
In
fo

rm
at

io
n

Q
ua

lit
y

30 	 Published by the IEEE Computer Society	 1089-7801/10/$26.00 © 2010 IEEE� IEEE INTERNET COMPUTING

E ntity matching (also referred to
as object matching, entity resolu-
tion, or fuzzy join) is a fundamen-

tal problem for data management and
integration, in particular. It requires
identifying entities referring to the
same real-world object. Such entities
might reside in distributed, typically
heterogeneous data sources or in a sin-
gle data source, such as a search engine
store. Furthermore, applications and
users can dynamically request enti-
ties to be matched from Web sources
— for instance, via keyword searches.
Entity matching’s significance and dif-
ficulty has triggered a huge amount of
research on the issue, and researchers
have proposed numerous approaches
to solving the problem, especially for

structured entities in databases.1–4

Due to the large variety of data
sources and entities, no single “best”
solution exists for entity matching.
Rather, we must use several match tech-
niques to determine entities’ similarity
according to different criteria (product
name and manufacturer similarity, for
instance) and combine the individual
similarity results. Determining an
effective match strategy thus entails
selecting individual match approaches
(or matchers), specifying their parame-
ters (for example, similarity thresholds),
and choosing a matcher combination.
Several research frameworks as well
as commercial offerings help define
such match strategies.3 However, these
systems almost exclusively use struc-

Entity matching is a key task for data integration and especially challenging for

Web data. Effective entity matching typically requires combining several match

techniques and finding suitable configuration parameters, such as similarity

thresholds. The authors investigate to what degree machine learning helps semi-

automatically determine suitable match strategies with a limited amount of manual

training effort. They use a new framework, Fever, to evaluate several learning-

based approaches for matching different sets of Web data entities. In particular,

they study different approaches for training-data selection and how much training

is needed to find effective combined match strategies and configurations.

Hanna Köpcke, Andreas
Thor, and Erhard Rahm
University of Leipzig

Learning-Based
Approaches for Matching
Web Data Entities

JULY/AUGUST 2010� 31

Matching Web Data Entities

tured data sets, not heterogeneous Web data
from different sources (one exception deals with
matching product entities5). Furthermore, cur-
rent frameworks are highly complex to use and
tune for challenging match tasks because the
typically huge number of possible matcher com-
binations and configurations makes it difficult
and time-consuming even for domain experts to
find a good match strategy.

We can use machine learning approaches
such as decision trees or support vector
machines (SVMs) to automatically determine
(“learn”) suitable matcher combinations6,7 and
thus potentially achieve a reduced tuning effort
compared to manually specified match strate-
gies. However, these learning-based approaches
depend on suitable training data, and labeling
training examples can incur a substantial man-
ual effort for domain experts. Unfortunately,
most published evaluation results don’t disclose
the size and selection of training data leaving
open the degree of manual effort invested.3

In this study, we use a new evaluation frame-
work, Fever (Framework for Evaluating Entity
Resolution), to investigate the effectiveness and
training effort of learning-based methods to
semi-automatically determine suitable match
strategies for challenging Web data match tasks
from different domains. We compare the results
with manually specified and tuned match strat-
egies for a commercial entity match implemen-
tation representing the current state of the art.
For the learning-based approaches, we study
two methods to select suitable training data and
analyze how much training is needed to find an
effective match strategy.

Matching Web Data Sources
Entities from Web data sources are particu-
larly challenging to match because they are
often highly heterogeneous with limited data
quality regarding, for example, consistency
among descriptions. Figure 1 illustrates some
problems for the popular entity search engine
Google Product Search, with duplicate entries
in its search result for a specific camcorder.
The entries refer to different shops that use
heterogeneous names, descriptions, and other
attributes for the same product and might also
contain misspellings and other errors. For
example, the names for the considered product
“Canon Vixia HF S10” contain additional infor-
mation that might complicate entity matching,

making it difficult to automatically determine
that the first three entries refer to the same
product. On the other hand, this information
can help us recognize that the fourth entry is a
similar but different product, and the last entry
doesn’t represent the camcorder of interest, but
only accessories.

