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E ntity matching (also referred to 
as object matching, entity resolu-
tion, or fuzzy join) is a fundamen-

tal problem for data management and 
integration, in particular. It requires 
identifying entities referring to the 
same real-world object. Such entities 
might reside in distributed, typically 
heterogeneous data sources or in a sin-
gle data source, such as a search engine 
store. Furthermore, applications and 
users can dynamically request enti-
ties to be matched from Web sources 
— for instance, via keyword searches. 
Entity matching’s significance and dif-
ficulty has triggered a huge amount of 
research on the issue, and researchers 
have proposed numerous approaches 
to solving the problem, especially for 

structured entities in databases.1–4

Due to the large variety of data 
sources and entities, no single “best” 
solution exists for entity matching. 
Rather, we must use several match tech-
niques to determine entities’ similarity 
according to different criteria (product 
name and manufacturer similarity, for 
instance) and combine the individual 
similarity results. Determining an 
effective match strategy thus entails 
selecting individual match approaches 
(or matchers), specifying their parame-
ters (for example, similarity thresholds), 
and choosing a matcher combination. 
Several research frameworks as well 
as commercial offerings help define 
such match strategies.3 However, these 
systems almost exclusively use struc-
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tured data sets, not heterogeneous Web data 
from different sources (one exception deals with 
matching product entities5). Furthermore, cur-
rent frameworks are highly complex to use and 
tune for challenging match tasks because the 
typically huge number of possible matcher com-
binations and configurations makes it difficult 
and time-consuming even for domain experts to 
find a good match strategy. 

We can use machine learning approaches 
such as decision trees or support vector 
machines (SVMs) to automatically determine 
(“learn”) suitable matcher combinations6,7 and 
thus potentially achieve a reduced tuning effort 
compared to manually specified match strate-
gies. However, these learning-based approaches 
depend on suitable training data, and labeling 
training examples can incur a substantial man-
ual effort for domain experts. Unfortunately, 
most published evaluation results don’t disclose 
the size and selection of training data leaving 
open the degree of manual effort invested.3

In this study, we use a new evaluation frame-
work, Fever (Framework for Evaluating Entity 
Resolution), to investigate the effectiveness and 
training effort of learning-based methods to 
semi-automatically determine suitable match 
strategies for challenging Web data match tasks 
from different domains. We compare the results 
with manually specified and tuned match strat-
egies for a commercial entity match implemen-
tation representing the current state of the art. 
For the learning-based approaches, we study 
two methods to select suitable training data and 
analyze how much training is needed to find an 
effective match strategy. 

Matching Web Data Sources
Entities from Web data sources are particu-
larly challenging to match because they are 
often highly heterogeneous with limited data 
quality regarding, for example, consistency 
among descriptions. Figure 1 illustrates some 
problems for the popular entity search engine 
Google Product Search, with duplicate entries 
in its search result for a specific camcorder. 
The entries refer to different shops that use 
heterogeneous names, descriptions, and other 
attributes for the same product and might also 
contain misspellings and other errors. For 
example, the names for the considered product 
“Canon Vixia HF S10” contain additional infor-
mation that might complicate entity matching, 

making it difficult to automatically determine 
that the first three entries refer to the same 
product. On the other hand, this information 
can help us recognize that the fourth entry is a 
similar but different product, and the last entry 
doesn’t represent the camcorder of interest, but 
only accessories. 

Although Google clusters and ranks related 
products, it doesn’t support sufficient entity 
matching. So, applications such as price com-
parisons would need an additional entity-
matching functionality. Many domains need 
similar entity-matching capabilities to integrate 
related data entities from independent Web 
sources or process search results from other 
entity search engines (aggregate duplicate pub-
lications in Google Scholar for citation analysis, 
for example). 

