
Data Warehousing

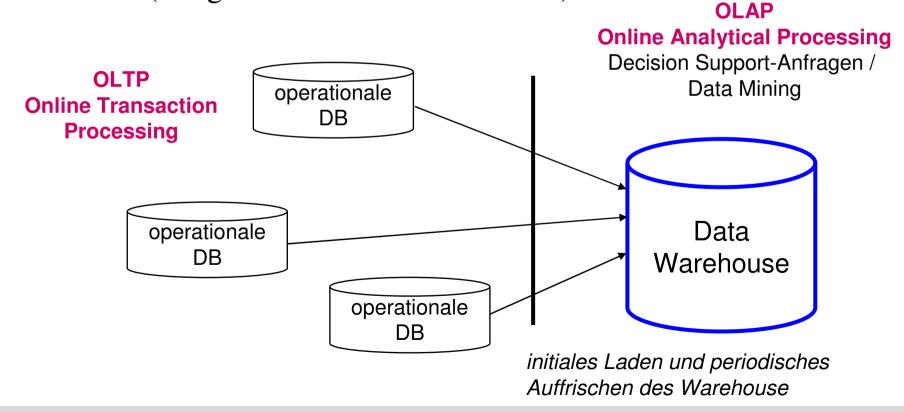
Kapitel 1: Einführung

Michael Hartung

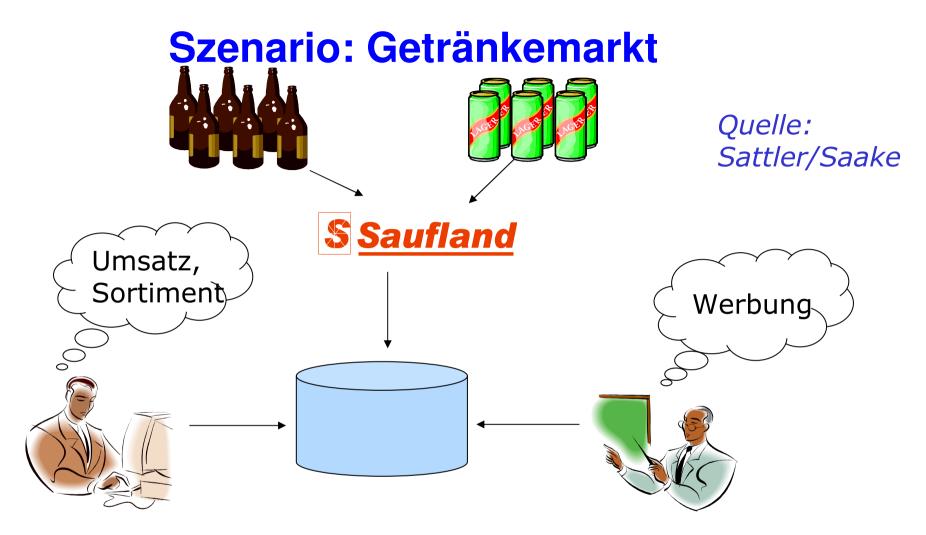
Sommersemester 2011

Universität Leipzig Institut für Informatik

http://dbs.uni-leipzig.de


1. Data Warehouses - Einführung

- Definition *Data Warehouse*
- Einsatzbeispiele
- OLTP vs. OLAP
- Grobarchitektur
- Virtuelle vs. physische Datenintegration
- Mehrdimensionale Datensicht
- Star-Schema, -Anfragen
- Data Mining



Data Warehouses

- Ausgangsproblem
 - viele Unternehmen haben Unmengen an Daten, ohne daraus ausreichend Informationen und Wissen für kritische Entscheidungsaufgaben ableiten zu können
- *Data Warehouse (Def.):* für Analysezwecke optimierte zentrale Datenbank, die Daten aus mehreren, i.a. heterogenen Quellen zusammenführt und verdichtet (Integration und Transformation)

Anfragen:

- Wie viele Flaschen Cola wurden letzten Monat verkauft?
- Wie hat sich der Verkauf von Rotwein im letzten Jahr entwickelt?
- Wer sind unsere Top-Kunden?
- Von welchem Lieferanten beziehen wir die meisten Kisten?

