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Abstract—Pairwise link discovery approaches for the Web of
Data do not scale to many sources thereby limiting the potential
for data integration. We thus propose a holistic approach for
linking many data sources based on a clustering of entities rep-
resenting the same real-world object. Our clustering approach
utilizes existing links and can deal with entities of different
semantic types. The approach is able to identify errors in
existing links and can find numerous additional links. An initial
evaluation on real-world linked data shows the effectiveness of
the proposed holistic entity matching.

1. Introduction

Linking entities between sources has been a major effort
in recent years to support data integration in the so-called
Web of Data. A large number of tools for semi-automatic
link discovery has been developed to facilitate the gen-
eration of new links (mostly of type owl:sameAs) [1].
Linked data sets can be accessed via platforms such as
datahub.io or sameas.org, and repositories such as
BioPortal [2] or LinkLion [3] where numerous links for
many sources are collected to improve their availability and
re-usability. The continuous availability of already deter-
mined links is important to avoid their repetitive determina-
tion for new applications and use cases.

Despite the advances made, there are significant limi-
tations in the achieved linkage of data sources and in the
current approaches for link discovery. First, the degree of
inter-linking is still low and automatically generated links
are wrong in many cases [4], [5]. Current approaches for link
discovery only match two data sources at a time (pairwise
linking) resulting in a poor scalability to many sources
because the number of possible mappings increases quadrat-
ically with the number of sources. To be more precise,
one needs up to k·(k−1)

2 binary match mappings for k data
sources. Hence, fully interlinking 200 sources in the Web
of Data would require the determination and maintenance
of almost 20.000 mappings.

Existing approaches to determine owl:sameAs links
also focus on entities of the same type while many sources
contain entities of different types (bibliographic datasets
contain publication and author entities, geographical datasets
contain numerous kinds of entities such as countries, cities,
lakes etc.). Furthermore, existing links are hardly utilized

when additional links need to be determined. A general
problem for the Web of Data is that integrating the in-
formation about entities requires users to specify within
SPARQL queries the respective data sources and the links
to be traversed. This makes it difficult to fully reach and
combine the available information about entities.

To address these shortcomings we propose a new
clustering-based approach to holistically match entities be-
tween many sources. It combines matching entities from k
sources in one cluster instead of maintaining a high number
of binary links. The matching entities of a cluster with
their different properties can be easily fused to derive a
more comprehensive, integrated entity representation that
can be centrally maintained and accessed, e.g., within a
knowledge graph [6], [7]. As sketched in [8], the clustering-
based approach also facilitates the integration of additional
sources and entities since they only need to be matched
with the set of already existing clusters rather than adopting
a pairwise linking with numerous different sources. The
proposed approach to determine initial entity clusters can
optionally build on already existing links and it can deal
with entities of different semantic types. When existing links
are utilized, the approach is able to identify and eliminate
wrong links and it will cluster many previously unconnected
entities. The fact that we can utilize existing links shows
that the proposed clustering-based approach complements
the prevalent pairwise linking, e.g., to provide the fused
entities and entity clusters within integrated data sources
such as knowledge graphs.

We illustrate the approach by the example records in
Table 1 about real geographical entities of different types
from five sources. The black lines on the left indicate
existing owl:sameAs links that we utilize as input to build
the clusters. To achieve a good clustering we cannot solely
rely on existing links but also have to check the similarity
between records; for this purpose we consider the entity
labels (names), their semantic type and the geographical
coordinates. The table shows that the information about
types and coordinates is typically incomplete making it
difficult to achieve good match quality. We can also observe
potential errors in the given links. For instance, Lake Louise
is both a city (type ’settlement’) and a lake (type ’body of
water’) so that entity (0) with an unknown type should only
link to one of the two. The clustering will lead to many
additional matches compared to the initial links. For exam-