Configuring Match Strategies  
with Fever
We use the Fever platform8 to evaluate sev-
eral match strategies for many configurations 
and different match tasks. Fever supports a 
large spectrum of matchers and builds on our 
previous prototypes, Moma (Mapping-based 
Object Matching)9 and Stem (Self-Tuning Entity 
Matching)10 for combining several matchers. 
Furthermore, Fever supports different methods 
(operators) for blocking and training selection 
(which we detail later) for use within a match 
strategy. We define match strategies via so-
called operator trees, specifying the operators 
and their execution order.

Figure 1. Duplicate Web entities in Google Product Search. The 
heterogeneous names, descriptions, and other attributes for the 
Canon Vixia HF S10 make it difficult to determine that the first 
three entries refer to the same product, whereas the last two don’t.
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Fever represents match results as so-called 
instance mappings. A mapping m between two 
entity sets A and B consists of a set of match 
correspondences — that is, m = {(a, b, s)| a ∈ A, 
b ∈ B, s ∈ [0,1]}. The similarity value s indicates 
the strength of the similarity between two enti-
ties a ∈ A and b ∈ B; we consider entity pairs 
with a similarity value higher than a prede-
termined threshold as matching.  The uniform 
mapping data structure is the foundation for the 
flexible combination of operators within trees. 
Fever’s main operator types (such as blocking, 
matching, and training selection) require map-
pings as input and generate them as output. 

Fever supports two kinds of match strate-
gies: learning-based approaches and nonlearn-
ing approaches. For nonlearning approaches, 
Fever provides several methods that let the sys-
tem automatically evaluate numerous parame-
ter settings for test data — for instance, a sample 
from the match task.8 The user can manually 
inspect and compare the corresponding match 
results and finally select and apply the most 
promising configuration to the complete input 
data sets. In the following description, we focus 
on learning-based strategies, including two 
methods for training data selection that we 
study in our evaluation.

Figure 2 shows the Fever match workflow we 
applied in our study of learning-based match-
ing. Figure 2b shows the operator tree, and 

Figure 2a shows its relevant operator param-
eters. Fever executes this tree in a post-order 
traversal sequence thereby inputting the child 
operators’ results into the father operator. 

The execution falls into two phases: model 
generation and model application. Model gen-
eration (left part of the operator tree) requires 
a training mapping that contains manually 
labeled correspondences representing matching 
(the similarity value equals 1) and nonmatch-
ing (0) entity pairs. The learning algorithm 
applies the specified matchers to the entity 
pairs in the training mapping. The learner then 
uses the resulting similarity values to automati-
cally determine a match strategy model — that 
is, combine the specified matchers to derive 
a match decision for any entity pair. We dis-
cuss training selection and model generation in 
more detail later.

The second phase (right part of the operator 
tree) applies the determined model for the real 
match task (model application) to match a source 
and target data set (or to find duplicates within 
one data set). For efficiency reasons, exhaus-
tively evaluating the Cartesian product of all 
input entities generally isn’t feasible. Hence, 
Fever can first execute a blocking operator to 
reduce the search space to the most likely match-
ing entity pairs. Fever supports several block-
ing approaches, such as sorted neighborhood or 
canopy clustering. For our evaluation, we use 
a fixed blocking strategy for all experiments — 
that is, blocking isn’t subject to our evaluation.

Machine learning approaches’ effectiveness 
depends on the provision of sufficient, suit-
able, and balanced training data. On the other 
hand, the number of entity pairs users must 
label affects the manual tuning effort and 
should thus be small. To address these issues, 
we evaluate different training sizes as well as 
two methods for training selection: random and 
ratio. Both strategies consider only entity pairs 
for labeling, for which the similarity exceeds a 
specified threshold. This ensures that the train-
ing isn’t dominated by trivial nonmatching 
entity pairs that aren’t useful for finding effec-
tive matcher parameters and combinations.

