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German AI Centers

5 new, permanent German AI centers
(in addition to DFKI) :

• Berlin (BIFOLD)
• Dortmund / Bonn (ML2R)
• Dresden / Leipzig (ScaDS.AI)
• München (MCML)
• Tübingen (tuebingen.ai)

www.humboldt-foundation.de
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ScaDS.AI

• SCADS.AI: Center for Scalable Data AnalyticS and Artificial 
Intelligence

• extends previous Big Data center  
ScaDS Dresden/Leipzig (est. 2014)

• since 2019: AI /  Data Science center ScaDS.AI 
• since July 2022: institutionally funded     

• co-financed by BMBF and state of Saxony  
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Building up the center

• >150 employees
• graduate school with about 100 Ph.D. students
• service & transfer center with living labs in both Leipzig and Dresden

• 8+ new AI/data science professorships

• new junior research groups (5 so far) 

• many additional 3rd-party projects and industry collaborations

• many events
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EVENTS / OUTREACH

20202019 2021 2022 2023
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 ScaDS.AI Dresden/Leipzig

 Construction of Knowledge Graphs 
 KG intro 
 requirements for KG construction
 processing steps 
 comparison of existing approaches
 open challenges 

 Entity resolution / matching  
 ER intro 
 Entity clustering and incremental ER (Famer) 
 embedding-based matching of KGs 

 Conclusions

AGENDA
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Knowledge Graph Key Characteristics

■ a graph (network) of "real world" entities
■ high number of entity and relation types
■ a formal semantic representation of things (e.g., using a KG ontology)

A  graph of data consisting of semantically described entities and 
relations of different types that are integrated from different sources.

A  graph of data consisting of semantically described entities and 
relations of different types that are integrated from different sources.
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Importance of Knowledge Graphs

● background knowledge
● semantic search
● QA
● recommender systems

…

● ML support 
○ training data
○ Classification
○ improved explainability … 

https://lod-cloud.net/
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Example: Product Knowledge Graph

from: Dong. KDD2018
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Knowledge Graph Construction

Wikidata knowledge graph example using SPARQL by Fuzheado is licensed under CC BY 4.0 SA

unstructured (TEXT)
or multimodal data 
(audio, images, videos)

structured 
(RDB, KGs)

semi-structured 
(e.g., JSON, CSV)

?
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arXiv preprint: Hofer, M., Obraczka, D., Saeedi, A., Köpcke, H., & Rahm, E. (2023).
                           Construction of Knowledge Graphs: State and Challenges. ArXiv, abs/2302.11509.
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Requirements for KG construction
■ Input Data Requirements

■ support for many, large and heterogenous data sources
■ techniques for data acquisition, knowledge extraction, entity resolution/fusion

■ Support for Incremental KG updates
■ process new input data in batches or continuously in a streaming manner
■ series of batch-created KG versions vs. incremental updates of changes/new sources  
■ tradeoffs in simplicity vs. scalability /freshness 

■ Pipeline and Tools Requirements 
■ tool support needed to simplify KG construction (creation of application-specific pipelines) 
■ utilize existing,  independently developed tools
■ simplified configuration of individiual steps
■ support for debugging and tuning

■ Quality Assurance
■ ensure high data quality in individual pipeline steps and in resulting KG 
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Pipeline Blueprint
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Overview of KG Construction Tasks

■ Initial KG construction: manual crowdsourcing, sampling existing KG

■ Data preprocessing: data acquisition, data cleaning and transformation 

■ *Metadata management: persistence, access, versioning, provenance

■ *Ontology development: creation, evolution, integration

■ Knowledge extraction: entity recognition, linking, relation extraction

■ Entity resolution: entity matching, clustering, data fusion

■ *Quality assurance: quality assessment, repair, debugging

■ Knowledge completion: type-, link prediction, enrichment, polishing

16

*cross-cutting and special tasks
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Knowledge Extraction

■ bringing unstructured or semi-structured data to structured, machine-readable information

■ subtasks: Named-Entity Recognition (NER), Entity Linking (EL), and Relation Extraction (RE)

■ multi-modal KE: visual relation extraction from images
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Quality Assurance 

■ high KG quality crucial for credibility and usability 

■ subtasks: quality evaluation (identifying issues) and quality improvement (fixing issues) / KG completion