id label source type latitude longitude

0 Lake Louise (Canada) NYTimes - 51.42 -116.23

1 Lake Louise GeoNames BodyOfWater 51.41 -116.23

2 Lake Louise, Alberta DBpedia Settlement - -

3 lake louise alberta FreeBase Settlement 51.43 -116.16

4 Lake Louise (Alberta) DBpedia BodyOfWater 51.41 -116.23

5 lake louise FreeBase BodyOfWater 51.41 -116.23

6 Mystic (Conn) NYTimes - 41.35 -71.97

7 N17632379615920 FreeBase - 41.35 -71.97

8 Mystic GeoNames Settlement 41.35 -71.97

9 Black Hill GeoNames Mountain 53.54 -1.89

10 Black Hill DBpedia Mountain 53.53 -1.88

11 Black Hill LinkedGeoData Mountain 53.96 -1.85

12 Black Hill LinkedGeoData Mountain 54.69 -2.15

13 katmandu (nepal) NYTimes - 27.72 85.32

14 Kathmandu GeoNames Settlement 27.7 85.32

15 Kathmandu DBpedia Settlement 27.7 85.33

16 Kathmandu FreeBase Settlement 27.7 85.37

Table 1: Sample entities from the geographical domain.
Black lines on the left denote same-as links between entities.

ple, the cluster of the last four records about Kathmandu
will implicitly represent six matches, i.e., three new ones
((14)-(15), (14)-(16), (15)-(16)).

We make the following contributions:

• We propose a holistic clustering-based approach for
matching entities in the Web of Data that avoids the
determination and maintenance of a huge number of
pairwise mappings.

• We outline a first method for holistic clustering of
real, possibly incompletely described entities of dif-
ferent semantic types. The approach utilizes existing
links and can identify incorrect links as well as
many additional links. After some preprocessing the
approach determines initial clusters by computing
connected components that are subsequently refined
by cluster splits and merges.

• We provide an initial evaluation of the proposed ap-
proach for matching real entities from geographical
data sources showing the effectiveness of the new
approach.

In the next section we outline preliminaries on the data
model and problem statement and sketch a base approach
to incrementally determine entity clusters. In Section 3, we
describe and illustrate the new holistic entity clustering that
builds on existing same-as links to determine entity clusters.
We present preliminary evaluation results in Section 4.
Finally, we discuss related work (Section 5) and conclude.

2. Preliminaries

We first define the problem of holistic entity clustering
for linked data. The main approach proposed in this paper
(Section 3) is based on already existing links to determine
the initial clusters. Alternatively, we may incrementally de-
termine and extend the clusters. This approach is sketched
in the second part of this section.

2.1. Problem statement

We consider a set of k data sources S1, . . . , Sk contain-
ing entities of different semantic types T1, . . . , Tm. Each
entity e is referenced by an URI and has a semantic type
Ti, e.g., dbo:Settlement. Entities also have a label and
domain-specific properties, e.g., geo-coordinates. For better
readability we use short ids like (1) instead of URIs in Ta-
ble 1 and in our examples. Two entities of different sources
can be connected by a owl:sameAs link if they are found
to represent the same real-world object. All same-as links
between two sources Si and Sj (1 ≤ i, j ≤ k) constitute a
binary equivalence mapping Mi,j = {(e1, e2, sim)|e1 ∈
Si, e2 ∈ Sj , sim[0, 1], i 6= j}. Link discovery tools can
assign a similarity value sim to indicate the strength of
a connection with 1 denoting equality (highest similarity).
Our main algorithm (Section 3) uses a set of existing (or
pre-determined) mappings M =

⋃k
i,j=1 Mi,j as input in

addition to the set of associated entities E of the k data
sources.