Quelle: Sattler/Saake

Anfragen

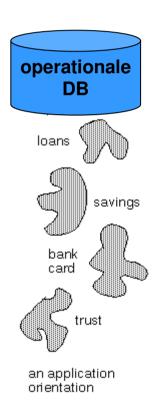
- Verkaufen wir in Ilmenau mehr Bier als in Erfurt?
- Wie viel Cola wurde im Sommer in ganz Thüringen verkauft?
- Mehr als Wasser?

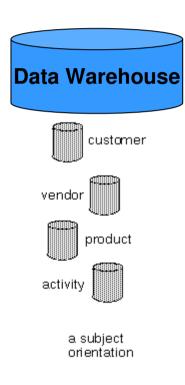
Einsatzbeispiele

Warenhauskette

- Verkaufszahlen und Lagerbestände aller Warenhäuser
- mehrdimensionale Analysen: Verkaufszahlen nach Produkten, Regionen, Warenhäusern
- Ermittlung von Kassenschlagern und Ladenhütern
- Analyse des Kaufverhaltens von Kunden (Warenkorbanalyse)
- Erfolgskontrolle von Marketing-Aktivitäten
- Minimierung von Beständen
- Optimierung der Produktpalette
- Optimierung der Preisgestaltung

Versicherungsunternehmen

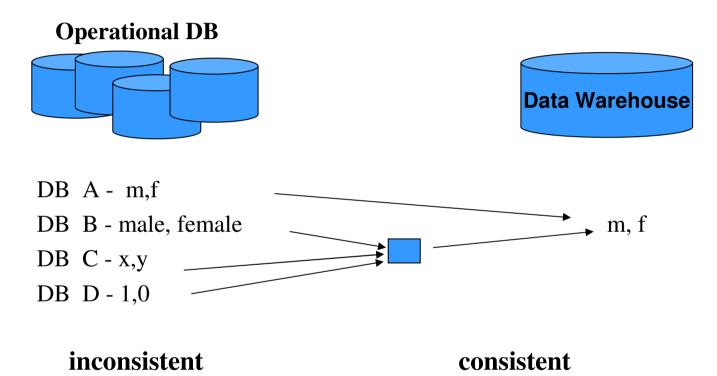

- Bewertung von Filialen, Vertriebsbereichen, Schadensverlauf, ...
- automatische Risikoanalyse
- schnellere Entscheidung über Kreditkarten, Lebensversicherung; Krankenversicherung ...
- Banken, Versandhäuser, Restaurant-Ketten
- wissenschaftliche Einsatzfälle (z.B. Bioinformatik) • •



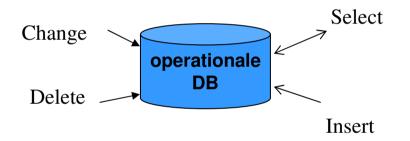
DW-Eigenschaften nach Inmon

A Data Warehouse is a subject-oriented, integrated, non-volatile, and time variant collection of data in support of managements decisions (W. H. Inmon, Building the Data Warehouse, 1996)

- Themenorientiert (subject-oriented):
 - Zweck des Systems ist nicht Erfüllung einer dedizierten Aufgabe (z.B.
 - Personaldatenverwaltung), sondern Unterstützung übergreifender Auswertungsmöglichkeiten aus verschiedenen Perspektiven
 - alle Daten unternehmensweit über ein Subjekt (Kunden, Produkte, Regionen ...) und nicht "versteckt" in verschiedenen Anwendungen



DW-Eigenschaften nach Inmon (2)


■ Integrierte Datenbasis (integrated): Daten aus mehreren verschiedenen Datenquellen

DW-Eigenschaften nach Inmon (3)

- Nicht-flüchtige Datenbasis (non-volatile):
 - Daten im DW werden i.a. nicht mehr geändert
 - stabile, persistente Datenbasis

regelmäßige Änderungen von Sätzen

DW-Eigenschaften nach Inmon (4)

- Historische Daten (time-variant):
 - Vergleich der Daten über Zeit möglich (Zeitreihenanalyse)
 - Speicherung über längeren Zeitraum

Time Variancy

aktuelle Datenwerte:

