responsiveness (high execution fre-
guency).

The main aim of the control approacleftectiveness.e., automatically enforcing the specified
performance goals. Typically, this does not require to achieve the best possible performance for
all transaction types thus giving increased flexibility for control decisions. At any rate, we
should be able to achieve a similar performance than with an optimal manual administration. In
addition, the static approaches should be outperformed by the adaptive control approach for
highly variable system conditions (e.g., due to load surges).

Whether these goals can be achieved critically depends on the algorithms used for implement-
ing the global and local control components. In particular, it is necessary to specify the metrics
to be calculated and analyzed for bottleneck determination. Furthermore, a set of effective pol-
icies must be provided that is able to eliminate the bottlenecks to yield better goal satisfaction.
Such policies can be based on algorithms and heuristics for scheduling and tuning that are pro-
posed in theoretical studies or used in existing systems. Of course, these approaches must be
integrated within the new control environment and require appropriate extensions to support
goal enforcement, robustness and efficiency. In the next section, we discuss our approaches for
these problems.

4 Simulation model and control strategies

We have implemented various control strategies within a comprehensive simulator of a trans-
action processing system. With this system we want to demonstrate the viability of the sketched
control approach and to evaluate different approaches. The system is highly parameterized to
allow a flexible and comprehensive evaluation of different control strategies.

In this section, we provide an overview of this simulation model (Fig. 2). We first discuss the
used database and workload model and outline how transaction processing is modelled without

automatic performance control. Afterwards we discuss the realization of local performance con-
trol, in particular bottleneck determination and resolution. The focus is on automatically enforc-
ing response time goals for transaction types.

Workload generation Processing node

entry v TP-monitor
Local Per- queue
formance &9
Control
(LPC) Transaction
- Manager (TM)

s

— Buffer Concurrenc
Manager (BM) Control (CC

log disks @ database disks

Fig. 2: Gross structure of the simulation system

4.1 Database and workload model

The database is modeled as a set of partitions. A partition may be used to represent a relation
(record type), a relation fragment or an index structure. It consists of a number of database pages
which in turn consist of a specific number of objects (records, index entries). The number of
objects per page is determined by a blocking factor which can be specified on a per-partition
basis. Among other things, partitions are used to define the reference distribution of the work-
load and to specify the database allocation to external storage. Workload generation is very flex-
ible and supports synthetic workloads as well as the use of real-life database traces. In both
cases, we can have multiple transaction types (multi-class workloads) with a varying number of
object accesses and update probability per transaction type. Transactions are modelled as a se-
guence of read or write accesses to objects. We also support generation of complex SQL queries
(scan and join operations) accessing objects of one or more relations. The simulation system is
an open queuing model and allows definition of an individual arrival rate for each transaction
and query type. In addition, it is possible to define load surges by using increased arrival rates
during certain time intervals.

For the synthetic workloads, non-uniform access patterns can be specified by means of a so-
calledrelative reference matrixThis matrix defines for every transaction type T and database
partition P which fraction of T's accesses should go to P (see example in Fig. 3). The actual ref-
erence frequencies are determined by this relative reference matrix , the arrival rates, and the
number of object accesses per transaction type. Within a partition, sequential or random selec-
tion of objects is supported. The relative reference matrix is a powerful means for defining the
access pattern of a workload. It allows specification of arbitrary degrees of locality of reference
within a given transaction type as well as between transaction types (intra- and inter-transaction
type locality).

P1 P2 P3 P4 Global
ciobal | TTL TT2 TT3
111 | 10 - - -
TT1 5
TT2 - 04 01 05 TTo 15 20
TT3 | 025 025 025 0.25 T3 15 05 20

Fig. 3: Example of relative reference matrix

(3 transaction types, 4 partitions) Fig. 4: MPL matrix (example)

4.2 Modelling of transaction processing

As shown in Fig. 2, a processing node is represented by a transaction manager (TM), CPU serv-
ers, a buffer manager (BM), a concurrency control component (CC) and the local performance
control (LPC). The transaction manager controls the execution of transactions, similar to a TP-
monitor in real systems. The maximal number of concurrent transactions is controllediby a
tiprogramming level (MPL)Newly arriving transactions must wait in an input queue (entry
queue) until they can be served when this maximal degree of parallelism is already reached.
Apart from a single (global) MPL for all transaction types, we also support type-specific (local)
MPL limits as offered by several commercial TP-monitors. These MPL values are maintained
by a matrix like the one shown in Fig. 3 specifying for each pair of transaction types the maxi-
mal number of active transactions. In the example, the number of activations of type TT1 is lim-
ited to 5, while there may be 20 activations of TT2 as well as of TT3. The number of concurrent
activations of TT2 and TT3 is limited to 25 and the maximal number of all active transactions
is 40 (global MPL). With such a MPL matrix one has the flexibility to control the load compo-
sition, e.g., in order to reduce lock contention between certain transaction types.