Although Google clusters and ranks related
products, it doesn’t support sufficient entity
matching. So, applications such as price com-
parisons would need an additional entity-
matching functionality. Many domains need
similar entity-matching capabilities to integrate
related data entities from independent Web
sources or process search results from other
entity search engines (aggregate duplicate pub-
lications in Google Scholar for citation analysis,
for example).

Configuring Match Strategies
with Fever
We use the Fever platform8 to evaluate sev-
eral match strategies for many configurations
and different match tasks. Fever supports a
large spectrum of matchers and builds on our
previous prototypes, Moma (Mapping-based
Object Matching)9 and Stem (Self-Tuning Entity
Matching)10 for combining several matchers.
Furthermore, Fever supports different methods
(operators) for blocking and training selection
(which we detail later) for use within a match
strategy. We define match strategies via so-
called operator trees, specifying the operators
and their execution order.

Figure 1. Duplicate Web entities in Google Product Search. The
heterogeneous names, descriptions, and other attributes for the
Canon Vixia HF S10 make it difficult to determine that the first
three entries refer to the same product, whereas the last two don’t.

Information Quality

32 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

Fever represents match results as so-called
instance mappings. A mapping m between two
entity sets A and B consists of a set of match
correspondences — that is, m = {(a, b, s)| a ∈ A,
b ∈ B, s ∈ [0,1]}. The similarity value s indicates
the strength of the similarity between two enti-
ties a ∈ A and b ∈ B; we consider entity pairs
with a similarity value higher than a prede-
termined threshold as matching. The uniform
mapping data structure is the foundation for the
flexible combination of operators within trees.
Fever’s main operator types (such as blocking,
matching, and training selection) require map-
pings as input and generate them as output.

Fever supports two kinds of match strate-
gies: learning-based approaches and nonlearn-
ing approaches. For nonlearning approaches,
Fever provides several methods that let the sys-
tem automatically evaluate numerous parame-
ter settings for test data — for instance, a sample
from the match task.8 The user can manually
inspect and compare the corresponding match
results and finally select and apply the most
promising configuration to the complete input
data sets. In the following description, we focus
on learning-based strategies, including two
methods for training data selection that we
study in our evaluation.

Figure 2 shows the Fever match workflow we
applied in our study of learning-based match-
ing. Figure 2b shows the operator tree, and

Figure 2a shows its relevant operator param-
eters. Fever executes this tree in a post-order
traversal sequence thereby inputting the child
operators’ results into the father operator.

The execution falls into two phases: model
generation and model application. Model gen-
eration (left part of the operator tree) requires
a training mapping that contains manually
labeled correspondences representing matching
(the similarity value equals 1) and nonmatch-
ing (0) entity pairs. The learning algorithm
applies the specified matchers to the entity
pairs in the training mapping. The learner then
uses the resulting similarity values to automati-
cally determine a match strategy model — that
is, combine the specified matchers to derive
a match decision for any entity pair. We dis-
cuss training selection and model generation in
more detail later.

The second phase (right part of the operator
tree) applies the determined model for the real
match task (model application) to match a source
and target data set (or to find duplicates within
one data set). For efficiency reasons, exhaus-
tively evaluating the Cartesian product of all
input entities generally isn’t feasible. Hence,
Fever can first execute a blocking operator to
reduce the search space to the most likely match-
ing entity pairs. Fever supports several block-
ing approaches, such as sorted neighborhood or
canopy clustering. For our evaluation, we use
a fixed blocking strategy for all experiments —
that is, blocking isn’t subject to our evaluation.

Machine learning approaches’ effectiveness
depends on the provision of sufficient, suit-
able, and balanced training data. On the other
hand, the number of entity pairs users must
label affects the manual tuning effort and
should thus be small. To address these issues,
we evaluate different training sizes as well as
two methods for training selection: random and
ratio. Both strategies consider only entity pairs
for labeling, for which the similarity exceeds a
specified threshold. This ensures that the train-
ing isn’t dominated by trivial nonmatching
entity pairs that aren’t useful for finding effec-
tive matcher parameters and combinations.