- Zeitbezug optional
- Zeithorizont: 60-90 Tage
- Daten änderbar

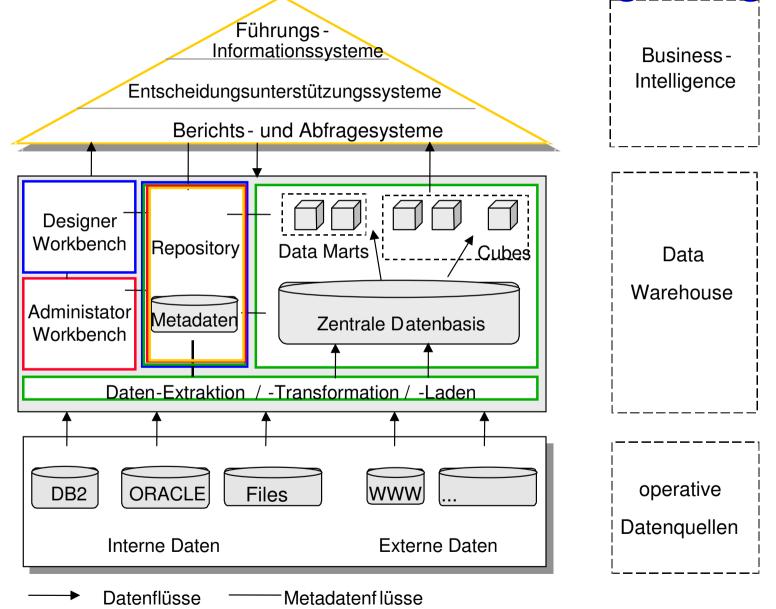
Schnappschuss-Daten

- Zeitbezug aller Objekte
- Zeithorizont: 2-10 Jahre
- keine Änderung nachSchnappschuss-Erstellung

Operationale Datenbanken vs. Data Warehouses (OLTP vs. OLAP)

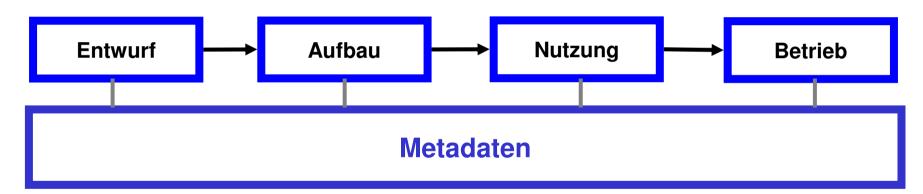
	Operationale Datenbanken /OLTP	Data Warehouses/OLAP		
Entstehung	jeweils für eine Applikation oder aus einer bestimmten Perspektive heraus			
Bedeutung	Tagesgeschäft			
Nutzer	Sachbearbeiter, Online-Nutzer			
Datenzugriff	sehr häufiger Zugriff; kleine Datenmengen pro Operation; Lesen, Schreiben, Modifizieren, Löschen			
Änderungen/Aktualität	sehr häufig / stets aktuell			
#Datenquellen	meist eine			
Datenmerkmale nicht abgeleitet, zeitaktuell, autonom, dynamisch				
Optimierungsziele	hoher Durchsatz, Sehr kurze Antwortzeiten (ms s), hohe Verfügbarkeit			

Warum separates Data Warehouse?


- Unterschiedliche Nutzung und Datenstrukturierung
- Performance
 - OLTP optimiert für kurze Transaktionen und bekannte Lastprofile
 - komplexe OLAP-Anfragen w\u00fcrden gleichzeitige OLTP-Transaktionen des operationalen Betriebs drastisch verschlechtern
 - spezieller physischer und logischer Datenbankentwurf für multidimensionale Sichten/Anfragen notwendig
 - Transaktionseigenschaften (ACID) nicht wichtig