The goal of holistic entity clustering is to compute for
each semantic entity type Ti (1 ≤ i ≤ m) a set of ni

clusters Ci = {ci,1, . . . , ci,ni} such that each cluster ci,j
(1 ≤ i ≤ m, 1 ≤ j ≤ ni) only includes matching entities
of type Ti (denoting the same real-world object) and that
different clusters represent different entities. In this paper,
we consider duplicate-free data sources, such that a cluster
can contain at most k entities. Each cluster of z ≤ k entities
represents z·(z−1)

2 match pairs and is thus generally a much
more compact representation than with the use of binary
links. Clusters ci,j also have a cluster representative ri,j
derived from the cluster entities to provide a unified entity
representation. In our algorithm, we will use the represen-
tatives to compare entities with clusters in order to avoid a
more expensive comparison with all cluster members.

2.2. Incremental clustering

Clustering entities from k sources can be performed in
an incremental way like already depicted in [8] for schema
and ontology models. One can bootstrap the clustering pro-
cess with one of the sources, e.g., the largest one or a source
with known high data quality, and use each of its entities
as an initial cluster (assuming duplicate-free sources). Then
one matches the entities of one source after another with the
cluster representatives to decide on the best-matching cluster
(of the respective entity type) or whether an entity should
form a new cluster. This process can be continued until all
sources are matched and clustered. Once the clusters have
been established it is relatively easy to integrate additional
entities of the existing sources or additional sources. Such
additional entities have to be matched again to the existing
clusters to be merged into existing clusters or to form new
clusters.

In all these steps it is important to keep separate clusters
per entity type and to match entities only with the clusters
of the respective type in order to ensure that only entities
of the same type are clustered and to reduce the number



of necessary comparisons. For this purpose, it is necessary
that all entities have comparable semantic entity types. Un-
fortunately, existing sources in the Web of Data use largely
different entity types even for the same domain so that it
becomes necessary to align these different types with each
other. Furthermore, the entities should be assigned a seman-
tic type from the consolidated set of types in a preprocessing
step before matching and clustering. We will apply such an
approach in the clustering scheme of Section 3.

A detailed investigation of the incremental approach is
beyond the scope of this paper. We rather focus on an
alternate approach to determine entity clusters by building
on existing same-as links. This scheme can then also apply
the incremental approach to extend the determined sets of
entity clusters by additional entities. While we leave the
detailed evaluation of the sketched incremental approach for
future work, we can roughly estimate its required number
of match operations and compare it with the use of pairwise
linking. Assuming l entities per source, pairwise linking of
k sources requires k·(k−1)

2 · l2 match operations between
entities. We can reduce the number of match operations by
only matching entities of the same type with each other. For
m entity types, this reduces the number of match operations
to k·(k−1)

2 · l2

m . For incremental clustering, the number of
match computations is restricted by the number of clusters
of the respective entity type for any entity of any source but
the first. We can approximate the number of clusters ni for
entity type Ti as ni =

k·l
zi·m with the average cluster size zi

(1 ≤ zi ≤ k). The total number of match comparisons is
thus in the order of (k−1) · l · ni

2 = (k−1)·k
2·zi ·

l2

m considering
that on average an entity has only to be compared with the
clusters from half the number of sources. In comparison,
the number of match operations for the holistic approach is
thus reduced by a factor of zi compared to pairwise linking
since we match only with the cluster representatives rather
than with any cluster member. For an average cluster size
zi = k/2 this results in savings of at least one order of mag-
nitude for k = 20 or more data sources. As discussed before,
the cluster representation provides additional advantages as
it provides physically integrated entity information avoiding
the need to traverse different sources during query execution.
Furthermore, clusters are more compact than many binary
links and easier to maintain when new sources and new
entities need to be integrated.