The random strategy randomly selects the 
specified number of entity pairs from the input 
exceeding the similarity threshold. The ratio 
method is an extension of random that aims 
at a certain ratio of matching and nonmatch-
ing entity pairs in the training data. It uses a 

Operator tree speci�cationCon�guration speci�cation

• Number of examples
• Selection scheme
  (Ratio, Random)
• Threshold

Model
application

Model
generator

Training data
selection

Blocking

Training
data

Source TargetData speci�cation

(a) (b)

• Learning algorithm
  (Dec. Tree, SVM, and so on)
• Matcher selection

Figure 2. Fever match workflow for evaluating learning-based 
matchers. We can see (a) the relevant configuration specification 
for (b) the operator tree.
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ratio parameter from the range 0 to 0.5, indicat-
ing the minimal percentage of both matching 
and nonmatching pairs. The ratio 0 corresponds 
to the random strategy enforcing no restric-
tions on the share of matching or nonmatch-
ing pairs. For ratio values greater than 0, Fever 
reduces the number of randomly selected entity 
pairs so that either the number of matching 
or nonmatching entity pairs satisfies the ratio 
restriction. For example, a ratio of 0.4 guaran-
tees that at least 40 percent of all training pairs 
are either matching or nonmatching — in other 
words, at most 60 percent are nonmatching or 
matching. By ensuring a minimum number of 
pairs, the ratio approach aims to enhance the 
training data’s discriminative value for learn-
ing effective match strategies. 

For model generation, we apply a prese-
lected set of matchers to the training data. By 
comparing similarity values the matchers have 
computed to the perfect (labeled) match result 
in the training, Fever can determine (learn) a 
combination of the most effective matchers and 
their parameters, such as similarity thresholds. 
Fever currently supports four approaches for 
this training-based learning of match strategies 
that we study in our evaluation. Three are well-
known learning methods — namely, decision 
trees, logistic regression, and SVMs.11 A deci-
sion tree specifies the matchers to be applied 
and their execution order. Each inner node 
of the tree tests whether a certain similarity 
threshold is exceeded for a specific matcher; the 
leaf nodes contain the match decisions. Logis-
tic regression and SVMs determine a weighted 
combination of the individual matchers’ simi-
larity values. For our study, we use the open 
source learner implementations from Rapid-
Miner (formerly Yale).12 The fourth strategy is 
a multiple learning approach that derives its 
match decisions from the three basic learn-
ers’ majority consensus (two entities match if 
at least two of the three learners vote for the 
match). The motivation for combined learning 
is to compensate for individual learners’ weak-
nesses and thus improve overall match quality 
and robustness. This comes with the highest 
execution cost because Fever must execute the 
match strategies the three basic learners have 
determined before it can combine their results. 

Fever provides many matcher implemen-
tations for use in combined match strategies. 
In this study, we focus on attribute matching 

between corresponding attributes in the input 
sources (product names, publication titles, and 
so on). We also consider four string similarity 
measures (Cosine, Jaccard, Term Frequency-
Inverse Document Frequency [TF-IDF], and 
Trigram2) to compute string attribute values’ 
similarity. For numerical attribute values such 
as product prices, we use a numerical similar-
ity measure. Fever also supports externally 
implemented matchers within its operator trees. 
We use a commercial entity match implemen-
tation for comparison with the learning-based 
approaches and utilize Fever to find suitable 
parameter settings. 

Experimental Evaluation
Let’s now examine how effective learning-based 
match strategies can solve different match tasks 
on heterogeneous Web data entities in compari-
son to manually tuned strategies with a state-
of-the-art match approach.

Evaluation Setting
We evaluate our approach for four match tasks 
from two application domains (bibliographic 
and e-commerce data entities). Table 1 pro-
vides some statistics on these tasks, which are 
named after the involved Web sources. For each 
data source, we consider up to four attributes 
for matching. The number of entities per source 
ranges from about 1,100 to more than 64,000; 
the size of the Cartesian product for the four 
tasks ranges from roughly 1.2 million (Abt-
Buy task) to 168 million (DBLP-Scholar) entity 
pairs. We applied a simple blocking on a low 
string similarity threshold to reduce the search 
space to the numbers that Table 1 shows (up to 
607,000 pairs). To determine the match qual-
ity, we further created the perfect match results 
with the cardinalities also shown in Table 1.