■ Funktionalität

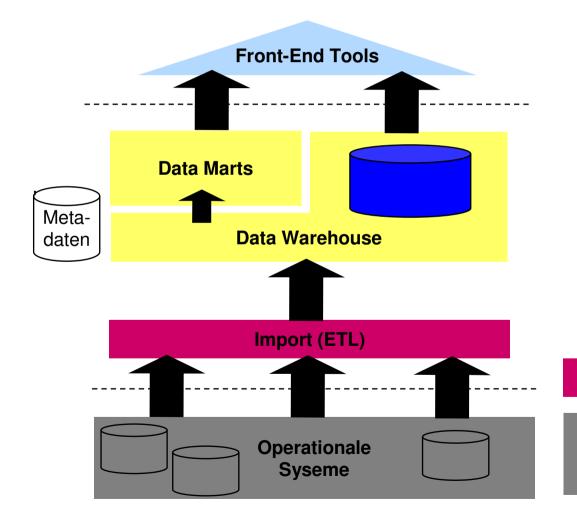
- historische Daten
- Konsolidierung (Integration, Bereinigung und Aggregation) von Daten aus heterogenen Datenquellen
- Sicherheit
- Nachteile der separaten Lösung
 - Datenredundanz
 - Daten nicht vollständig aktuell
 - hoher Administrationsaufwand
 - hohe Kosten

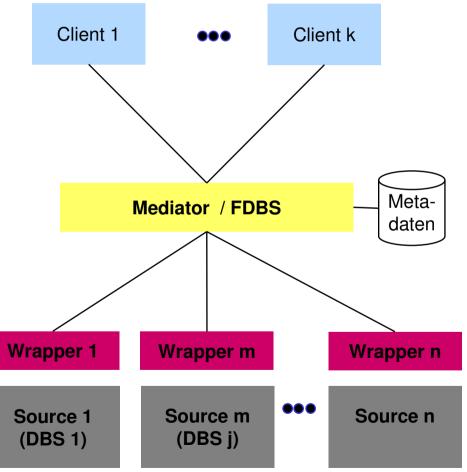

Grobarchitektur einer DW-Umgebung

DW-Prozesse

- Data Warehousing umfaßt mehrere Teilprozesse
 - Entwurf ("design it"),
 - Aufbau ("build it", "populate"),
 - Nutzung ("use it", "analyze") sowie
 - Betrieb und Administration ("maintain it" / "administer")

- DW ist meist kein monolithisches System
 - meist Nutzung von Tools / Komponenten unterschiedlicher Hersteller sowie eigenprogrammierten Anteilen
- zentrale Bedeutung der Metadaten, jedoch oft unzureichend unterstützt

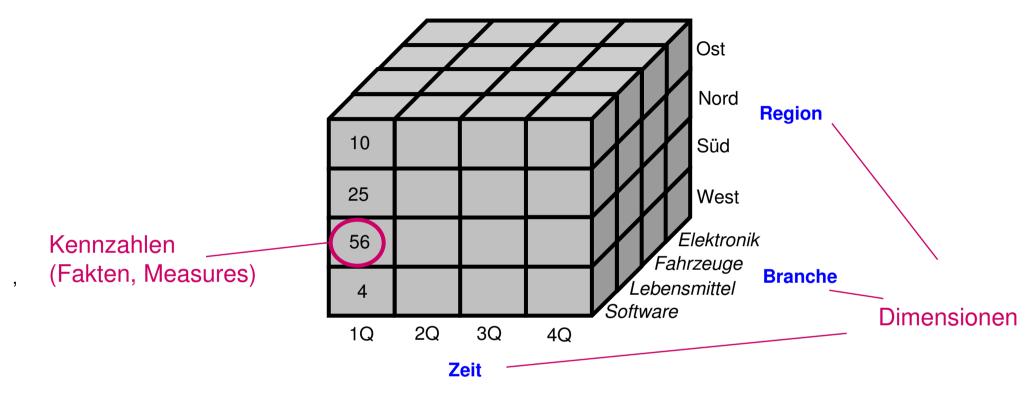



Datenintegration: physisch vs. virtuell

Physische (Vor-) Integration (Data Warehousing)

