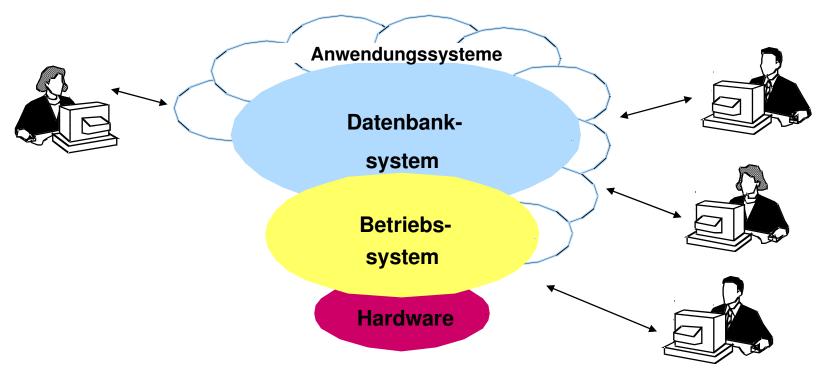
1. Einführung / Grundlagen von DBS

- DBS vs. Dateisysteme
- Eigenschaften von DBS
- Datenmodelle
- Transaktionskonzept (ACID)
- Aufbau von DBS
 - Schemaarchitektur
 - Schichtenmodell
- Historische Entwicklung
- Einsatzformen von DBS (OLTP, Decision Support)

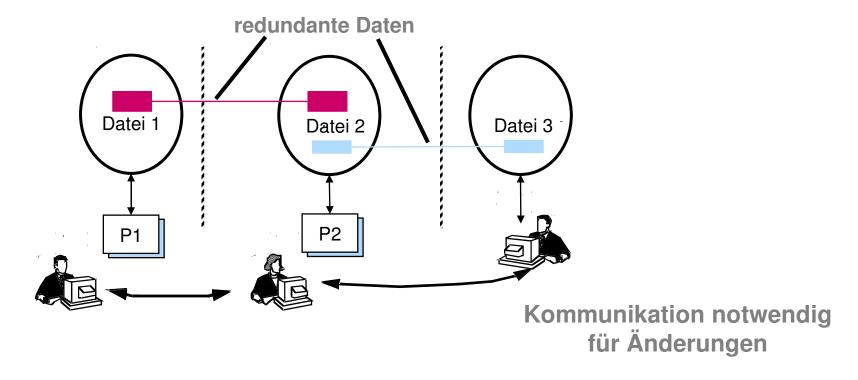


Persistente Datenhaltung

- persistente Datenspeicherung: Dateien oder Datenbanken
 - Nutzung von Hintergrundspeicher (Magnetplattenspeicher)
 - Daten bleiben über Programmende, Rechnereinschaltung etc. hinaus erhalten
 - inhaltsbasierter Zugriff auf Daten vielfach erforderlich
- Daten sind wertvoll!
 - Adressdaten
 - Personaldaten
 - Kundendaten
 - Transaktionsdaten (Bestellungen, Lieferungen, ...)
 - Konstruktionsdaten (Auto, Motor, ...)
 - Geoinformationsdaten (Straßen, Flüsse, Leitungen, ...)

DBS als Kern von Informationssystemen

- IS = DBS + Anwendungssysteme + Benutzerschnittstellen
- □ DBS = DB + Datenbankverwaltungssystem (DBVS, DBMS)
 - DB: Menge der gespeicherten Daten
 - Datenbankverwaltungssystem (DBVS): Generisches Software-System zur Definition, Verwaltung, Verarbeitung und Auswertung der DB-Daten. Es kann für unterschiedlichste Anwendungen eingesetzt werden.


Beispiele für Informationssysteme

- Universitätsdatenbank
 - Verwaltung von Fakultäten und ihren Studenten sowie Professoren
 - Studenten belegen Vorlesungen von Professoren und legen bei ihnen Prüfungen ab
 - Anwendungsvorgänge sind z. B.: Immatrikulation, Rückmeldung,
 Exmatrikulationen, Stundenplanerstellung, Planung der Raumbelegung,
 Ausstellen von Zeugnissen, Statistiken über Prüfungsergebnisse, etc.