The random strategy randomly selects the
specified number of entity pairs from the input
exceeding the similarity threshold. The ratio
method is an extension of random that aims
at a certain ratio of matching and nonmatch-
ing entity pairs in the training data. It uses a

Operator tree speci�cationCon�guration speci�cation

• Number of examples
• Selection scheme
 (Ratio, Random)
• Threshold

Model
application

Model
generator

Training data
selection

Blocking

Training
data

Source TargetData speci�cation

(a) (b)

• Learning algorithm
 (Dec. Tree, SVM, and so on)
• Matcher selection

Figure 2. Fever match workflow for evaluating learning-based
matchers. We can see (a) the relevant configuration specification
for (b) the operator tree.

JULY/AUGUST 2010� 33

Matching Web Data Entities

ratio parameter from the range 0 to 0.5, indicat-
ing the minimal percentage of both matching
and nonmatching pairs. The ratio 0 corresponds
to the random strategy enforcing no restric-
tions on the share of matching or nonmatch-
ing pairs. For ratio values greater than 0, Fever
reduces the number of randomly selected entity
pairs so that either the number of matching
or nonmatching entity pairs satisfies the ratio
restriction. For example, a ratio of 0.4 guaran-
tees that at least 40 percent of all training pairs
are either matching or nonmatching — in other
words, at most 60 percent are nonmatching or
matching. By ensuring a minimum number of
pairs, the ratio approach aims to enhance the
training data’s discriminative value for learn-
ing effective match strategies.

For model generation, we apply a prese-
lected set of matchers to the training data. By
comparing similarity values the matchers have
computed to the perfect (labeled) match result
in the training, Fever can determine (learn) a
combination of the most effective matchers and
their parameters, such as similarity thresholds.
Fever currently supports four approaches for
this training-based learning of match strategies
that we study in our evaluation. Three are well-
known learning methods — namely, decision
trees, logistic regression, and SVMs.11 A deci-
sion tree specifies the matchers to be applied
and their execution order. Each inner node
of the tree tests whether a certain similarity
threshold is exceeded for a specific matcher; the
leaf nodes contain the match decisions. Logis-
tic regression and SVMs determine a weighted
combination of the individual matchers’ simi-
larity values. For our study, we use the open
source learner implementations from Rapid-
Miner (formerly Yale).12 The fourth strategy is
a multiple learning approach that derives its
match decisions from the three basic learn-
ers’ majority consensus (two entities match if
at least two of the three learners vote for the
match). The motivation for combined learning
is to compensate for individual learners’ weak-
nesses and thus improve overall match quality
and robustness. This comes with the highest
execution cost because Fever must execute the
match strategies the three basic learners have
determined before it can combine their results.

Fever provides many matcher implemen-
tations for use in combined match strategies.
In this study, we focus on attribute matching

between corresponding attributes in the input
sources (product names, publication titles, and
so on). We also consider four string similarity
measures (Cosine, Jaccard, Term Frequency-
Inverse Document Frequency [TF-IDF], and
Trigram2) to compute string attribute values’
similarity. For numerical attribute values such
as product prices, we use a numerical similar-
ity measure. Fever also supports externally
implemented matchers within its operator trees.
We use a commercial entity match implemen-
tation for comparison with the learning-based
approaches and utilize Fever to find suitable
parameter settings.

Experimental Evaluation
Let’s now examine how effective learning-based
match strategies can solve different match tasks
on heterogeneous Web data entities in compari-
son to manually tuned strategies with a state-
of-the-art match approach.

Evaluation Setting
We evaluate our approach for four match tasks
from two application domains (bibliographic
and e-commerce data entities). Table 1 pro-
vides some statistics on these tasks, which are
named after the involved Web sources. For each
data source, we consider up to four attributes
for matching. The number of entities per source
ranges from about 1,100 to more than 64,000;
the size of the Cartesian product for the four
tasks ranges from roughly 1.2 million (Abt-
Buy task) to 168 million (DBLP-Scholar) entity
pairs. We applied a simple blocking on a low
string similarity threshold to reduce the search
space to the numbers that Table 1 shows (up to
607,000 pairs). To determine the match qual-
ity, we further created the perfect match results
with the cardinalities also shown in Table 1.