3. Holistic clustering based on existing links

In this section we outline our approach to determine
entity clusters based on existing mappings between the
data sources to integrate. A high-level description of the
approach is given in Algorithm 1. Figure 1 illustrates the
main workflow and its application to the sample records
from Table 1. In addition to the existing set of links and
the associated entities from different sources, the input of
the algorithm includes domain knowledge about the seman-
tic entity types, a similarity function fsim and similarity
thresholds ts, tm to determine the similarity of entities and

clusters. While our algorithm is generic, it can be cus-
tomized to specific domains by providing appropriate back-
ground knowledge, similarity functions and thresholds. For
the considered geographical domain, the similarity function
determines a combined similarity from the string (trigram)
similarity on normalized labels, the semantic type similarity
and the normalized geographical distance. The algorithm
consists of four major steps that we will describe in the
rest of this section in more detail: preprocessing, initial
clustering (connected components), cluster decomposition,
and cluster merge.

Algorithm 1: Holistic Clustering
Input: Set of entities E from k sources, link set M,

domain knowledge D, simFunc fsim, thresholds
ts, tm

Output: Set of clusters C
1 C← ∅
2 E ,M←preprocessing(E ,M,fsim,D)

/* initial clustering */
3 Cinit←computeConnectedComponents(E , M)
4 Mc← computeLinkSim(Cinit,fsim)
5 Cinit←refineConnectedComponents(Cinit,Mc)

/* cluster decomposition */
6 foreach c ∈ Cinit do
7 Csplit← groupByType(c,Mc)
8 Csplit← simBasedRefinement(Csplit,Mc,ts)
9 Csplit← createRepresentatives(Csplit)

10 C← C∪Csplit

/* create cluster mapping CM */
11 CM← computeClusterSim(C,fsim,tm)
12 while CM6= ∅ do
13 (c1, c2)←CM.getBestMatch()

/* cluster merge */
14 cm ← merge(c1, c2)
15 C←C\{c1, c2} ∪ {cm}
16 CM← adaptMapping (CM,C, cm, c1, c2,fsim,tm)

17 return C

Preprocessing

During preprocessing we normalize property values
needed for the similarity computation. In our case, we
transform the label property to lower case and remove words
in parentheses and after delimiters. We further harmonize
information about the semantic types of entities and check
that the input mappings do not violate the assumption of
duplicate-free data sources. As we will see, we identify and
eliminate inconsistent links already during preprocessing to
start the clustering process with cleaned input data.

Information about the semantic type of entities differs
substantially between sources or may be missing. For in-
stance, DBpedia uses City and Town whereas Freebase has
a type citytown and other related types. To overcome such
differences, we use background knowledge about the equiv-
alence and comparability of entity types of different sources
to harmonize the type information. For this study, we man-
ually determined this type mapping for our geographical
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Figure 1: Application of holistic clustering to running example.

sources. Alternatively, the mapping could be constructed
with the help of schema or ontology matching approaches
based on linguistic and structural matching techniques [9],
[10]. Based on the type mapping we simplified numerous
types to more general ones, e.g., the types city, village or
suburb are treated as type Settlement. After harmonizing
the type information, we remove already all links where the
linked entities have incompatible types. Note that we do not
exclude links to entities with missing type information, e.g.,
entity (0).

For duplicate-free data sources, each entity should have
at most one equivalent entity in any other data source. We
therefore check whether the input mappings observe this
one-to-one cardinality restriction. In Table 1, this is not the
case for the Geonames entity (9) about Black Hill that links
to two LinkedGeoData entities (11,12). In such cases,
we only keep the best link for an entity (based on the
similarity function fsim) to obey the one-to-one criterion. In
our example, we discard the link (9)-(12) (see Figure 1 a)
since (9) is geographically closer to (11) than to (12)
according to the coordinates in Table 1.

Initial Clustering

Using the preprocessed entities and mappings we first
identify a set of initial clusters (Cinit) by computing all con-
nected components as the transitive closure from the given
links (see Algorithm 1 line 3). Each resulting connected
component builds an initial cluster c covering all entities
that are directly or indirectly connected via a same-as link in
M. In our running example, we create five different clusters
covering 2-4 entities (see Figure 1 b).