Datenbank eines Produktionsbetriebes

- Verwaltung verschiedener Abteilungen und deren Beschäftigte
- Die in einem Betrieb hergestellten Endprodukte setzen sich i.a. aus mehreren Baugruppen und Einzelteilen zusammen. Jedes Teil kann von Lieferanten bezogen werden.
- Typische Anwendungsvorgänge sind z. B.: Personalverwaltung (Einstellung / Entlassung, Lohn- und Gehaltsabrechnung), Bestellung und Lieferung von Einzelteilen, Verkauf von Fertigprodukten, Lagerhaltung, Bedarfsplanung, Stücklistenauflösung

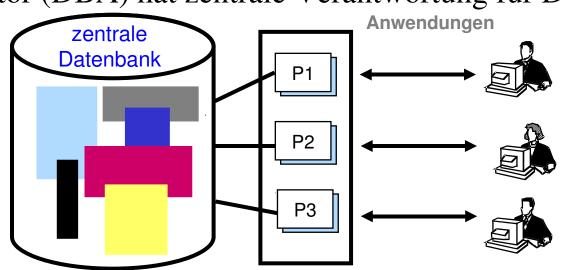
Probleme mit Dateisystemen

- wiederholte Speicherung gleicher Daten => Redundanz
 - erhöhter Speicherplatzbedarf
 - Konsistenzprobleme!

Probleme mit Dateisystemen (2)

- hoher Entwicklungsaufwand für Anwendungen
 - Programmierer verantwortlich für Aufbau/Inhalt der Dateien
 - Lösung gleicher Aufgaben in allen Anwendungsprogrammen:
 Suchaufgaben, Änderungsdienst, Speicherverwaltung ...
- enge Bindung von Datenstrukturen an Programmstrukturen (geringe "Datenunabhängigkeit")
 - Kenntnisse der Datenorganisation kann gutes Leistungsverhalten ermöglichen, aber
 - Änderungen im Informationsbedarf sowie bei Leistungsanforderungen erfordern Anpassungen, die auf Anwendungen durchschlagen
 - verschiedene Anwendungen brauchen verschiedene Sichten auf dieselben Daten
- Mehrbenutzerbetrieb
- Verlust von Daten, Datensicherheit
 - Annahmen: Alles bleibt stabil! Alles geht gut!

Aufgaben/Eigenschaften von DBS


- Generell: effiziente und flexible Verwaltung großer Mengen persistenter Daten (z. B. GBytes T Bytes)
- 1. Zentrale Kontrolle über die operationalen Daten
- 2. Hoher Grad an Datenunabhängigkeit
- 3. Hohe Leistung und Skalierbarkeit
- 4. Mächtige Datenmodelle und Anfragesprachen / leichte Handhabbarkeit
- 5. Transaktionskonzept (ACID), Datenkontrolle
- 6. Ständige Betriebsbereitschaft (hohe Verfügbarkeit und Fehlertoleranz)
 - 24-Stundenbetrieb
 - keine Offline-Zeiten für DB-Reorganisation u. ä.

1. Zentrale Kontrolle der Daten

- Alle (operationalen) Daten können gemeinsam benutzt werden
 - keine verstreuten privaten Dateien
 - ermöglicht inhaltliche Querauswertungen
- Eliminierung der Redundanz
 - Vermeidung von Inkonsistenzen
 - keine unterschiedlichen Änderungsstände
- einfache Erweiterung/Anpassung der DB (Änderung des Informationsbedarfs)
- Datenbankadministrator (DBA) hat zentrale Verantwortung für Daten