We chose the match tasks to represent a 
spectrum of different data characteristics and 
difficulty levels. We expect the first task to be of 
low difficulty because it deals with publication 
entities from two well-structured bibliographic 
data sources (the Digital Bibliography & Library 
Project [DBLP] and the ACM digital library) that 
are at least partially under manual curation. 
The selected DBLP and ACM entities cover the 
same computer science conferences and jour-
nals. The second match task requires matching 
DBLP publications with publications from the 
entity search engine Google Scholar (Scholar). 
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Scholar automatically extracts its publication 
entities from full-text documents crawled from 
the Web. This data has many quality problems 
— in particular, duplicate publications, hetero-
geneous representations of author lists or venue 
names, misspellings, and extraction errors. To 
obtain the Scholar data, we sent numerous que-
ries on the publication title and venue names 
and stored the combined query results as our 
evaluation data set. We determined the perfect 
match result manually. 

The e-commerce tasks deal with sets of 
related product entities from online retailers 
Abt.com, Buy.com (Abt-Buy task), and Amazon.
com, as well as Google’s product search service, 
accessible through the Google Base Data API 
(Amazon-GoogleProducts task). To obtain the 
perfect match result, we included only product 
entities with a valid Universal Product Code 
(UPC) in our data sets, which allows for unique 
product identification. Of course, the match 
strategies we planned to evaluate couldn’t use 
these UPCs but only the attributes listed in 
Table 1 (product name, description, manufac-
turer, and price). In reality, many websites don’t 
provide the UPC information, so entity match-
ing can’t rely on these in general. 

We created the Abt, Buy, and Amazon data 
sets by selecting products from predefined cate-
gories. Based on the Amazon products, we gen-
erated the GoogleProducts data set by sending 
queries on the product name.

We use the common measures precision, 
recall, and F-measure to quantify the quality of 
entity match strategies with regard to the per-
fect match result.

Evaluation Results
We first discuss the results for our manually 
configured match strategy using a state-of-the 
art commercial match implementation, which 
serve as baseline results for our learning-based 
strategy evaluation. We then compare the ran-
dom and ratio approaches’ effectiveness for 
training selection and that of the four different 
learning methods. 

Manual baseline strategies. To better assess the 
quality of the automatically generated, learn-
ing-based match strategies, we applied a state-
of-the-art entity match system to our match 
tasks. (Due to license restrictions, we can’t pro-
vide the evaluated system’s name.) The approach 
has several parameters that we needed to con-
figure. The most important is the overall Mini-
mumSimilarity threshold. We consider an entity 
pair a match only if it has a similarity greater 
than or equal to this threshold. We can option-
ally specify additional attribute-level similarity 
thresholds for each attribute that is used for com-
puting the entity similarity. Hence, the number 
of parameters grows with the number of attri-
butes. Table 2 shows the precision, recall, and 
F-measure results for the four match tasks using 
either one or two attributes with standard con-
figurations (0.5 for overall MinimumSimilarity, 
0.0 for attribute MinimumSimilarity). For these 
tests, we used the first or first two attributes 
listed in Table 1 (publication titles and authors 
for the bibliographic tasks, product names, and 
descriptions for the e-commerce tasks). Table 
2 reveals significant differences for the four 
match tasks. Whereas we could effectively solve 

Table 1. Overview of evaluation match tasks.