If the data sources are not really duplicate-free or if
there are errors in the predetermined same-as links, it may
happen that the connected components contain more than
one entity per data source and more than k entities in
total, despite the preprocessing ensuring that any entity of
one source is linked to at most one entity of a second
source. For example, assume entities a1 and a2 from the
same source and entities b1 and c1 from two different
sources. The links (a1 − b1), (b1 − c1), (c1 − a2) obey
the 1:1 restriction but result in a connected component

of all four entities of three sources. We thus determine
within procedure refineConnectedComponents (line
5 of Algorithm 1) connected components with more than
one entity per data source and eliminate entities to ensure
the restriction to enforce the assumption of duplicate-free
sources. The entities to be removed are selected based on the
similarity to other entities in the cluster. For this purpose we
calculate the similarity between any two entities of a cluster
using similarity function fsim and keep the result in link set
Mc (line 4 of Algorithm 1). Based on these similarities, we
keep from each source with multiple entities only the entity
with the maximal similarity to the other entities.

Cluster Decomposition

The initially created clusters can contain entities that
should actually be separated, e.g., due to wrong input links
or because of an insufficiently high transitive similarity
between entities. For decomposition we use two main ap-
proaches. First, we split clusters with elements of different
or incompatible semantic types. Second, we split clusters
containing entities with insufficient similarity to other clus-
ter members. In Algorithm 1, we apply the decomposition
approach to each cluster in Cinit (see line 6-10). We first
apply the two kinds of cluster decomposition (GroupBy-
Type and Similarity-based Refinement). Finally, we compute
a cluster representative for each of the resulting clusters
(line 9). The resulting clusters from the decomposition phase
(Csplit) are successively added to the result set of clusters
C (line 10).

Type-based Grouping. While we eliminate links with in-
compatible semantic types during preprocessing, there are
entities without type information that can lead to clusters
with entities of different types during the initial cluster-
ing. For our running example, this is the case for the
cluster (0,1,2,3) (see Figure 1 b). Our method group-
ByType splits such clusters into several smaller sub-clusters
Csplit with entities of the same type. Entities without semantic
types are then added to the sub-cluster of their most similar
neighbor using the previously computed link similarities in
Mc. For the considered cluster of our example, we first build



sub-clusters (2,3) for type Settlement and the singleton
cluster (1) of type BodyOfWater. The untyped entity (0) is
assigned to the cluster of the best matching (geographically
closer) entity (1) resulting in sub-cluster (0,1).

Similarity-based Refinement. We further split clusters
based on the computed intra-cluster similarity between en-
tities (line 8 in Algorithm 1). Algorithm 2a and 2b show
the computation of the similarity-based refinement in more
detail. Algorithm 2a just covers the iteration over the set of
clusters Csplit determined by groupByType and calls the
actual refinement function simCRefine (Algorithm 2b).

Algorithm 2a: simBasedRefinement
Input: Set of clusters Cinput resulting from type-based

grouping, link set Mc, split threshold ts
Output: Set of clusters Cresult

1 Cresult← ∅
2 foreach c ∈ Cinput do
3 Cresult← Cresult∪ simCRefine(c,Mc,ts)

4 return Cresult

Algorithm 2b: simCRefine
Input: Cluster c, link set Mc, split threshold ts
Output: Set of clusters Cresult

1 e,asimmin← getMinAvgSimEntity(c,Mc)
2 if asimmin< ts then
3 c← c \ {e}
4 return createCluster(e) ∪

simCRefine(c,Mc,ts)
5 else
6 return c

For each cluster, we determine the entity e with lowest
average similarity asimmin (line 1 in Algorithm 2b) of its
links to other cluster members using similarity values from
the previously determined similarities inMc. If the average
similarity is not below a certain threshold ts, we do not
split the cluster but leave the cluster unchanged (line 6
in Algorithm 2b). Otherwise (lines 2-4) we separate entity
e and recursively call the similarity-based refinement for
the reduced cluster to possibly identify further entities to
separate. In the merge phase, such separated entities may
be added to other more similar clusters. In our running
example, the cluster (6,7,8) is decomposed into (6,8)
and (7) as shown in Figure 1 c, since entity (7) has a low
similarity with (6) and (8) due to its completely different
label (see Table 1).