zentrale DB statt verteilter Dateien

© Prof. E. Rahm

2. Datenunabhängigkeit

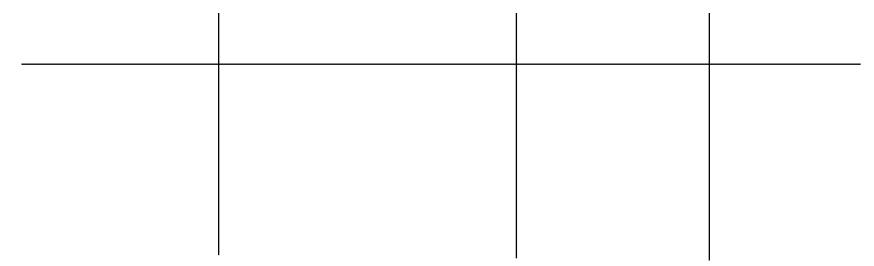
- Datenunabhängigkeit = Maß für die Isolation zwischen Anwendungsprogrammen und Daten
- Gefordert ist eine möglichst starke Isolation der Anwendungsprogramme von den Daten

sonst: extremer Wartungsaufwand für die Anwendungsprogramme

- Minimalziel: physische Datenunabhängigkeit
 - Unabhängigkeit gegenüber Geräteeigenschaften, Speicherungsstrukturen, Indexstrukturen, ...
- logische Datenunabhängigkeit
 - Unabhängigkeit gegenüber logischer Strukturierung der Daten
 - i. a. nur teilweise erreichbar

3. Hohe Leistung und Skalierbarkeit

- Hoher Durchsatz / kurze Antwortzeiten für DB-Operationen auf großen Datenmengen
 - "trotz" loser Bindung der Programme an die Daten (Datenunabhängigkeit)
- Leistungsverhalten ist DBS-Problem, nicht Anwendungsproblem
 - Zugriffsoptimierung für DB-Anfragen durch das DBS (Query-Optimierung)
 - Festlegung von Zugriffspfaden (Indexstrukturen), Datenallokation etc.
 durch den DBA (idealerweise durch das DBS)
 - automatische Nutzung von Mehrprozessorsystemen, parallelen Plattensystemen etc. (-> Parallele DBS)
- Hohe Skalierbarkeit
 - Nutzung zusätzlicher/schnellerer Hardware-Ressourcen
 - Anpassung an steigende Leistungsanforderungen (wachsende Datenmengen und Anzahl der Benutzer)


4. Mächtige Datenmodelle

- Datenmodell/DBS-Schnittstelle
 - Operationen zur Definition von Datenstrukturen (Data Definition Language, DDL), Festlegung eines DB-Schemas
 - Definition von Integritätsbedingungen und Zugriffskontrollbedingungen (Datenschutz)
 - Operationen zum Aufsuchen und Verändern von Daten (Data Manipulation Language DML)

Datenstrukturierung

- Beschreibung der logischen Aspekte der Daten, neutral gegenüber Anwendungen
 - Anwendung erhält logische auf ihren Bedarf ausgerichtete Sicht auf die Daten
- **formatierte** Datenstrukturen, feste Satzstruktur
 - Beschreibung der Objekte durch Satztyp, Attribute und Attributwerte (S_i/A_i/AW_k)
 - jeder Attributwert AW_k wird durch Beschreibungsinformation
 (Metadaten) A_i und S_i in seiner Bedeutung festgelegt

Mächtige Anfragesprachen

- Art der Anfragesprache (query language)
 - formale Sprache
 - abhängig von Datenmodell: navigierend / satzorientiert vs. deskriptiv / mengenorientiert
 - einfache Verknüpfung mehrerer Satztypen ("typübergreifende"
 Operationen)
- Strukturierung ermöglicht Einschränkung des Suchraumes für Anfragen sowie effiziente Indexunterstützung
- Wünschenswert
 - deskriptive Problemformulierung, leichte Erlernbarkeit
 - hohe Auswahlmächtigkeit
 - DB-Zugriff im Dialog und von Programmen aus
 - Standardisierung (SQL)
- Nutzerklassen einer Anfragesprache: Systempersonal, Anwendungsprogrammierer, "anspruchsvolle Laien"