Our TM implementation supports sevesaheduling policie$or selecting waiting transactions

from the entry queue, in particular FCFS, Random, Earliest Deadline and based on transaction
type priorities. Earliest Deadline is a policy that has successfully been used in real-time systems
[AG89, HLC91] and is also expected to be useful for goal-oriented performance management.

In this case, the "deadline" of a transaction is computed by simply adding the response time goal
to its arrival time.

To account for the execution cost of a transaction, CPU service is requested at the beginning of
a transaction, for every object access in memory, for every disk I/O and at the end of a transac-
tion (commit). The actual number of instructions for each of these services is exponentially dis-
tributed over a mean specified as a parameter. For servicing waiting CPU request we support
the same scheduling policies as the TM (FCFS, Random, Earliest Deadline, Transaction Type
Priority). CPU requests are served by a single CPU or multiple CPUs (multiprocessor). The
number of CPUs and their processing capacity in MIPS are provided as simulation parameters.
Processing an object access also entails requesting an appropriate (read or write) lock from the
concurrency control component (CC) and asking the buffer manager (BM) to bring the corre-
sponding database page into the main memory buffer (if not there already). Commit processing
consists of two phases. In phase 1, the BM writes log data in the case of an update transaction.
In phase 2, the CC releases all locks of the transaction.

For concurrency contrglwe use strict two-phase locking (long read and write locks) together
with a deadlock detection scheme. Deadlock checks are performed for every denied lock re-
quest; the transaction causing the deadlock is aborted to break the cycle. Our simulation system
provides a choice between page- and object-level locking. For comparison purposes, it is also
possible to switch off concurrency control (no lock conflicts). These choices are offered on a

per-partition basis. This flexibility is desirable since real DBMS also use different locking strat-
egies for different object types. The database buffer in main memory is managed according to
a LRU replacement strategy and a no-force update strategy with asynchronous disk writes. Log-
ging is modelled by writing a single page per update transaction to the log file. Disks and disk
controllers have explicitly been modelled as servers to capture potential I/O bottlenecks. Fur-
thermore, disk controllers can have a LRU disk cache. We distinguish between log and database
disks since log data should be kept separately from regular data for fault tolerance reasons. Fur-
thermore, log files are always accessed sequentially permitting shorter I/O delays per page than
for database disks.

4.3 Performance control

Local performance control (LPC) is implemented as a special process that is periodically acti-
vated. It cooperates with the other components in order to obtain monitoring information and to
adapt control parameters. In each activation, LPC analyses the system state and, if found nec-
essary, determines performance bottlenecks and decides about corrective actions. Currently, we
have included automatic treatment for four bottleneck situations: CPU, disk /O, lock conten-
tion and entry queuing. To account for the load control overhead, we request CPU service for
each LPC activation. Additional CPU overhead is charged if actions for bottleneck determina-
tion and resolution have to be performed.

Analysis of system state

Since the throughput requirements are given by the arrival rates of the workload classes, we fo-
cus on achieving the response time goals for each transaction type. Hence, in order to detect per-
formance problems, after activation the LPC first analyses the response times of transactions
that have been completed during the previous control interval. By comparing the average re-
sponse times with the go&l&ne of three situations is given:

- Normal: no transaction type has missed its goal.

- Partial (local) overload: A smaller subset of the active transaction types has missed the

goals.

- Complete (global) overload: The majority of active transaction types has missed the goals.
Differentiating between partial and complete overload situations is a special feature of our ap-
proach that has not been considered in previous research. It allows us to fix specific problems
of certain transaction types by adapting type-specific control parameters rather than global pa-
rameters (see below).