Cluster Representative. For each cluster in the output
Cinput of the previous steps we create a cluster representative
(line 9 in Algorithm 1) to facilitate the computation of inter-
cluster similarities in the merge step. The representatives of
the final clusters can also be used to efficiently match new
entities, e.g., from additional data sources. We create the
representative by combining the properties from all entities
in a cluster and select a preferred value for each property

with multiple values, e.g., based on a majority consensus,
the maximal length of string values or pre-determined source
priorities. In the representative, we also keep track of the
data sources represented in the cluster (this helps to avoid
considering merges with entities of already covered data
sources). For our use case, we use the longest string value
for the preferred label value and prefer geo-coordinates
from GeoNames and DBpedia. For the example cluster
(2,3) the representative r2 has label lake louise alberta,
type Settlement, coordinates (51.43, -116.16) and sources
(DBpedia, Freebase).

Cluster Merge

The last step of our holistic clustering approach is the
possible merging of clusters below the maximally possible
cluster size k. For this purpose, we first apply method
computeClusterSim (line 11) to determine the similarity
between clusters by applying similarity function fsim on
the cluster representatives. This operation is likely expensive
as it incurs a quadratic complexity w.r.t. the number of
clusters. We can reduce the number of comparisons by only
considering clusters with fewer than k elements. We further
do not consider all cluster pairs that differ in their entity type
or that overlap in their sets of covered data sources. The
cluster mapping CM computed for the remaining cluster
pairs is restricted to the most similar pairs of clusters with
a similarity exceeding the merge similarity threshold tm.

Cluster merging is an iterative process (lines 12-16 of
Algorithm 1) that continues as long as there are merge
candidates in CM. In each iteration we select the pair of
clusters (c1, c2) with the highest similarity from CM and
merge it into a new cluster cm (line 13-14). This merging
also includes the computation of a new representative for
cm. The ”old” clusters c1 and c2 are removed from C and
the new cluster cm is added (line 15). We further need to
adapt CM by removing all cluster pairs involving either c1
or c2. Furthermore, we extend CM by similar cluster pairs
for the new cluster cm if cm has fewer than k elements.
For this purpose we determine the similarity of cm with all
other clusters of the same type and with different sources.
The termination of the loop and the merge step is guaranteed
since we reduce the number of clusters in each iteration. The
number of potential merge candidates is further reduced for
increasing cluster sizes. Applying the approach to our exam-
ple leads to the merging of (0,1,r1) and (4,5,r3) into
the new cluster (0,1,4,5,r8) (see Figure 1 c,d) due to a
high label, type and geo-coordinate similarity as apparent
from Table 1.

For our running example, the proposed approach could
holistically cluster matching entities from five data sources
thereby finding previously unknown links and eliminating
wrong existing links for improved data quality. The six
clusters in the result set (Figure 1 d) implicitly represent 17
pairwise entity links compared to 12 initially given links
(Table 1) from which 3 turned out to be incorrect. In par-
ticular, we could now identify matches between previously
unconnected sources such as GeoNames and Freebase.
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Figure 2: Data set structures for ED1 and ED2 with number
of entities and links.