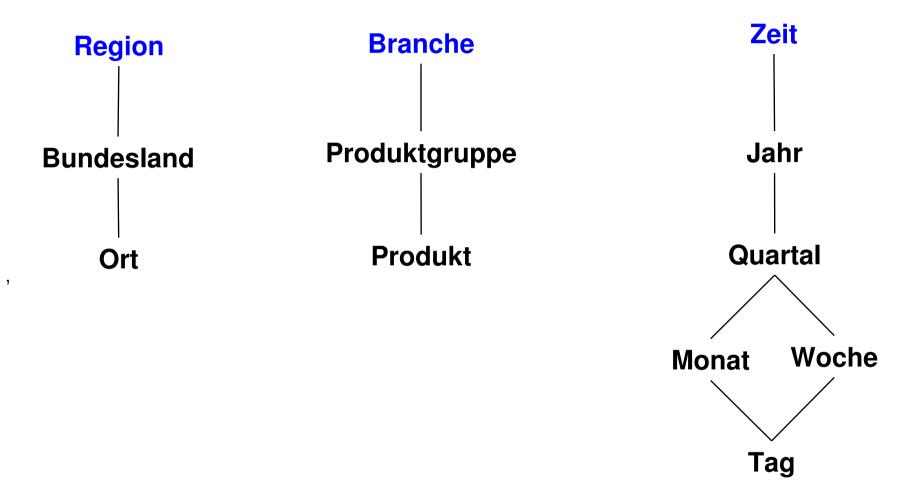
Virtuelle Integration

(Mediator/Wrapper-Architekturen, förderierte DBS)



Datenintegration: physisch vs. virtuell (2)

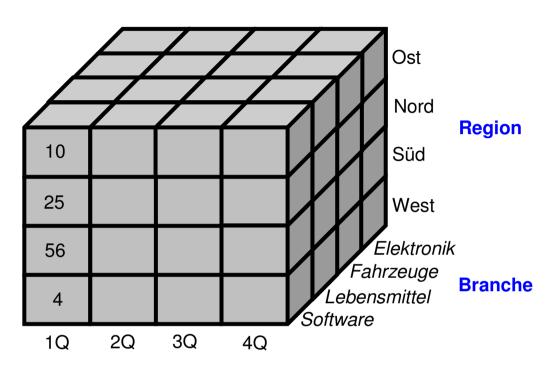
	Physisch (Data Warehouse)	Virtuell
Integrationszeitpunkt: Metadaten	Vorab (DW-Schema)	Vorab (globale Sicht)
Integrationszeitpunkt: Daten	vorab	Dynamisch (zur Anfragezeit)
Aktualität der Daten		
'Autonomie der Datenquellen		
Erreichbare Datenqualität		
Analysezeitbedarf für große Datenmengen		
Hardwareaufwand		
Skalierbarkeit auf viele Datenquellen		


Mehrdimensionale Datensicht

- Kennzahlen: numerische Werte als Grundlage für Aggregationen/Berechnungen (z.B. Absatzzahlen, Umsatz, etc.)
- Dimensionen: beschreibende Eigenschaften
- Operationen:
 - Aggregierung der Kennzahlen über eine oder mehrere Dimension(en)
 - Slicing and Dicing: Bereichseinschränkungen auf Dimensionen

Hierarchische Dimensionierung

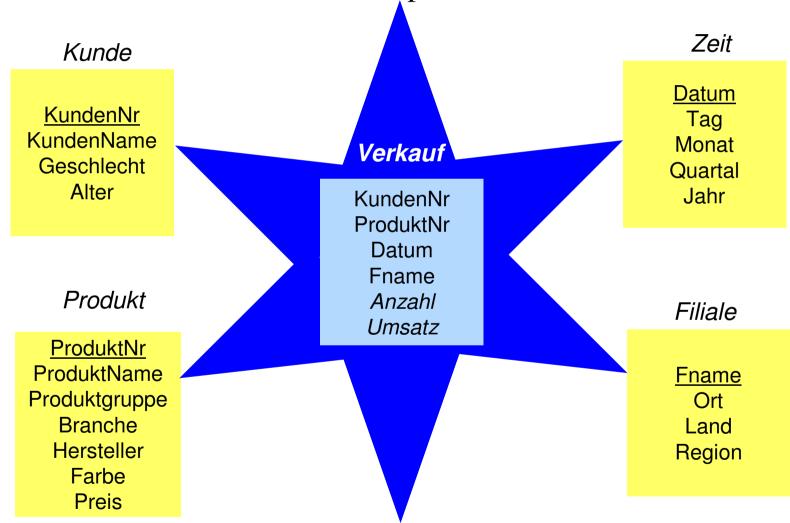
- Operationen zum Wechsel der Dimensionsebenen
 - Drill-Down
 - Roll-Up



OLAP (Online Analytical Processing)