We chose the match tasks to represent a
spectrum of different data characteristics and
difficulty levels. We expect the first task to be of
low difficulty because it deals with publication
entities from two well-structured bibliographic
data sources (the Digital Bibliography & Library
Project [DBLP] and the ACM digital library) that
are at least partially under manual curation.
The selected DBLP and ACM entities cover the
same computer science conferences and jour-
nals. The second match task requires matching
DBLP publications with publications from the
entity search engine Google Scholar (Scholar).

Information Quality

34 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

Scholar automatically extracts its publication
entities from full-text documents crawled from
the Web. This data has many quality problems
— in particular, duplicate publications, hetero-
geneous representations of author lists or venue
names, misspellings, and extraction errors. To
obtain the Scholar data, we sent numerous que-
ries on the publication title and venue names
and stored the combined query results as our
evaluation data set. We determined the perfect
match result manually.

The e-commerce tasks deal with sets of
related product entities from online retailers
Abt.com, Buy.com (Abt-Buy task), and Amazon.
com, as well as Google’s product search service,
accessible through the Google Base Data API
(Amazon-GoogleProducts task). To obtain the
perfect match result, we included only product
entities with a valid Universal Product Code
(UPC) in our data sets, which allows for unique
product identification. Of course, the match
strategies we planned to evaluate couldn’t use
these UPCs but only the attributes listed in
Table 1 (product name, description, manufac-
turer, and price). In reality, many websites don’t
provide the UPC information, so entity match-
ing can’t rely on these in general.

We created the Abt, Buy, and Amazon data
sets by selecting products from predefined cate-
gories. Based on the Amazon products, we gen-
erated the GoogleProducts data set by sending
queries on the product name.

We use the common measures precision,
recall, and F-measure to quantify the quality of
entity match strategies with regard to the per-
fect match result.

Evaluation Results
We first discuss the results for our manually
configured match strategy using a state-of-the
art commercial match implementation, which
serve as baseline results for our learning-based
strategy evaluation. We then compare the ran-
dom and ratio approaches’ effectiveness for
training selection and that of the four different
learning methods.

Manual baseline strategies. To better assess the
quality of the automatically generated, learn-
ing-based match strategies, we applied a state-
of-the-art entity match system to our match
tasks. (Due to license restrictions, we can’t pro-
vide the evaluated system’s name.) The approach
has several parameters that we needed to con-
figure. The most important is the overall Mini-
mumSimilarity threshold. We consider an entity
pair a match only if it has a similarity greater
than or equal to this threshold. We can option-
ally specify additional attribute-level similarity
thresholds for each attribute that is used for com-
puting the entity similarity. Hence, the number
of parameters grows with the number of attri-
butes. Table 2 shows the precision, recall, and
F-measure results for the four match tasks using
either one or two attributes with standard con-
figurations (0.5 for overall MinimumSimilarity,
0.0 for attribute MinimumSimilarity). For these
tests, we used the first or first two attributes
listed in Table 1 (publication titles and authors
for the bibliographic tasks, product names, and
descriptions for the e-commerce tasks). Table
2 reveals significant differences for the four
match tasks. Whereas we could effectively solve

Table 1. Overview of evaluation match tasks.

Match task Source size
(number of entities)

Mapping size
(number of correspondences)

Domain Attributes Sources Source 1 Source 2 Input mapping
(blocking result)

Perfect result

Bibliographic Title DBLP-ACM 2,616 2,294 494,000 2,224

Authors

Venue DBLP-Scholar 2,616 64,263 607,000 5,347

Year

E-commerce Name Amazon-
GoogleProducts

1,363 3,226 342,761 1,300

Description

Manufacturer Abt-Buy 1,081 1,092 164,072 1,097

Price

JULY/AUGUST 2010� 35

Matching Web Data Entities

the first bibliographic match task (F-measure >
92 percent), the results for the other three tasks
were much worse, especially for the e-com-
merce tasks. Furthermore, the default param-
eters resulted in a reduced match quality for two
attributes compared to only one attribute for all
four tasks, indicating a strong need for manu-
ally finding better parameter settings.