Relationenmodell

Beispiel: Universitäts-DB

FAK FNAME DEKAN

PROF STUDENT

PNRPNAMEFNRFACHGEBMATNRSNAMEFNRW-ORT

PRÜFUNG

PNR MATNR FACH DATUM NOTE

Relationenmodell (2)

FAK

FNR	FNAME	DEKAN
MI	Mathematik/	2223
	Informatik	

STUDENT

MATNR	SNAME	FNR	W-ORT
654 711	ABEL	MI	Leipzig
196 481	MAIER	MI	Delitzsch
225 332	MÜLLER	MI	Leipzig

PROF

PNR	PNAME	FNR	FACHGEB
1234	RAHM	MI	DBS
2223	MEYER	MI	AN
6780	BREWKA	MI	KI

PRÜFUNG

PNR	MATNR	FACH	DATUM	NOTE
6780	654 711	FA	19.9.	2
1234	196 481	DBS	15.10.	1
1234	654 711	DBS	17.4.	2
6780	196 481	KI	25.3.	3

Relationenmodell (3)

Beispielanfragen mit SQL

Finde alle Studenten der Fakultät MI mit Wohnort Leipzig:

```
SELECT *
FROM STUDENT
WHERE FNR = 'MI' AND W-ORT = 'Leipzig'
```

Finde alle Studenten der Fakultät MI, die im Fach DBS eine Note 2 oder besser erhielten:

```
SELECT S.*

FROM STUDENT S, PRUEFUNG P

WHERE S.FNR = 'MI' AND P.FACH = 'DBS'

AND P.NOTE <= 2 AND S.MATNR = P.MATNR
```


5. Transaktionskonzept

- Kontrollstruktur: Transaktionen mit den vier ACID-Eigenschaften
 - Eine Transaktion besteht aus einer Folge von DB-Operationen, für die das DBS folgende Eigenschaften garantiert

- Atomicity: Alles-oder-Nichts

- Consistency: Gewährleistung der Integritätsbedingungen

- Isolated Execution: "logischer Einbenutzerbetrieb"

- Durabiliy: Persistenz aller Änderungen

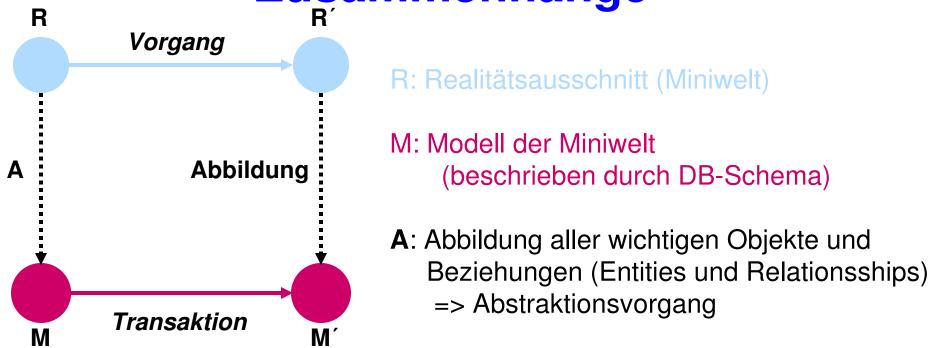
Atomarität: mögliche Ausgänge einer Transaktion

BOT	BOT	BOT	
Op_1	Op ₁	Op_1	
Op_2	Op_2	Op_2	
Op_3		Op_3	
•		•	Systemausfall,
•	•		Programm-
•	•		fehler usw.
Op_{n}	Op_{k}		
COMMIT	ROLLBACK	erzwungenes ROLLBACK	