■ Quality evaluation
■ dimensions: accuracy, consistency, timeliness, completeness, trustworthiness, availability
■ manual checks (experts, crowd-sourcing), statistical analysis, semantic reasoning, comparison with external sources

■ Quality improvement
■ Error correction, data cleaning, entity resolution and fusion
■ ontology evolution

■ Knowledge completion: improve KG by new nodes, relations, properties 
■ type completion: Assigning types to nodes lacking type information using node classification, logical reasoning, or 

statistical approaches.
■ link prediction: Identifying missing relations in KG, with techniques like distant supervision, embedding-based 

methods, or Graph Neural Networks.
■ data enrichment: add entity information from external knowledge bases, e.g. using persistent identifiers (ISBN, DOIs, 

ORCIDs …)

18
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Exemplary Selection and Comparison

■ Investigation of 23 specific KGs/construction approaches and toolsets

■ 3 closed KGs:  Google, Diffbot, Amazon

■ 3 manually curated KGs: Freebase, Wikidata, ORKG

■ 10 open KGs: DBPedia, DBPedia-live, YAGO, NELL, ArtistKG, CovidKG, … 

■ 7 toolsets for KG construction: FlexiFusion, dstlr, XI, Autoknow, HKGB, SLOGERT; Saga

■ selection based on relevance (popularity), novelty, existing paper/documentation, with multiple versions
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*manually curated 
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✓ supported/provides

◯ simple/manual

⬤ sophisticated/semi-automatic

? unclear implementation
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simple matching, 
no fusion
simple matching, 
no fusion

✓ supported/provides

◯ simple/manual

⬤ sophisticated/semi-automatic

? unclear implementation
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 SAGA tool (Apple, Ilyas et al., Sigmod 2022)



24

Open challenges in KG construction  

■ better support for incremental KG construction 
■ batch-like KG re-creation has limited scalability and out-of-date information
■ more complex: change detection in sources and incremental pipeline

■ lack of open tools for KG construction 

■ toolset for defining different KG construction pipelines with different implementations for certain tasks (extensible, 
modular approach needed)

■ more comprehensive approaches needed for metadata management and KG quality assurance

■ evaluation of KG construction approaches

■ so far only benchmarks for single tasks (extraction, matching, completion)

■ not sufficient to evaluate/compare different end-to-end construction approaches

■ use of Large Language Models (LLMs) for KG construction
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 ScaDS.AI Dresden/Leipzig

 Construction of Knowledge Graphs 
 KG intro 
 requirements for KG construction
 processing steps 
 comparison of existing approaches
 open challenges 

 Entity resolution / matching  
 ER intro 
 entity clustering and incremental ER (Famer) 
 embedding-based matching of KGs 

 Conclusions

AGENDA
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 Identification of semantically equivalent objects
 within one data source or between different sources

DATA MATCHING / ENTITY RESOLUTION 
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DUPLICATE PUBLICATION ENTRIES
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 Scalability
 large data volume  or/and many sources  
 need to reduce search space (e.g. with blocking) + parallel processing  

 High match quality 
 low quality input data (unstructured, semi-structured sources)  
 needs effective combination of several techniques
 use of supervised ML approaches  
 use of entity embeddings

 Support for evolution and change
 addition of new sources and new entities without having to integrate everything again
 incremental / dynamic vs batch / static ER 

ER CHALLENGES
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ENTITY RESOLUTION WORKFLOW

S

Blocking/ 
Filtering

Similarity
Computation 

& Match 
classification

Entity 
clustering

R

clusters of 
matching entities

 mostly only 1 or 2 sources
 n>=2: duplicate-free (clean) sources or not 
 clean sources:  at most one entity per cluster (cluster sizes <= n) 
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 naïve: pairwise matching of all entities 
 quadratic complexity, not scalable
 strong need to reduce match search space

 Blocking
 group similar objects within blocks / partitions
 only compare entities of the same block 
 many variations: Standard Blocking, LSH, Sorted Neighborhood, …

 Filtering 
 typically applied for similarity joins with fixed threshold t: sim (e1, e2) ≥ t 
 utilizes characteristics of similarity function, e.g., for string similarity
 for embeddings: only consider nearest neighbors