4. Evaluation

We evaluate our holistic clustering approach using two
datasets. Evaluation dataset 1 (ED1) corresponds to the
DI location subtask of the OAEI 2011 Instance Matching
benchmark 1 with links of presumed high quality. Evaluation
dataset 2 (ED2) has been downloaded from a LOD link
repository (LinkLion 2). Figure 2 shows the number of links
between the four (ED1) resp. five (ED2) geographical data
sources and the number of entities that are interconnected
by these links. We retrieved additional entity properties
via SPARQL endpoints or REST APIs in the respective
sources in 2015. Still, in ED1 geo-coordinates were missing
for 1009 entities (13.4%) and the type information even
for 2525 entities (33.5%). Similarly, in ED2 957 entities
(7.4%) have no geo-coordinates and 2722 (21.2%) do not
cover type information. For instance, NY Times entities do
not provide any type information. We use the similarity
function described in Section 3. For the similarity thresholds
ts, tm we tested different settings and use a default of 0.7
that showed to produce good results w.r.t. cluster sizes and
accuracy.

We first evaluate the resulting cluster sizes for the dif-
ferent phases of our holistic clustering approach applied
to these datasets (Figure 3). During the preprocessing (not
shown in the Figure), we already removed seven wrong
NYT-GeoNames links based on the one-to-one cardinality
restriction for ED1. In ED2, the situation is more complex
due to many one-to-one violations (e.g., several entities can
be linked among each other between two data sources).
We therefore removed 6921 links, including over 5500
LinkedGeoData - GeoNames links, to hold the one-to-one
cardinality for each entity. For instance, there is a group of
94 entities interlinked by 367 links. Each of the 94 entities
represents a ’Black Hill’ whereof 3 entities occur in DB-
pedia, 45 in LinkedGeoData and 48 in GeoNames. Within
each source the entities do not represent duplicates but are
actually different ’Black Hills’. In particular, there are 364
links between the 45 LinkedGeoData and 48 Geo-Names
entities, i.e., many entities are interlinked with several enti-
ties in the respective other source. During preprocessing we
therefore keep only the best link for each entity.

As shown in Figure 3, the initial clustering leads to
clusters of sizes 3 and 4 for ED1 whereas ED2 provides

1. OAEI 2011 IM: http://oaei.ontologymatching.org/2011/instance/
2. LinkLion: http://www.linklion.org/

clusters of size 2–5. This satisfies the condition that a
cluster should not cover more entities than considered data
sources. Applying the type-based grouping and similarity-
based refinement results in a significant number of cluster
splits and clusters of size 1 and 2 due to incompatible entity
types and partially low intra-cluster similarity. In particular,
the similarity-based decomposition points out that several
clusters contain dissimilar entities. During the merge phase
some of the smaller clusters can be merged into larger
ones leading to more clusters of sizes 3, 4 (and 5). In
particular, 15 (23) singleton clusters could be merged into
clusters of size 2, 3 (and 4) for ED1 (ED2). Overall, the
resulting clusters in ED1 represent 10423 links with 4803
new links compared to the input link set. In particular, we
could cluster many entities from the previously unconnected
sources GeoNames, DBpedia and Freebase. For ED2, we
had to remove a high number of links that violate the one-
to-one cardinality restriction (preprocessing) leading to 9641
input links for the initial clustering. Similar to ED1, we then
identify 4411 new links for ED2 in the subsequent workflow
phases.

Evaluating the quality of the resulting clusters and thus
the linking quality is challenging as it requires a perfect
clustering for comparison. Determining such a perfect clus-
tering is inherently difficult even for humans and very time-
consuming. We therefore evaluate the quality for a sample
of the result clusters in this initial evaluation (see Figure 4).
We randomly selected 4–5% of the clusters according to
the distribution of the cluster sizes in the datasets. This
leads to 82 clusters for ED1 and 140 clusters for ED2. We
manually check the accuracy of the created clusters with
all implicitly contained links. The cluster accuracy denotes
the percentage of correct clusters (clusters that only contain
entities with same-as semantics) in all sampled clusters, and
the link accuracy is the proportion of correctly created links.
For ED1, all determined links in clusters of size 2 are correct
such that the cluster and link accuracy is 100%. For cluster
size 3 there is one wrong cluster with two wrong links
and one wrong cluster of size 4 with 4 wrong links. The
cluster of size 4 should have been actually separated into
two clusters of size 2. The evaluated clusters in ED2 showed
to be very accurate. Only one cluster of size 3 contained two
incorrect links.