Match task Source size 
( number of entities)

Mapping size 
( number of correspondences)

Domain Attributes Sources Source 1 Source 2 Input mapping 
(blocking result)

Perfect result

Bibliographic Title DBLP-ACM 2,616 2,294 494,000 2,224

Authors

Venue DBLP-Scholar 2,616 64,263 607,000 5,347

Year

E-commerce Name Amazon-
GoogleProducts

1,363 3,226 342,761 1,300

Description

Manufacturer Abt-Buy 1,081 1,092 164,072 1,097

Price
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the first bibliographic match task (F-measure > 
92 percent), the results for the other three tasks 
were much worse, especially for the e-com-
merce tasks. Furthermore, the default param-
eters resulted in a reduced match quality for two 
attributes compared to only one attribute for all 
four tasks, indicating a strong need for manu-
ally finding better parameter settings. 

However, finding suitable parameter settings 
is very challenging, even for domain experts, 
due to the large number of possible parameter 
combinations. To find better baseline results 
than we do using the default parameters, we 
used Fever on smaller subsets of the match tasks 
(500 randomly selected entity pairs with a mini-
mal string similarity, analogous to the random 
training selection approach) to find the best set-
tings for the three similarity thresholds when 
using two attributes for matching. For each of 
the three MinimumSimilarity thresholds, we 
considered 11 values (0 to 1 in 0.1 steps), result-
ing in a total of 1,331 configurations that we 
evaluated for each of the four match tasks. For 
each task, we chose the configuration with the 
highest F-measure as the baseline strategy. The 
third column of Table 2 indicates the correspond-
ing results for the entire data set (“tuned” for 
two attributes) for each match task. We observe 
that the tuned strategies always outperform the 
default configuration for two attributes. For the 
three more challenging tasks, the tuned strat-
egies also outperform the default strategy on 
one attribute. The high tuning effort indicates 
that the reported results are rather optimistic 
for manually determined match strategies with 
state-of-the art implementations. The fact that 
the absolute match effectiveness remains com-
paratively low, especially for the e-commerce 
tasks, underlines that these are really challeng-
ing problems to deal with.

Random vs. ratio training selection. For the 
initial experiment on the effectiveness of auto-
matically learned match strategies, we evalu-

ated the two methods proposed for selecting 
training data: random and ratio. We consid-
ered the results for two training sizes of 50 and 
500 selected entity pairs, representing a rather 
small-to-moderate labeling effort. We varied 
the minimal similarity threshold for the TFIDF 
similarity (on the first attribute listed in Table 
1) from 0.3 to 0.8. 

Figure 3 displays the F-measure results for the 
four match tasks DBLP-ACM, DBLP-Scholar, Abt-
Buy, and Amazon- GoogleProducts and com-
pares the random and ratio training selections. 
Figure 3a shows the results for labeling effort 50 
and Figure 3b the results for labeling effort 500. 
We obtained the F-measure results with eight 
matchers and with SVM as the learner. For com-
parison, we also show the F-measure results for 
the manually determined baseline match config-
urations. The matchers used for learning operate 
on the same two attributes as the baseline strat-
egy but apply one of the four similarity measures 
(Cosine, Jaccard, TFIDF, or Trigram) on them, 
resulting in eight matchers. 

We first observe that even for the small 
training size of 50, the learned match strategies 
mostly outperform the baseline strategies, espe-
cially for the more difficult e-commerce tasks 
(about 14 percent improved F-measure values). 
Although the random and ratio approaches per-
form largely similarly, random is consistently 
somewhat less effective and more dependent 
on the chosen similarity threshold and train-
ing size. For higher similarity thresholds (≥ 0.6), 
random mainly selects matching entity pairs and 
thus provides few nonmatching pairs, making it 
difficult to learn how to identify nontrivial, non-
matches. Furthermore, the nonmatching entity 
pairs selected with a high threshold might be 
rare outliers, and we risk the learned model being 
overfitted to those special cases, preventing it 
from classifying other entity pairs correctly. 

The ratio approach is generally better than 
random because it maintains a better balance 
between matching and nonmatching entity 

Table 2. Match accuracy for a state-of-the-art approach with default and tuned configuration.