BLOCKING & FILTERING

Papadakis et al: Blocking and Filtering Techniques for 
Entity Resolution: A Survey. ACM CSUR 2020
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BLOCKING TECHNIQUES

Papadakis et al: Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM CSUR 2020
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 combined use of several similarity values
 attribute similarities, e.g. using numeric or string similarity measures   
 context-based matchers  

 general match rules with multiple similarties
 e.g. pubs match if title sim. ≥ 0.9 & author sim. > 0.4

 learned/supervised match classification models
 need suitable training data 

MATCHING
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 FAst Multi-source Entity Resolution System
 scalable linking & clustering for many sources

FAMER TOOL

Source D

Source E

Source BSource 
A

Source C

Input Linking: Similarity Graph
Clustering



34

FAMER BATCH PIPELINE
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 optimized for clean sources 

 CLIP (CLustering based on Link Priority) 
uses link strength
 strong: maximum link from both ends
 normal: maximum link from one end
 weak: maximum link from no end

 CLIP 
 ignores weak links
 focusses on strong links 
 also considers normal links

CLIP APPROACH (ESWC BEST RESEARCH PAPER) 
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EVALUATION: GEO. DATASET

               Precision Recall F-MeasureCLIP
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 previous assumption: data sources are duplicate-free

 more realistic assumption: some sources are dirty
 solution: first deduplicate dirty sources
 problem: requires immense effort and perhaps not completely successful  

 solution: MSCD approaches
 approaches that can deal with dirty sources 
 only a fraction (possibly 0%) of sources have to be clean
 goal: achieve better match quality than general clustering scheme while avoiding 

limitation of requiring duplicate-free sources
 most promising: hierarchical agglomerative clustering (HAC)  

MULTI-SOURCE CLEAN/DIRTY CLUSTERING
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 modify Hierarchical Agglomerative Clustering ->MSCD-HAC 

 iterative approach
 initially each entity forms a cluster 
 continuously determine most similar  pair of clusters (ci , cj) as long as minimal merge sim. 

threshold is exceeded. Merge clusters ci , cj only when
 they are Reciprocal Nearest Neighbours (RNN), i.e. NN(cj) = ci and NN(ci) = cj

 observe that at most one entity of a clean source in a cluster

 3 approaches to determine cluster similarity sim (ci , cj) 
 Single linkage (S-LINK): sim ci, cj = max {sim(em ,en)}
 Complete linkage (C-LINK) : sim ci, cj = min {sim(em ,en)}

 Average linkage (A-LINK) : sim ci, cj = avg {sim(em ,en)}

MSCD-HAC
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match threshold = merge threshold (θ)

F-MEASURE: CAMERA DATASET

DS-C0                                      DS-C50                                   DS-C100

0% clean 50% clean 100% clean

MSCD S-LINK
CLIPMSCD S-LINK

MSCD A-LINK
MSCD C-LINK
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 static one-time matching and clustering insufficient
 need for incremental approaches 
 data sources change over time 
 new relevant data sources are added continuously
 expensive re-computation of similarity

graph /clusters to be avoided

 order in which new entities are 
added should have minimal impact
 need to repair wrong clusters    

MOTIVATION
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FAMER INCREMENTAL PIPELINE
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 requires to keep similarity graphs for clustered entities

 recluster new entities in Gnew with their neighbors
 can repair old cluster decisions
 limits amount of reclustering for efficiency
 reduce dependence on order of entity additions

 evaluation results
 incremental approaches are much faster

and similarly effective than batch ER
 quality of nDR does not depend on the order in which new entities are added

FAMER N-DEPTH RECLUSTERING

1-depth

2-depth
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ENTITY RESOLUTION ON KNOWLEDGE GRAPHS

 similar ER challenges as discussed
 large KGs (e.g., 100 million entities in Wikidata)

 ER for many interrelated entity types needed
 standard ER assumes only 1 entity type