Bottleneck determination

For bottleneck determination we support two complementary approaches. The first aee uses
source-specific load metride determine bottleneck resources, in particular utilization metrics
(current CPU and disk utilization, MPL utilization) and queue lengths. This approach requires
specification of threshold values for the utilization above which a bottleneck is declared (e.g.,
50% for disk bottleneck, 90% for CPU bottleneck). To determine a lock bottleneck we are test-
ing different metrics, in particular the conflict ratio discussed in Section 2.

The utilization of a resourceu,, is derived from a weighted combination of its current utiliza-
tion Uy cyrrent@nd its older utilization valug; g :

Ur new=Wr * Uy current™ (1 - W) * U oiq (O<=w<=1).

* Instead of using the average response times, in our simulation system a transaction type can alternatively
be considered as having missed its goal when a certain percentage (simulation parameter) of its completed
or running transactions has exceeded the response time limit.

By not only considering the current utilization (foy 1) one can reduce the danger of over-
reacting to abrupt utilization changes due to short-term workload fluctuations. Determination of
Ur current 2NdU; o1q depends on the resource type. For CPU and disk resourggsn; corre-
sponds to the average utilization since the previous LPC activatig; corresponds to the
resource utilization determined during the previous LPC activation. On the other hand, the cur-
rent MPL utilizationuyp cyrrentis defined as the ratio between the number of currently run-
ning transactions and the global MPL;;p g COrresponds to the average MPL utilization
during the near past.
The second approach to bottleneck determination is particularly suited for partial overload sit-
uations where only a subset of the transaction types suffers from performance problems. It is
based on aanalysis of the response time compositialicating the relative duration of differ-
ent substeps during transaction execution. Relevant response time components include waiting
time at the entry queue, CPU service time, CPU waiting time, lock waiting time, 1/0 waiting
time, 1/0 service time, etc. The overhead of maintaining such statistics can be kept low by a
monitoring approach based on sampling.
Deriving the bottleneck from the response time composition requires specification of threshold
values similar to the utilization thresholds. In [Th93], an analytical study is presented indicating
that a lock bottleneck is given when the response time fraction for lock waits exceed$r23%
a similar way, one can specify threshold values for the other bottleneck types, in particular max-
imal response fractions for CPU waiting time, disk waiting time and entry queuing. In our sim-
ulation system, these threshold values can be chosen differently for each transaction type to
account for different resource requirements. For instance, I/O intensive transaction types have
a higher chance of disk waits than CPU intensive transaction types hence justifying a higher
threshold value for disk-related response time components.
Bottleneck determination is complicated by the fact that a primary bottleneck may lead to addi-
tional bottlenecks so that there are multiple bottlenecks at the same time. For instance, a disk
bottleneck increasing response time also leads to increased lock holding times so that a lock bot-
tleneck may be introduced. Furthermore, physical resource and lock bottlenecks often block a
majority of transactions so that an entry queue bottleneck can result. To deal with these prob-
lems we handle the bottleneck types in the following order:

1. 1/O bottlenecks

2. lock bottlenecks

3. CPU bottleneck

4. entry queue bottleneck.
Thus if there is an I/O bottleneck it is first tried to resolve this bottleneck before other bottle-
necks (e.g., lock bottleneck and entry queue bottleneck) are addressed. Similarly, a lock bottle-
neck is treated before a CPU and entry queue bottleneck. These orderings reflect typical
dependencies between the various bottleneck types. For instance, an I/O bottleneck may cause
a lock bottleneck but not vice versa. Entry queue bottlenecks are handled last because in most
cases they are introduced by other bottlenecks that block many transactions. Hence, entry queue
bottlenecks should only be resolved (e.g., by increasing the MPL) if there are no other bottle-
necks left.

Bottleneck resolution
The primary bottleneck identified by the local performance control determines its corrective ac-
tions. In general, there are several alternatives that can be followed. Currently, we are support-

* |t was also shown that this percentage corresponds to a conflict ratio of 1.3.

ing two major control possibilities: MPL adaptation and adaptation of transaction priorities.
Both approaches can be used for complete (global) and partial overload situations.