normales Ende

abnormales Ende

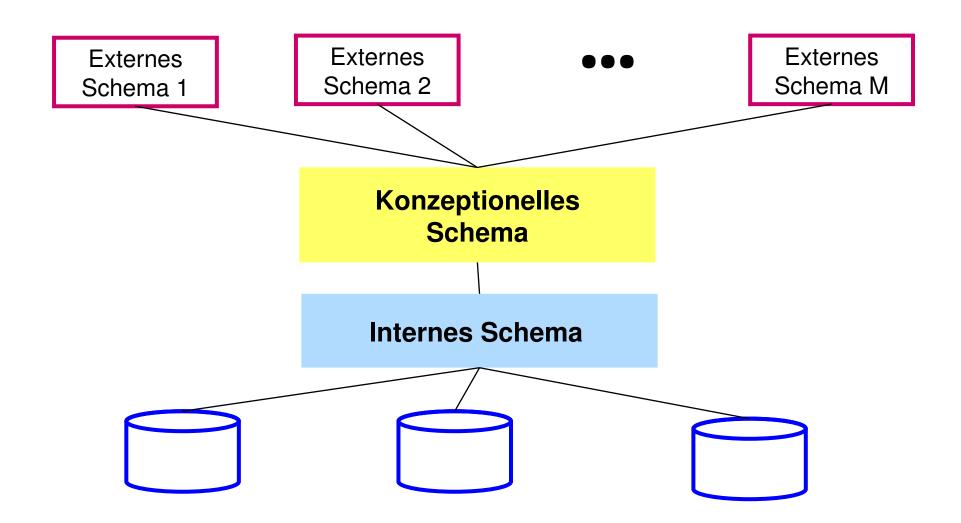
erzwungenes, abnormales Ende



Transaktionskonzept/Zugriffskontrolle

- Consistency: Erhaltung der logischen Datenintegrität
- Erhaltung der physischen Datenintegrität
 - Führen von Änderungsprotokollen für den Fehlerfall (*Logging*)
 - Bereitstellen von Wiederherstellungsalgorithmen im Fehlerfall (*Recovery*)
- Kontrollierter Mehrbenutzerbetrieb (Ablaufintegrität)
 - logischer Einbenutzerbetrieb f\u00fcr jeden von n parallelen Benutzern (Leser + Schreiber)
 - Synchronisation i. a. durch Sperren (*Locking*)
 - wichtig: Lese- und Schreibsperren mit angepassten Sperreinheiten (-granulate)
 - Ziel: möglichst geringe gegenseitige Behinderung
- Automatisierte Zugriffskontrollen (Datenschutz)
 - separat für jedes Datenobjekt
 - unterschiedliche Rechte für verschiedene Arten des Zugriff

Modell einer Miniwelt: Grobe Zusammenhänge



- Transaktion:
 - garantiert ununterbrechbaren Übergang von M nach M'
 - implementiert durch Folge von DB-Operationen
- Integritätsbedingungen:
 - Zusicherungen über A und M
 - Ziel: möglichst gute Übereinstimmung von R und M

Schemaarchitektur

■ 3-Ebenen-Architektur nach ANSI / SPARC

Schemaarchitektur (2)

■ Konzeptionelles Schema:

- logische Gesamtsicht auf die Struktur der Datenbank
- abtrahiert von internem Schema
 - -> physische Datenunabhängigkeit

Internes Schema

 legt physische Struktur der DB fest (physische Satzformate, Indexstrukturen etc.)

Externe Schemata

- definieren spezielle Benutzersichten auf DB-Struktur (für Anwendungsprogramm bzw. Endbenutzer)
- abtrahieren von konzeptionellem Schema: ermöglicht partiell logische Datenunabhängigkeit
- Sichtenbildung unterstützt Zugriffsschutz: Isolation von Attributen,
 Relationen, ...
- Reduktion der Komplexität: Anwendung sieht nur die erforderlichen Daten

DBS 1

Beispiel-Datenbeschreibung (vereinfacht)

```
Externe Sicht

MITARBEITER

PNR CHAR (6)

ABT CHAR (30) ...
```

```
PERSONAL

(PERSONAL_NUMMER CHAR (6)
ABT NUMMER CHAR(4)
```