DBLP-ACM DBLP-Scholar Abt-Buy Amazon- 
GoogleProducts

Number of 
attributes

1 2 2 1 2 2 1 2 2 1 2 2 

Precision (%) 94.9 96.9 97.6 74.1 77.5 77.5 78.4 90.6 66.3 78.6 82.4 61.7

Recall (%) 97.3 87.8 90.2 91.7 84.8 89.2 36.4 17.6 65.3 51.3 39.9 62.7

F-measure (%) 96.1 92.1 93.8 82.0 81.0 82.9 49.7 29.5 65.8 62.1 53.7 62.2
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pairs by eliminating entities from a randomly 
selected set of pairs. Although this reduces the 
remaining number of training data, our results 
show that this is more than offset by the better 
quality for learning. We experimented with dif-
ferent values for the ratio parameter and found 
rather stable results in the range from 0.2 to 
0.5, with 0.4 as a good compromise value. Fig-
ure 3 shows that ratio is also relatively stable 
for similarity thresholds between 0.3 and 0.6, 
even for smaller training sizes. For Abt-Buy, a 
similarity threshold of ≥ 0.7 left almost no non-
matches due to a heterogeneous representation; 
ratio thus became unable to retain a sufficient 
number of training pairs. 

Based on this experiment, we conclude that 
the ratio approach is effective for selecting 
training data for learning-based entity match-
ing. In our further experiments, we’ll use this 
strategy with a default setting of 0.4 for both 
the ratio and similarity threshold parameters.

Comparison of different learners. In this exper-
iment, we wanted to evaluate the relative qual-
ity of the four learner strategies for determining 
a combined entity matching strategy: decision 

tree, logistic regression, SVM, and the multi-
ple learning approach. We used the same eight 
matchers as in the previous experiment. 

Figure 4 shows the F-measure results for 
the four match tasks achieved with the four 
learners and different labeling efforts (x-axis). 
The labeling effort varies between 20 and 500 
entity pairs. We observe that all learners ben-
efit from increasing the training size, espe-
cially for the Scholar-DBLP and Abt-Buy tasks. 
For all match tasks, the learner strategies could 
clearly outperform the baseline strategy in most 
cases, even for very small training sizes of 20 
or 50 labeled entity pairs. For the maximum 
training size of 500, they could improve the 
F-measure results to about 97 percent (versus 
94 percent for the baseline strategy) for DBLP-
ACM, 91 percent (versus 83 percent) for DBLP-
Scholar, 86 percent (versus 66 percent) for 
Abt-Buy, and 77 percent (versus 62 percent) for 
Amazon-GoogleProducts.

We observe that the three basic learners per-
form differently for the four match tasks so that 
no single basic learner consistently outperforms 
the others. For example, decision trees perform 
the worst for DBLP-ACM but the best for Abt-
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Figure 3. Comparison of random and ratio training selections using support vector machines (SVMs) with eight matchers. 
We looked at results for training sizes of (a) 50 and (b) 500 selected entity pairs.
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Buy. The decision tree and logistic regression 
approaches benefit most from more training 
data, whereas SVM performs relatively well 
even for small training sizes. 

An important observation is that the rather 
simple multiple learning approach consistently 
performs best for all match tasks and training 
sizes. This shows that it can effectively com-
bine individual basic learners’ strengths and 
compensate for their weaknesses. Research-
ers have also demonstrated multiple learning 
approaches’ effectiveness demonstrated in areas 
other than entity resolution.13

In additional experiments, we studied differ-
ent matcher selections. The results indicated that 
more matchers don’t necessarily improve match 
quality and tend to require more training.

A lthough the overall results of our study are 
encouraging, we see the need for further 

improvements in match quality, especially for 
e-commerce data. We therefore plan additional 
preprocessing steps to reduce data heterogene-
ity and the exploitation of matchers exploit-
ing domain knowledge. Furthermore, we want 
to investigate the runtime efficiency and apply 
performance techniques such as the use of par-
allel entity matching.�
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