However, finding suitable parameter settings
is very challenging, even for domain experts,
due to the large number of possible parameter
combinations. To find better baseline results
than we do using the default parameters, we
used Fever on smaller subsets of the match tasks
(500 randomly selected entity pairs with a mini-
mal string similarity, analogous to the random
training selection approach) to find the best set-
tings for the three similarity thresholds when
using two attributes for matching. For each of
the three MinimumSimilarity thresholds, we
considered 11 values (0 to 1 in 0.1 steps), result-
ing in a total of 1,331 configurations that we
evaluated for each of the four match tasks. For
each task, we chose the configuration with the
highest F-measure as the baseline strategy. The
third column of Table 2 indicates the correspond-
ing results for the entire data set (“tuned” for
two attributes) for each match task. We observe
that the tuned strategies always outperform the
default configuration for two attributes. For the
three more challenging tasks, the tuned strat-
egies also outperform the default strategy on
one attribute. The high tuning effort indicates
that the reported results are rather optimistic
for manually determined match strategies with
state-of-the art implementations. The fact that
the absolute match effectiveness remains com-
paratively low, especially for the e-commerce
tasks, underlines that these are really challeng-
ing problems to deal with.

Random vs. ratio training selection. For the
initial experiment on the effectiveness of auto-
matically learned match strategies, we evalu-

ated the two methods proposed for selecting
training data: random and ratio. We consid-
ered the results for two training sizes of 50 and
500 selected entity pairs, representing a rather
small-to-moderate labeling effort. We varied
the minimal similarity threshold for the TFIDF
similarity (on the first attribute listed in Table
1) from 0.3 to 0.8.

Figure 3 displays the F-measure results for the
four match tasks DBLP-ACM, DBLP-Scholar, Abt-
Buy, and Amazon- GoogleProducts and com-
pares the random and ratio training selections.
Figure 3a shows the results for labeling effort 50
and Figure 3b the results for labeling effort 500.
We obtained the F-measure results with eight
matchers and with SVM as the learner. For com-
parison, we also show the F-measure results for
the manually determined baseline match config-
urations. The matchers used for learning operate
on the same two attributes as the baseline strat-
egy but apply one of the four similarity measures
(Cosine, Jaccard, TFIDF, or Trigram) on them,
resulting in eight matchers.

We first observe that even for the small
training size of 50, the learned match strategies
mostly outperform the baseline strategies, espe-
cially for the more difficult e-commerce tasks
(about 14 percent improved F-measure values).
Although the random and ratio approaches per-
form largely similarly, random is consistently
somewhat less effective and more dependent
on the chosen similarity threshold and train-
ing size. For higher similarity thresholds (≥ 0.6),
random mainly selects matching entity pairs and
thus provides few nonmatching pairs, making it
difficult to learn how to identify nontrivial, non-
matches. Furthermore, the nonmatching entity
pairs selected with a high threshold might be
rare outliers, and we risk the learned model being
overfitted to those special cases, preventing it
from classifying other entity pairs correctly.

The ratio approach is generally better than
random because it maintains a better balance
between matching and nonmatching entity

Table 2. Match accuracy for a state-of-the-art approach with default and tuned configuration.

DBLP-ACM DBLP-Scholar Abt-Buy Amazon-
GoogleProducts

Number of
attributes

1 2 2 1 2 2 1 2 2 1 2 2

Precision (%) 94.9 96.9 97.6 74.1 77.5 77.5 78.4 90.6 66.3 78.6 82.4 61.7

Recall (%) 97.3 87.8 90.2 91.7 84.8 89.2 36.4 17.6 65.3 51.3 39.9 62.7

F-measure (%) 96.1 92.1 93.8 82.0 81.0 82.9 49.7 29.5 65.8 62.1 53.7 62.2

Information Quality

36 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

pairs by eliminating entities from a randomly
selected set of pairs. Although this reduces the
remaining number of training data, our results
show that this is more than offset by the better
quality for learning. We experimented with dif-
ferent values for the ratio parameter and found
rather stable results in the range from 0.2 to
0.5, with 0.4 as a good compromise value. Fig-
ure 3 shows that ratio is also relatively stable
for similarity thresholds between 0.3 and 0.6,
even for smaller training sizes. For Abt-Buy, a
similarity threshold of ≥ 0.7 left almost no non-
matches due to a heterogeneous representation;
ratio thus became unable to retain a sufficient
number of training pairs.