_ _

```
Internes Schema:

STORED_PERSLENGTH=18

PREFIX TYPE=BYTE(6), OFFSET=0

PNUM TYPE=BYTE(6), OFFSET=6, INDEX=PNR

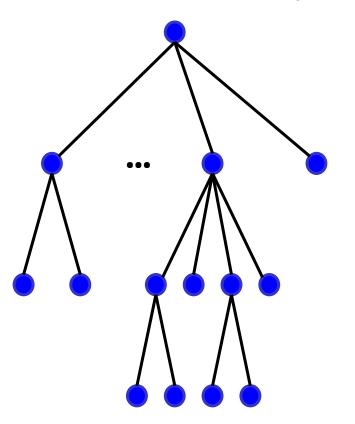
ABT# TYPE=BYTE(4), OFFSET=12

PAY TYPE=FULLWORD, OFFSET=16

...
```


Grobaufbau eines DBS

deskriptive Anfragen (Zugriff auf Satzmengen) **DBVS** Datensystem **Transaktions**verwaltung: Satzzugriffe Zugriffskontrolle Logging, Zugriffssystem Recovery Metadaten-Synchronisation, verwaltung Integritätssicherung Seitenzugriffe Speichersystem Log, Archiv-DB DB Metadaten Kopien...



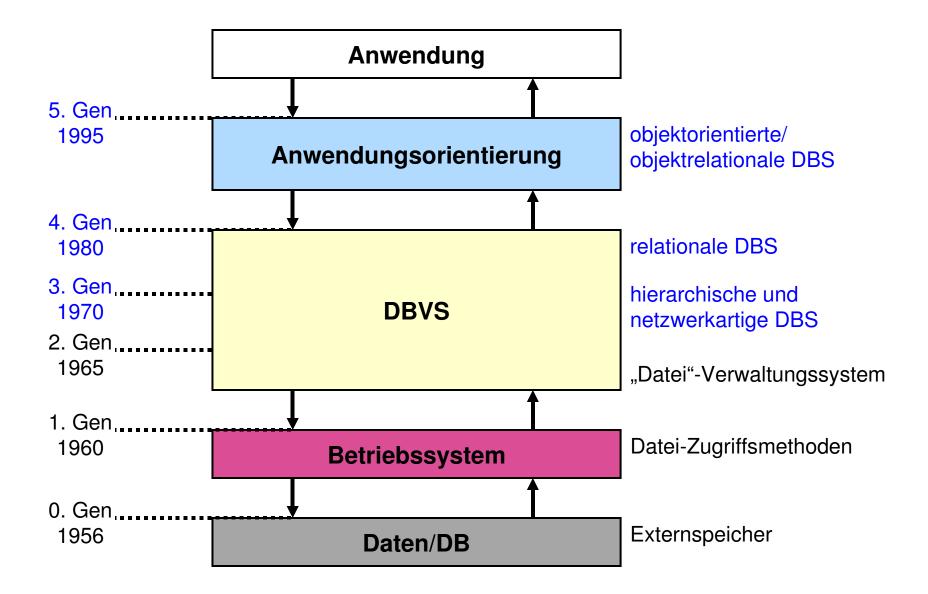
Grobaufbau eines DBS (2)

Schichtenmodell

deskriptive Anfragen (Zugriff auf Satzmengen) Übersetzung und Datensystem Optimierung von Anfragen Satzzugriffe Verwaltung von Sätzen Zugriffssystem und Indexstrukturen Seitenzugriffe Systempuffer- und Speichersystem Externspeicher-Verwaltung DB + Metadaten