Overall, we achieve very high cluster accuracy of 97.5%
(99.3%) and a link accuracy of 98.6% (99.4%) for ED1
(ED2). This meets our requirements of creating highly accu-
rate clusters that can later be iteratively expanded by adding
further entities. So far, we still have clusters of the size 1
and need to check whether those entities build own clusters
or need to be added to other clusters. Based on these results
we will extend our dataset samples and do more extensive
evaluations w.r.t. the cluster quality in the future.

5. Related Work

Link discovery has been studied intensively and a large
number of approaches and prototypes has been developed
as surveyed in [1]. Virtually all approaches determine links

http://oaei.ontologymatching.org/2011/instance/
http://www.linklion.org/
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Figure 3: Cluster sizes in workflow phases for ED1 and ED2.
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2 154 6 100.0 100.0

3 229 9 88.89 92.59

4 1597 64 98.44 98.96

1980 82 97.47 98.56

cluster

size
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clusters|

cluster

accuracy

link

accuracy

2 831 37 100.0 100.0

3 807 36 100.0 100.0

4 1075 48 97.91 98.61

5 435 19 100.0 100.0

3148 140 99.29 99.36

ED1 ED2

Figure 4: Cluster accuracy for a sample of result clusters in ED1 and ED2.

between only two sources and for entities of one semantic
type. A few approaches such as [11], [12] try to utilize
existing mappings for deriving additional mappings, e.g., by
their transitive composition. Similarly, [13] uses data from
multiple linked data sources to detect weak or not existing
relations based on the transitivity of correct links. In [14]
the authors aim at improving the quality of joins on Linked
Open Data by determining highly connected entity groups in
a set of given links using metrics such as edge betweenness.

Even these approaches reusing existing links focus on
deriving new or correcting existing pairwise links. By con-
trast our goal is to holistically cluster entities from many
data sources and centrally maintain such clusters for easy
usability and extensibility. Our approach can deal with en-
tities of different semantic types and is able to find many
additional links and to identify and eliminate wrong links
for improved match quality.

A holistic matching of concepts in LOD sources has
been proposed in [15]. The authors first apply a topical
grouping of concepts and then perform pairwise matching
of concepts within groups (based on keywords from the
concept labels and descriptions) to finally determine clusters
of matching concepts. The approach is interesting as it tries
to holistically combine conceptual knowledge across data
sources, e.g., as useful for the construction of knowledge
graphs. However, the approach suffered from scalability
and coverage limitations and does not address clustering of
entities as in our scheme.

Clustering-based approaches have also been studied for
entity resolution [16] outside the Web of Data, however,
mainly for only one or two data sources. For two sources,
proposed clustering approaches have similarities to our
scheme in that they derive the clusters from a binary map-
ping consisting of pairs of matching entities (correspon-

dences) [17]. Some approaches construct a similarity graph
from the match correspondences and determine subgraph
clusters of connected and highly similar entities [18], [19].
These approaches are not only limited to two data sources
but also consider only one type of entities. They also do
not consider the data quality issues we had to deal with
regarding wrong links and missing property values.

6. Conclusion

We proposed a new holistic approach for clustering-
based link discovery for many data sources. The approach
utilizes existing links and can match entities of different
semantic types. The determined entity clusters facilitate the
integration of more data sources without having to indi-
vidually link them to each other data source. An initial
evaluation for linked data from the geographical domain
confirmed that the new approach holds great promise as
it can identify wrong links and many additional links even
between previously unconnected sources.

In the future, we will evaluate the scalability and quality
of our approach on larger datasets and more sources from
different domains based on a parallel Hadoop-based imple-
mentation that is currently under development. We also plan
a detailed comparison with the incremental construction of
entity clusters sketched in Section 2.
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