In the cases of global I/O, lock or CPU bottlenecks reducinglttel MPLis the primary con-

trol action. The MPL is reduced until the bottleneck disappears, that is until the performance
goals are met or another bottleneck (e.g., entry queue bottleneck) is introduced. The amount of
MPL reduction depends on the current MPL utilizatifp| cyrrent

ForuypL, current < 0.4, we set

MPLjew= 2 * UupL, current™ MPLgg-

Foruypr. current™= 0.4, we reduce the MPL by a fixed percentage (e.g., 10%) or at least by a
specified absolute value (>= 1). This heuristic allows for a quick MPL reduction if the current
MPL is very high, while MPL reduction is cautious for higher MPL utilization levels where
abrupt MPL changes may result in unstable performance behavior. For instance, assume a MPL
of 1000 with only 10 running transactiongyb current0.01). In the case of a bottleneck re-
quiring MPL reduction, the new MPL would immediately be set to 20. From then on, MPL re-
duction would be in small steps, e.g., by 1 per LPC activation.

In the case of an entry queue bottleneck, the global MPL is increased by a fixed percentage or
at least by a specified absolute value (>= 1) until the bottleneck disappears or another bottleneck
is introduced.

The used bottleneck determination based on threshold values bears the potential of instability
in that the LPC may constantly switch between reducing and increasing the MPL. For instance,
assume a longer-lasting overload situation ending up in a CPU bottleneck that is detected be-
cause the critical utilization level of, say, 90%, is exceeded. Reducing the MPL brings down
CPU utilization but causes an entry queue bottleneck. To eliminate this bottleneck, the MPL is
increased as soon as CPU utilization is below 90%, but immediately reintroducing the CPU bot-
tleneck and so on. To avoid these frequent and unsuccessful control cycles, we additionally con-
sider a reduced threshold that must be exceeded before the MPL can be increased again. For
instance, if we set the reduced CPU threshold to 85%, an entry queue bottleneck is only dealt
with when CPU utilization falls below this value. In the utilization range between 85% and
90%, no MPL adaptation takes place so that a more stable performance behavior can be expect-
ed.

A local MPL adaptatioris beneficial in the case of partial overload situations. For instance, if
only some transaction types are suffering from I/O or lock bottlenecks reducing the global MPL
may be of little usefulness because it impacts all transaction types. In fact, performance could
even become worse because transaction types with no performance problems could unnecessar-
ily be delayed in the entry queue. By reducing the local MPL for the suffering transaction types
(by adapting the MPL matrix), the LPC is able to limit disk and lock contention without penal-
izing other transaction types. To better deal with local lock bottlenecks, we keep track of be-
tween which transaction types lock conflicts occur. If most conflicts occur between transactions
of the same type, merely the local MPL of this transaction type is reduced. If a suffering trans-
action type is mostly in conflict with another transaction type, we reduce their combined MPL

in the MPL matrix.

Partial overload situations can also be solved by increasimgyithrgy of the transaction types

having missed the response time goals. This is feasible if the scheduling policies based on trans-
action type priority are in effect. To dynamically adapt the priorities, we use the sopmaled
formance indexhat has been proposed in [FNGD93]. The performance index of a transaction
type is defined as the ratio of its average response time and its response time goal (Section 2).
By giving higher priority to transaction types with higher performance index, the waiting times

are reduced for resources for which a priority-based scheduling is used so that better goal satis-
faction can be expected

In global overload situations when almost all transaction types are missing their response time
goals, it is important to consider the relative importance of transaction types. This requires that
at least the secondary (reduced) response time goals should be achieved. This can be supported
by deriving the priority (performance index) of transaction types from the reduced response
time goals.

The previous description has shown that the control actions are highly parameterized requiring
specification of parameters like utilization thresholds, critical response time fractions, weight
factors, amount of relative and absolute MPL increase/decrease, etc. However, this does not im-
ply that all these parameters need to be specified by the administrator in a real implementation
which would mean that we had just replaced one set of control parameters by another one so
that no simplified administration can be expected. Rather these control parameters are provided
by the simulation system to allow us studying the performance of the load control approach for
different parameter settings. The goal is to find settings for the critical control metrics that are
effective for most workloads. Alternatively, performance control should be extended to auto-
matically determine its control parameters, e.g., by analyzing the effectiveness of its control de-
cisions.

5 Simulation results

The described simulation system allows us to evaluate the proposed control approach for a large
variety of workloads and system configurations. Of particular interest is to study whether vari-
ous bottlenecks are correctly determined and whether the control measures are actually able to
resolve bottlenecks to achieve better goal satisfaction. Furthermore, we can now compare the
effectiveness of different metrics for bottleneck determination, different approaches for sched-
uling and priority assignment, different control actions etc.