Dynamischer Kontrollfluss einer DB-Operation

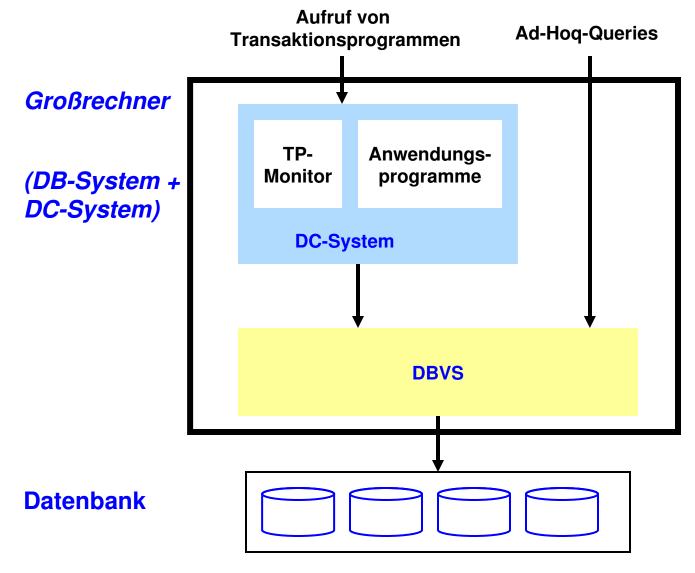
DML-Operationen


Einfüge Satz; Modifiziere Index (B*-Baum)