 Key idea: map entities of input KGs  into embedding space and determine
matches based on nearest neighborhood
 word embeddings for properties/attribute values
 graph embeddings to consider neighboring entities in KG 
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KNOWLEDGE GRAPH EMBEDDINGS (KGE)

 transform entities into a dense vector so that
 similar entities close in the embedding space
 relational information is retained 

 many possible approaches
 translational KGEs for triples <h,r,t> 

(e.g.  MultiKE, BootEA)
 Graph Neural Network approaches 

(e.g. RDGCN, CG-MuAlign) 
based on aggregated 
entity neighborhood in KG
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Obraczka, Schuchart, and Rahm, “Embedding-Assisted Entity Resolution for Knowledge Graphs”, 2021

EAGER: EMBEDDING‐ASSISTED ENTITY RESOLUTION FOR KG
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EXPERIMENTAL EVALUATION

 16 alignment tasks
 KG subsets from DBpedia, Wikidata, YAGO
 different densities, sizes and even cross-lingual settings

 3 KG embedding approaches (BootEA, MultiKGE, RDGCN)
 best performing approaches from Sun et al: “A Benchmarking Study of Embedding-

based Entity Alignment for Knowledge Graphs”, 2020

 comparison of 3 approaches
 OnlyEmb – only graph embeddings are used
 OnlySim: only attribute similarities are used
 SimAndEmb: use both
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Results for 100K datasets (using MLP as classifier)
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PROBLEMS WITH EMBEDDINGS

 Problems with runtime and quality für larger and more diverse KGs 

 blocking approaches not applicable to speed-up matching

 exact nearest-neighbor algorithms become slow 
 need to apply faster approximate nearest neighbor (ANN) algorithms, e.g. Annoy, Faiss

…

 but ANN algorithms lose some matches (reduced recall) 
 embeddings are relatively high-dimensional (> 200)
 “hubness” of embedded entities 
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with increasing dimensionality:

few points are nearest neighbors (NN) of
many points
many points are NN of no points

⇒ hubness negatively affects alignment quality

HUBNESS REDUCES ALIGNMENT QUALITY
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kiez
open-source python library (github.com/dobraczka/kiez)
for hubness-reduced nearest neighbor search
(for entity alignment with knowledge graph embeddings)

Obraczka and Rahm, “An Evaluation of Hubness Reduction Methods for Entity Alignment with Knowledge Graph Embeddings”, 2021
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kiez
Open-source python library (github.com/dobraczka/kiez)
for hubness-reduced nearest neighbor search
(for entity alignment (with knowledge graph embeddings))

Hubness reduction methods:
Local Scaling Schnitzer et al., 2012

NICDM Schnitzer et al., 2012

CSLS Lample et al., 2018

Mutual Proximity Schnitzer et al., 2012

DisSimLocal Hara et al., 2016

(Approximate) Nearest Neighbor Method:
Sci-kit learn Pedregosa et al., 2011

BallTree Omohundro, 1989

KDTree Bentley, 1975

Bruteforce
NMSLIB: HNSW Malkov, 2018

NGT Iwasaki, 2016

Annoy (github.com/spotify/annoy)

Faiss Johnson, Douze, and Jégou, 2017
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hubness reduction improves alignment results

using ANN algorithms (Faiss) with hubness reduction approach (NICDM) gives
improvements at virtually no cost w.r.t speed

⇒ hubness reduction largely offsets decrease in alignment quality when using 
approximate nearest neighbor algorithm while still retaining speed advantage

EVALUATION RESULTS
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1Leone et al., “A Critical Re-evaluation of Neural Methods for Entity Alignment”, 2022
2Wang et. al.,"Facing Changes: Continual Entity Alignment for Growing Knowledge Graphs",2022

FUTURE DIRECTIONS FOR KGE-BASED METHODS
 more realistic evaluations1

 differently sized KGs, not only 1:1 matches, …  

 better scalability of  KGE-based methods
 blocking-like approaches not yet explored

 dealing with unseen entities is almost unexplored2

 unsupervised KGE approaches, e.g. for clustering  
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 largely automatic creation/refinement of large   
knowledge graphs is still difficult
 open toolsets needed supporting all major steps with easy configuration
 better approaches needed for incremental updates, quality assurance, 

ontology evolution, multi-modal KGs … 
 holistically evaluating KG construction approaches is challenging

 Entity resolution
 huge amount of previous work mostly on structured and static data for single kind

of entities
 need for incremental approaches for KGs with many entity types
 use of KG embeddings promising but with need for improvements

SUMMARY
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