Based on this experiment, we conclude that
the ratio approach is effective for selecting
training data for learning-based entity match-
ing. In our further experiments, we’ll use this
strategy with a default setting of 0.4 for both
the ratio and similarity threshold parameters.

Comparison of different learners. In this exper-
iment, we wanted to evaluate the relative qual-
ity of the four learner strategies for determining
a combined entity matching strategy: decision

tree, logistic regression, SVM, and the multi-
ple learning approach. We used the same eight
matchers as in the previous experiment.

Figure 4 shows the F-measure results for
the four match tasks achieved with the four
learners and different labeling efforts (x-axis).
The labeling effort varies between 20 and 500
entity pairs. We observe that all learners ben-
efit from increasing the training size, espe-
cially for the Scholar-DBLP and Abt-Buy tasks.
For all match tasks, the learner strategies could
clearly outperform the baseline strategy in most
cases, even for very small training sizes of 20
or 50 labeled entity pairs. For the maximum
training size of 500, they could improve the
F-measure results to about 97 percent (versus
94 percent for the baseline strategy) for DBLP-
ACM, 91 percent (versus 83 percent) for DBLP-
Scholar, 86 percent (versus 66 percent) for
Abt-Buy, and 77 percent (versus 62 percent) for
Amazon-GoogleProducts.

We observe that the three basic learners per-
form differently for the four match tasks so that
no single basic learner consistently outperforms
the others. For example, decision trees perform
the worst for DBLP-ACM but the best for Abt-

Similarity threshold
0.3 0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Similarity threshold
0.3 0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Similarity threshold
0.3 0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Similarity threshold
0.3 0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Similarity threshold
0.3 0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DBLP-ScholarDBLP-ACM Abt-Buy Amazon-GoogleProducts

Similarity threshold
0.3 0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Similarity threshold
0.3 0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Similarity threshold
0.3 0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a)

(b)

DBLP-ScholarDBLP-ACM Abt-Buy Amazon-GoogleProducts

Random Ratio 0.4 Baseline strategy

Figure 3. Comparison of random and ratio training selections using support vector machines (SVMs) with eight matchers.
We looked at results for training sizes of (a) 50 and (b) 500 selected entity pairs.

JULY/AUGUST 2010� 37

Matching Web Data Entities

Buy. The decision tree and logistic regression
approaches benefit most from more training
data, whereas SVM performs relatively well
even for small training sizes.

An important observation is that the rather
simple multiple learning approach consistently
performs best for all match tasks and training
sizes. This shows that it can effectively com-
bine individual basic learners’ strengths and
compensate for their weaknesses. Research-
ers have also demonstrated multiple learning
approaches’ effectiveness demonstrated in areas
other than entity resolution.13

In additional experiments, we studied differ-
ent matcher selections. The results indicated that
more matchers don’t necessarily improve match
quality and tend to require more training.

A lthough the overall results of our study are
encouraging, we see the need for further

improvements in match quality, especially for
e-commerce data. We therefore plan additional
preprocessing steps to reduce data heterogene-
ity and the exploitation of matchers exploit-
ing domain knowledge. Furthermore, we want
to investigate the runtime efficiency and apply
performance techniques such as the use of par-
allel entity matching.�

References
1.	 C. Batini and M. Scannapieco, Data Quality: Concepts,

Methodologies and Techniques, Data-Centric Systems

and Applications Series, Springer, 2006.

2.	 A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios,

“Duplicate Record Detection: A Survey,” IEEE Trans.

Knowledge and Data Eng., vol. 19, no. 1, 2007, pp. 1–16.

3.	 H. Köpcke and E. Rahm, “Frameworks for Entity

Matching: A Comparison,” Data & Knowledge Eng., vol.

96, no. 2, 2010, pp. 197–210.

4.	 N. Koudas, S. Sarawagi, and D. Srivastava, “Record

Linkage: Similarity Measures and Algorithms,” Proc.

ACM SIGMOD Int’l Conf. Management of Data, ACM

Press, 2006, pp. 802–803.

5.	 M. Bilenko, S. Basu, and M. Sahami, “Adaptive Product

Normalization: Using Online Learning for Record Link-

age in Comparison Shopping,” Proc. 5th IEEE Int’l Conf.