Due to space restrictions, we can just analyze some initial simulation results in this paper. For
this purpose, we focus on the treatment of global CPU and entry queue bottlenecks. For sim-
plicity we use a workload with a single transaction type. On average, a transaction accesses 40
objects and requires about 330,000 instructions (including I/O overhead). To exclude lock and
I/0O bottlenecks, we assume that all object accesses are reads (update probability 0) and that the
database is allocated on a sufficiently large number of disks. Furthermore, we assume slow
CPUs (2 processors of 2.5 MIPS each) to facilitate the generation of CPU bottlenecks. For the
chosen database and buffer sizes, a transaction performs about 24 disk accesses on average in
single-user mode. Together with the CPU requirements, this results in an average single-user
response time of 0.53 s per transaction. The response time goal was set to 1.5 s.

Local performance control is activated every second and we charge a control overhead of
50,000 instructions per activation plus another 50,000 instructions if a performance problem
needs to be dealt with. Automatic bottleneck determination is based on the analysis of the re-
sponse time composition. A CPU bottleneck is assumed if the response time goal has been
missed and more than 20% of the response times are due to CPU waits. Similarly, an entry
queue bottleneck is assumed if the response time fraction for entry queuing exceeds 20%. The
MPL is increased by 10% or at least 2; MPL reduction was set to 25% or at least 1.

In the first set of experiments, we use a stable workload with a fixed average arrival rate (expo-
nential distribution). Afterwards, we study a more variable workload with several load surges.

* Of course, inreasing the priority of a suffering transaction type is only helpful if this type does not have
highest priority already. If it has highest priority and is still missing its goal, a better goal satisfaction may
be achieved by reducing the local MPL for this transaction type.

Stable workload (no load surges)

For these experiments, the average arrival rate of the transaction type is varied between 12 and
15 transactions per second (tps) resulting in an average CPU utilization between about 80 and
99% . We compare the average response time and fraction of in-time transactions for different
control policies that dynamically adjust the global MPL to resolve performance bottlenecks. Re-
sults are shown for different start values for the MPL (1 in Fig. 5, and 100 in Fig. 6) in order to
see whether the dynamic policies are able to find good MPL settings from start conditions re-
quiring different control approaches (MPL increase for start value 1, MPL decrease for start val-
ue 100). As pointed out in the previous section, we can improve the stability of the control
approach by not always increasing the MPL in the case of an entry queue bottleneck that may
have been introduced by a previous MPL reduction. For this purpose, we do not increase the
MPL when the current CPU utilization exceeds a certain threshold. In Figs. 5 and 6, we show
the results for three different values for this threshold (75%, 90%, 98%). For comparison pur-
poses, results for static control approaches with a fixed MPL setting have also been included
(MPL 10 in Fig. 5; MPL 100 in Fig. 6).

10 ; .

[} r
£ 100
e
8 1% 80
)
[}
E 6 dynamic] 60
° 90%)
0]
c
S,]
3 dgnamic 40
12 (98%)~]
2r R 1 20 d%/noam
goal | (75%)
12 13 1Z 15 12 13 (7 15
Fig. 5: MPL start value 1 Arrival rate (tps)
10— ©
z £ 100
£ c static 100%~ .
= = dynamic
81 3 y > 8ot (98%)
5
Q.
[%]
(O]
6 x 1 60
static
4t 100 a0k s
dynamic .
(58 %) %
2t 20F (75 and 90 %), -
12 13 14 15 12 13 7 15
Arrival rate (tps) Arrival rate (tps)
a) Average response time b) Fraction of in-time transactions

Fig. 6: MPL start value 100

* For lower utilization levels the response time goals are always achieved so that there is no need for auto-
matic performance control.

For this workload, the results obtained with a static MPL are comparatively good because we
have excluded I/0 and lock bottlenecks. Hence, by simply choosing a high MPL (e.g., 100) we
can obtain an almost optimal performance (Fig. 6). A fixed MPL setting of 10 (Fig. 5), on the
other hand, was only sufficient for lower arrival rates but caused an entry queue bottleneck for
more than 13 tps. The performance of the dynamic policies depends very much on the men-
tioned threshold for CPU utilization, in particular for MPL start value 1 (Fig. 5). This was be-
cause the threshold prevented an MPL increase for an entry queue bottleneck when the CPU
utilization exceeded the threshold. Thus, with a threshold of 75% CPU utilization only a MPL
of 9 was achieved resulting in lower performance than with a fixed MPL ofPEdformance

of the dynamic control approach could substantially be improved by using higher thresholds.
With a threshold value of 98%, we could minimize entry queuing delays allowing more than
80% in-time transactions even for 14 tps (> 92% CPU utilization).