Stelle Seite bereit; Gib Seite frei

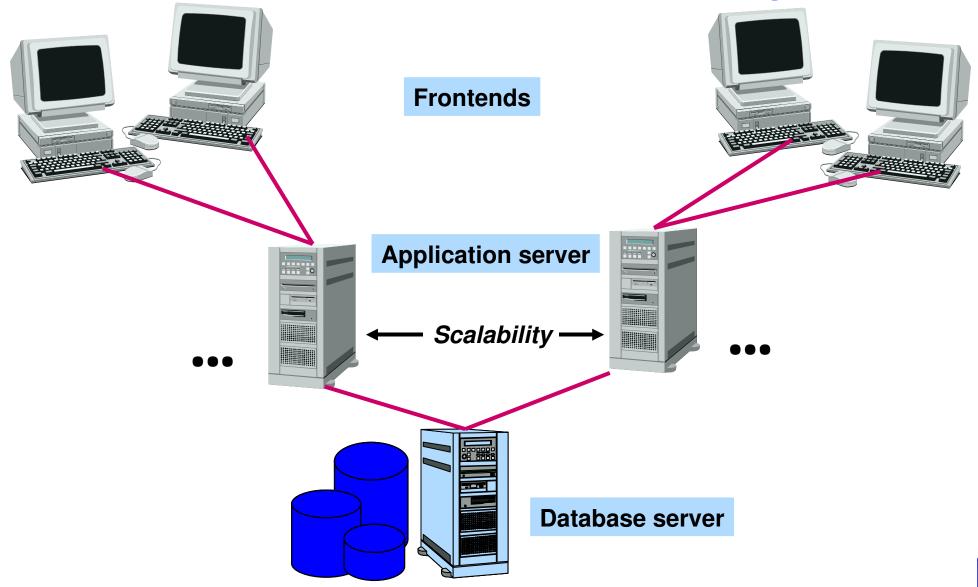
Lese/Schreibe Seite

Historische Entwicklung



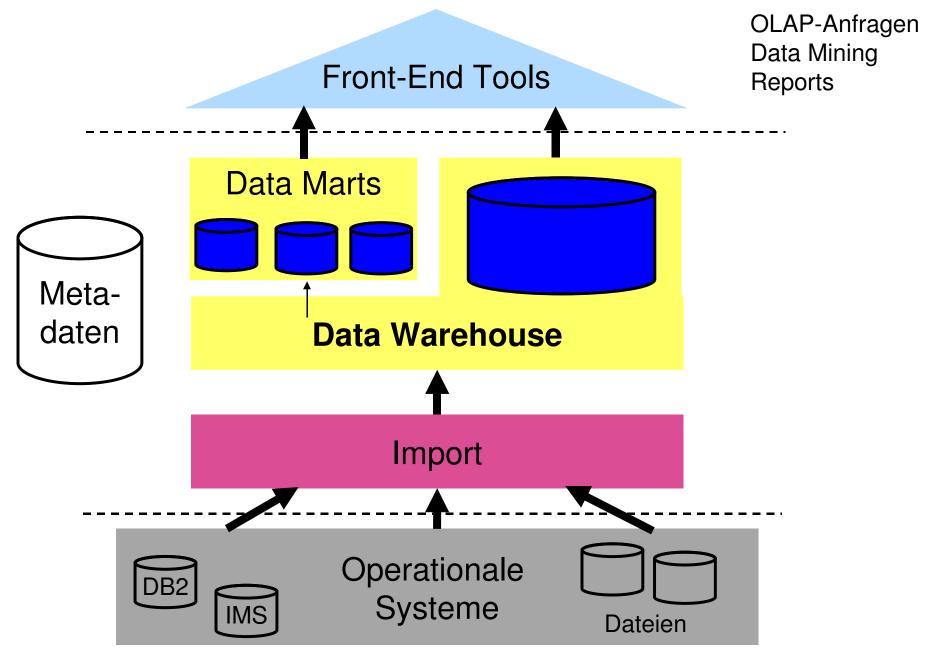
Einsatzformen von DBS

- dominierende DBS-Nutzung im Rahmen von Transaktionssystemen (OLTP, Online Transaction Processing) sowie E-Business: Ausführung vorgeplanter Anwendungen
- Online-Transaktion: Ausführung eines Programmes, das mit Hilfe von Zugriffen auf gemeinsam genutzte Datenbank eine i. a. nichttriviale Anwendungsfunktion erfüllt, z. B.
 - Bearbeiten einer Bestellung. Platzreservierung für einen Flug
 - Kontostandsabfrage; Abbuchen eines Geldbetrages; Überweisung
 - Anmelden eines Autos, Abwickeln eines Telefonanrufes, ...
- weitere DBS-Einsatzfelder / -Ausprägungen
 - Decision Support: OLAP (Online Analytical Processing), Data Warehousing, Data Mining
 - Multimedia-, Geo-, Volltext-DBS, XML-DBS
 - Deduktive DBS, Wissensbankverwaltungssysteme
- Architektur: zentralisierte DBS vs. Mehrrechner-DBS



Grobaufbau eines zentralisierten Transaktionssystemes (ca. 1985)

3-stufige Client/Server-Architektur zur Transaktionsverarbeitung


Entscheidungsunterstützende Systeme

(Decision Support Systems, DSS)

- OLAP (Online Analytical Processing) vs. OLTP (Online Transaction Processing)
 - Analyse betrieblicher Datenbestände
- häufiger Einsatz von Data Warehouses
 - Integration der Datenbestände eines Unternehmens für Analysen aus Sicht der Endbenutzer
 - physisches Kopieren und Transformieren der Daten
 - Nutzung unterschiedlicher Analysewerkzeuge
 - Bsp.: Umsatzentwicklung nach Zeit, Produktklasse, Region, etc.
- Data Mining: Aufspüren von inhärenten Daten-/Informationsmustern aus großen Datenbeständen
 - oft synonym: KDD (Knowledge and Data Discovery)
 - eigenständiges Entdecken von "interessanten" Mustern (nicht nur Beantwortung gestellter Fragen)

Data-Warehouse-Umfeld

Zusammenfassung

- Datenverwaltung durch Dateisysteme unzureichend
- DBS-Charakteristika
 - Effiziente Verwaltung persistenter und strukturierter Daten
 - Datenstrukturierung und Operationen gemäß Datenmodell/DB-Sprache
 - Transaktionskonzept (ACID): Atomarität, Konsistenzerhaltung, kontrollierter Mehrbenutzerbetrieb, Persistenz erfolgreicher Änderungen
 - zentrale (integrierte) Datenbank mit hohem Grad an Datenunabhängigkeit
- relationale DBS: mengenorientierte DB-Schnittstelle
- 3-Ebenen-Architektur: externes, konzeptionelles, internes Schema
- Schichtenmodell eines DBVS
 - interne Schichten für Seiten, Sätze und Satzmengen
 - Querschnittsaufgaben: Transaktionsverwaltung und Metadaten
- Haupt-Einsatzformen von DBS in Unternehmen:
 - Transaktionssysteme (OLTP) / E-Business
 - Entscheidungsunterstützung (OLAP, Data Mining)

© Prof. E. Rahm