Data Mining (ICDM 05), IEEE CS Press, 2005, pp. 58–65.

6.	 M. Bilenko and R.J. Mooney, “On Evaluation and

Training-Set Construction for Duplicate Detection,”

KDD Workshop on Data Cleaning, Record Linkage, and

Object Consolidation, 2003, pp. 7–12.

7.	 S. Chaudhuri et al., “Example-Driven Design of Effi-

cient Record Matching Queries,” Proc. 33rd Int’l Conf.

Very Large Databases (VLDB 07), ACM Press, 2007,

pp. 327–338.

8.	 H. Köpcke, A. Thor, and E. Rahm, “Comparative Evalu-

ation of Entity Resolution Approaches with FEVER,”

Proc. Very Large Databases Conf., ACM Press, 2009, pp.

1574–1577 (demo paper).

9.	 A. Thor and E. Rahm, “MOMA — A Mapping-Based

Object Matching System,” Proc. 3rd Biennial Conf.

Innovative Data Systems Research (CIDR 07), 2007, pp.

248–258.

10.	 H. Köpcke and E. Rahm, “Training Selection for Tun-

ing Entity Matching,” Proc. Int’l Workshop Quality in

Databases and Management of Uncertain Data (QDB/

MUD 08), 2008, pp. 3–12.

11.	 R. Caruana and A. Niculescu-Mizil, “An Empirical

Comparison of Supervised Learning Algorithms, Proc.

23rd Int’l Conf. Machine Learning (ICML 06), ACM

Press, 2006, pp.1 61–168.

Label effort
20 50 100 150

F-
m

ea
su

re

0.5

0.6

0.7

0.8

0.9

1.0

Label effort
20 50 100 150

F-
m

ea
su

re

0.5

0.6

0.7

0.8

0.9

1.0

Label effort
20 50 100 150

F-
m

ea
su

re
0.5

0.6

0.7

0.8

0.9

1.0

Label effort
20 50 100 150

F-
m

ea
su

re

0.5

0.6

0.7

0.8

0.9

1.0
DBLP-ScholarDBLP-ACM Abt-Buy Amazon-GoogleProducts

Decision Tree Logistic regression SVM Multiple learning Baseline strategy

Figure 4. Comparison of different learners for matcher combinations on four match tasks under different labeling
efforts (using ratio 0.4 training selection and eight matchers). The baseline results of a commercial entity matching
approach are mostly outperformed even with small training sizes.

Information Quality

38 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

12.	 I. Mierswa et al., “Rapid Prototyping for Complex Data

Mining Tasks,” Proc. 12th ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data Mining, ACM Press,

2006, pp. 935–940.

13.	 H. Halteren, W. Daelemans, J. Zavrel, “Improving

Accuracy in Word Class Tagging through the Combi-

nation of Machine Learning Systems,” Computational

Linguistics, vol. 27, no. 2, 2001, pp 199–229.

Hanna Köpcke is the head of the object-matching work-

group of the WDI Lab and a PhD student at the Uni-

versity of Leipzig. Her research interests include data

integration, entity resolution, and data mining. Köpcke

has a Diploma in computer science from the University

of Dortmund Germany. Contact her at koepcke@infor-

matik.uni-leipzig.de.

Andreas Thor is a research scientist with the database group

at the University of Leipzig and a visiting research

scientist at the University of Maryland Institute for

Advanced Computer Studies (UMIACS). His research

areas deal with integration of Web data sources, spe-

cifically approaches for entity resolution, ontology

alignment, and flexible integration architectures. Thor

has a Diploma and a PhD in computer science from the

University of Leipzig. Contact him at thor@informatik.

uni-leipzig.de.

Erhard Rahm is a professor and the chair for databases at

the University of Leipzig’s Institute of Computer Sci-

ence. His current research areas are data integration,

metadata and ontology management, and bio data-

bases. Rahm has a PhD in computer science from the

University of Kaiserslautern. He supervises the WDI

lab at the University of Leipzig, which is a third-party

funded innovation lab on Web data integration. Con-

tact him at rahm@informatik.uni-leipzig.de ; http://

dbs.uni-leipzig.de.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