A MPL start value of 100 (Fig. 6) was less problematic since with all dynamic policies the MPL
was similarly reduced after the CPU bottleneck was detected. Performance for threshold values
75% and 90% was almost identical, while a threshold value of 98% was again the best perform-
er. This was because the former strategies were unable to increase the MPL after the entry queue
bottleneck had formed while the latter strategy could find a better compromise between entry
and CPU bottleneck. Despite the load control overhead (which accounted for up to 1.8% CPU
utilization), this dynamic strategy performed even slightly better than a static approach with
MPL100 that suffered from high CPU delays for 14 and 15 tps. We also performed experiments
without any threshold and obtained similar performance than for the threshold of 98%. Howev-
er, in that case we had significantly more and higher MPL fluctuations and larger response time
variances that can be more harmful when lock or I/O bottlenecks are possible.

A conclusion from these results is that additionally restricting the MPL by the thresholds for
CPU utilization can be harmful if these thresholds are chosen too low (<= 90%). This is because
the resulting entry queue delays are more severe than the increased CPU delays for higher CPU
utilization, except for very high CPU utilization (> 95%). The underlying reason is that CPU
service and waiting times are mostly in the order of milliseconds while transaction response
times and thus entry queuing delays are in the order of seconds. Hence, a high CPU threshold
value (e.g., 98%) should be used.

To better compare the dynamic control approach (98%) with a static MPL usage, we summarize
some of the results for 12 and 15 tps in Fig. 7. On the x-axes we vary the different MPL values
used for the static approaches. For the dynamic approach, the MPL value corresponds to the
start value that was automatically changed during the simulation runs. The curves show that the
performance of the dynamic approach is almost independent from the start value for the MPL
indicating its ability to automatically find good MPL values. In addition, comparable response
times and goal satisfaction (measured by fraction of in-time transactions) than for the best static
MPL value are achieved. In practice, the optimal static MPL is hard to find, in particular for
overload situations (15 tps). In this case, dynamic performance control outperforms the static
approach for a large range of MPL values.

Variable workload (load surges)
To study the performance of our dynamic performance management approach for more variable
load conditions, we introduced several load surges causing a complete overload of the system.

* Note that the actual CPU utilization may exceed the specified threshold value. In fact, we observed an av-
erage CPU utilization of up to 88% for a threshold value of 75%. This was because stochastic load fluctu-
ations caused in some points in time the CPU utilization to fall below 75% so that the MPL could be
increased. Subsequently, this increased MPL resulted in a higher CPU utilization than 75% without creating
a CPU bottleneck (which would have caused a MPL reduction).

1 - - - - 100 ==
. D icl2t
. Static 12 tps ynamie he
w g . i |
+ 8 Static 15 tps 80
E F 2
= E=
3 c 60f 1
i 4 - 40 Dynamic 15 tps_
3 _ Dynamic 15 tps: — ’
2F |\ Static 12 tps goal 20 Static 15 tps -
1 =
0 . Dynamic 12 (s 0
0 20 40 60 80 100 20 40 60 80 100

. Start-MPL / MPL
a) Average response time b) Fraction of in-time Transactions

Fig. 7. Stable load: response times and in-time transactions

For this purpose, we used a base load of 12 tps and several load surges with 25 tps. In a simu-
lation run of 1000 s we used 5 such load surges each lasting 15 s. The resulting simulation re-
sults (response time and fraction of in-time transactions) for static MPLs and dynamic MPL
adaptation are depicted in Fig. 8. As in Fig. 7, the x axes refer to the different static MPL values

or the MPL start values for dynamic performance control.

8y 2 70 : : - -
\ = dynamic MPL J
. \ £ Py
N | X 60 el .
o 6 \ static MPL -
£ \
= R S i
© ‘\ S0 ** static MPL
@ gt AN ~ \
S ~ ram— N
2 Naa====== 40f 1
X Nl dynamic MPL] :'
-~ — T — T T T T Tgoal 7 30': T
'
10 50 700 20710 50 100
MPL / start MPL MPL / start MPL
a) Average response time b) Fraction of in-time transactions

Fig. 8: Dynamic load: response times and in-time transactions

Fig. 8 shows that the load surges caused a substantial increase in the average response times (>=
2.8 s) and a corresponding drop in the fraction of in-time transactions (<= 63%) compared to
the stable workload of 12 tps. Again, dynamic performance control was able to perform about
as well as with the best static MPL (50). Furthermore, the good performance was achieved in-
dependent of the used start value of the MPL underlining the robustness of the control approach.

To illustrate the dynamics of the control approach we show in Fig. 9 the development of the
average response time and the MPL values during a simulation run of 1000 s. Note that the left
y axis is for the average response times (and the response time goal) while the y axis on the right
is for the MPL values. The 5 response time peaks correspond to the 5 load surges that have been
used for this experiment. At the beginning of the first load surge (time 100), performance con-
trol detects a CPU bottleneck and quickly reduces the MPL from the initial value 100 to 17. At
this point an entry queue bottleneck establishes that does not result in a MPL increase because

the CPU is fully utilized. At time 150 all transactions from the load surge are processed so that
the entry queue bottleneck disappears. Between the load surges, the MPL remains stable be-
cause the response time goals can be met in most cases. The following load peaks also cause
only minor MPL changes since the fully utilized CPU does not allow the MPL to increase be-
yond 17. A MPL decrease due to the CPU bottleneck quickly causes the response time to be
dominated by entry queuing delays. Hence, entry queuing is determined as the primary bottle-
neck so that no further MPL decrease takes place. The experiment showed that our approach is
able to quickly react to load surges that violate response time goals. On the other hand, load vari-
ations do not result into an overreaction but a stable behavior of the control approach could be
achieved.

15 T T T T
-1 100
MPL
) Response Time 180
o 10
£
> - o
] 60 I
o
o
0
@ -1 40
5
I -1 20
2rgoal | V"1 L r— Lo .. 'l ___________
0 200 400 600 800 1000 SiMtime [s]
Fig. 9: Response times and MPL settings for dynamic load (MPL start value 100)
6 Summary

We have addressed the problem of adaptive and goal-oriented performance control for transac-
tion processing. Goal-oriented performance control means that we try to directly enforce exter-
nal performance goals instead of having the administrator to specify many internal and
complicated control parameters. Manual interactions during operation are largely avoided
thereby simplifying administration. The control approach is based on a feedback loop entailing
a special control process that cooperates with local subsystem schedulers and resource manag-
ers in order to enforce defined performance goals. Through this cooperation it is tried to achieve
an integrated treatment of a variety of performance problems and bottleneck types in different
subsystems.

Normally, the control approach only acts when performance goals are being missed. We cur-
rently support an integrated treatment of four bottleneck types and differentiate between com-
plete and partial overload situations. Bottleneck determination is based on utilization metrics or
analysis of the response time composition. In order to differentiate between primary and sec-
ondary bottlenecks, we check the bottleneck types in a predetermined order taking into account
typical dependencies. Major control actions are adaptation of global and local MPL values as
well as priority adaptation.

The various approaches and heuristics have been implemented within a detailed simulation sys-
tem. Initial simulation results for experiments dealing with CPU and entry queue bottlenecks

(Section 5) are encouraging. Even in situations with high overload (load surges) our perfor-
mance control showed a stable behaviour and was able to automatically find good MPL settings.
Performance was comparable with the best static approach. More work is needed for evaluating
additional bottleneck types and control strategies.

7 References

AG89 Abbott, R., Garcia-Molina, H.: Scheduling Real-Time Transactions with Disk-Resident Data.
Proc. 15th Int. Conf. on Very Large Data Bases , 385-396, 1989

BCL93 Brown, K.P., Carey, M.J., Livnhy, M.: Managing Memory to Meet Multiclass Workload Response
Time Goals. Proc. 19th Int. Conf. on Very Large Databases , 328-341, 1993

BCL96 Brown, K.P.; Carey, M.J.; Livny, M.: Goal-Oriented Buffer Management Revisited. Proc. ACM SIGMOD
conf. , 1996

BE95 Berkel, E., Enrico, P.: Effective Use of MVS Worload Manager Controls. Proc. CMG95, 1995. Fulltext
available at http://www.s390.ibm.com/products/mvs/wim/cmg95

BMCL94 Brown, K.P.; Mehta, M.; Carey, M.J.; Livny, M.: Towards Automated Performance Tuning for Complex
Workloads. Proc. 20th Int. Conf. on Very Large Databases , 72-84, 1994

CFWNT94 Chung, J., Ferguson, D., Wang, G., Nikolaou, C., Teng, J.: Goal-Oriented Dynamic Buffer Pool Man-
agement for Data Base Systems . IBM Research Report RC 19807,1994, Proc. Int. Conf. on Engi-
neering of Complex Computer Systems (ICECCS) , Nov. 1995

CICS96 CICSPlex System Manager/ESA Concepts and Planning , IBM Manual GC33-0786, 1996 (for related
information see http.//www.hursley.ibm.com/cicsplex/tipindex.htmi)

CKL90 Carey, M.J., Krishnamurthi, S., Livny, M.: Load Control for Locking: The 'Half-and-Half’ Ap-
proach. Proc. 9th ACM Symp. on Principles of Database Systems , 72-84, 1990

DG94 Davison, D.L.; Graefe, G.: Memory-Contention Responsive Hash Joins. Proc. 20th Int. Conf. on Very
Large Databases , 379-390, 1994

FNGD93 Ferguson, D., Nikolaou, C., Georgiadis, L., Davies, K.: Satisfying Response Time Goals in Trans-
action Processing Systems. Proc. 2nd Int. Conf. on Parallel and Distributed Information Sys-
tems (PDIS-93), 138-147, 1993

GR93 Gray, J., Reuter, A.: Transaction Processing. Morgan Kaufmann 1993

HLC91 Haritsa, J.R., Livny, M., Carey, M.J.: Earliest Deadline Scheduling for Real-Time Database Sys-
tems. Proc. 12th Real Time Systems Symp. , 232-242, 1991

JCL90 Jauhari, R., Carey, M.J., Livny, M.: Priority-Hints: An Algorithm for Priority-Based Buffer Manage-
ment. Proc. 16th Int. Conf. on Very Large Data Bases , 708-721, 1990

MB61 Mishkin, E., Braun, L.: Adaptive Control Systems . McGraw-Hill, 1961

MW91 Monkeberg, A., Weikum, G.: Conflict-Driven Load Control for the Avoidance of Data-Contention
Thrashing. Proc. IEEE Data Engineering Conf., 1991

MW92 Monkeberg, A., Weikum, G.: Performance Evaluation of an Adaptive and Robust Load Control
Method for the Avoidance of Data-Contention Thrashing. Proc. 18th Int. Conf. on Very Large
Data Bases, 432-443, 1992

NFC92 Nikolaou, C., Ferguson, D., Constantopoulus, P.: Towards Goal-Oriented Resource Management. IBM
Research Report RC 17919, IBM T.J. Watson Research Center, Yorktown Heights, 1992

PCL93 Pang, H., Carey, M.J., Livny, M.: Partially Preemptible Hash Joins. Proc. ACM SIGMOD Conf. , 59-
68, 1993

Ra89 Rahm, E., Ferguson, D., Georgiadas, L., Nikolaou, C., et al.: Goal-Oriented Workload Management
in Locally Distributed Transaction Systems. IBM Research Report RC 14712, IBM T.J. Watson Re-
search Center, Yorktown Heights, 1989

Ra96 Rahm, E.: Automatisches zielorientiertes Performance-Tuning von Transaktionssystemen,
Workshop "Methoden und Werkzeuge zur Datenbankadministration”, Darmstadt, March 1996, in:
Datenbank-Rundbrief Nr. 17, Gl-Fachgruppe Datenbanken, May1996 (in German)

Re86 Reuter, A.: Load Control and Load Balancing in a Shared Database Management System. Proc.
2nd |IEEE Data Engineering Conf ., 188-197,1986
Tho3 Thomasian, A.: Two-Phase Locking and its Thrashing Behavior. ACM Trans. on Database Systems

18 (4), 579-625, 1993

WHMZz94 Weikum, G., Hasse, C., Mdnkeberg, A., Zabback, P.: The Comfort Automatic Tuning Project. Infor-
mation Systems 19 (5), 381-432, 1994

ZG90 Zeller, H., Gray, J.: An Adaptive Hash Join Algorithm for Multiuser Environments. Proc. 16th Int.
Conf. on Very Large Data Bases, 186-197, 1990