- interaktive multidimensionale Analyse auf konsolidierten Unternehmensdaten
- Merkmale / Anforderungen
 - multidimensionale, konzeptionelle Sicht auf die Daten
 - unbegrenzte Anzahl an Dimensionen und Aggregationsebenen
 - unbeschränkte dimensionsübergreifende Operationen
 - intuitive, interaktive Datenmanipulation und Visualisierung
 - transparenter (integrierter) Zugang zu heterogenen Datenbeständen mit logischer Gesamtsicht
 - Skalierbarkeit auf große Datenmengen
 - stabile, volumenunabhängige Antwortzeiten
 - Mehrbenutzerunterstützung
 - Client/Server-Architektur

Multidimensional vs. relational


<u>Bestellnr</u>	Region	Branche	Zeit	Menge
1406	Ost	Fahrzeuge	2Q	5
4123	West	Elektronik	1Q	58
7829	Süd	Fahrzeuge	2Q	30
5327	Ost	Lebensmittel	4Q	3000
9306	Nord	Software	1Q	25
2574	Ost	Elektronik	4Q	2

- **Zeit**
- multidimensionale Darstellung (MOLAP): Kreuzprodukt aller Wertebereiche mit aggregiertem Wert pro Kombination
 - Annahme: fast alle Kombinationen kommen vor
- relationale Darstellung (ROLAP):
 - Relation: Untermenge des Kreuzproduktes aller Wertebereiche
 - nur vorkommende Wertekombinationen werden gespeichert (Tupel)
- Hybrides OLAP (HOLAP): ROLAP + MOLAP

Star-Schema

zentrale Faktentabelle sowie 1 Tabelle pro Dimension

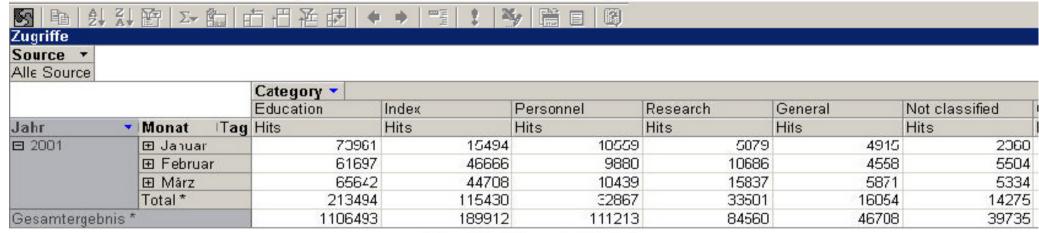
Anfragen

Beispielanfrage: Welche Auto-Hersteller wurden von weiblichen Kunden in Sachsen im 1. Quartal 2008 favorisiert?

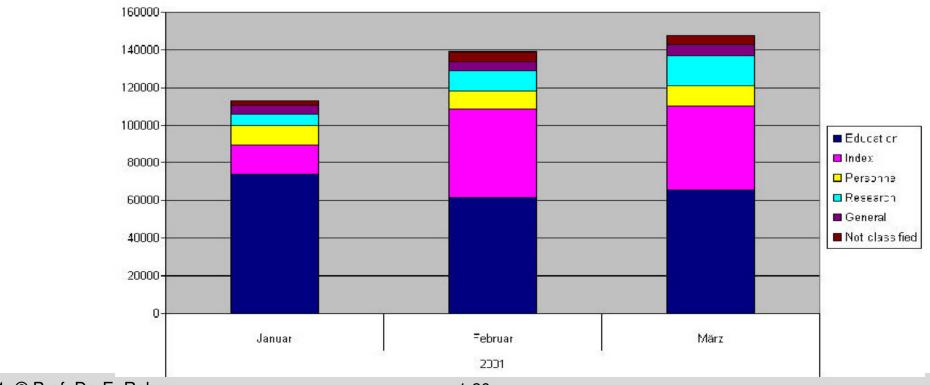
```
select p.Hersteller, sum (v.Anzahl)
from Verkauf v, Filialen f, Produkt p, Zeit z, Kunden k
where z.Jahr = 2008 and z.Quartal = 1 and k.Geschlecht = 'W' and
p.Produkttyp = 'Auto' and f.Land = 'Sachsen' and
v.Datum = z.Datum and v.ProduktNr = p.ProduktNr and
v.FName = f. FName and v.KundenNr = k.KundenNr
group by p.Hersteller;
```

Star-Join

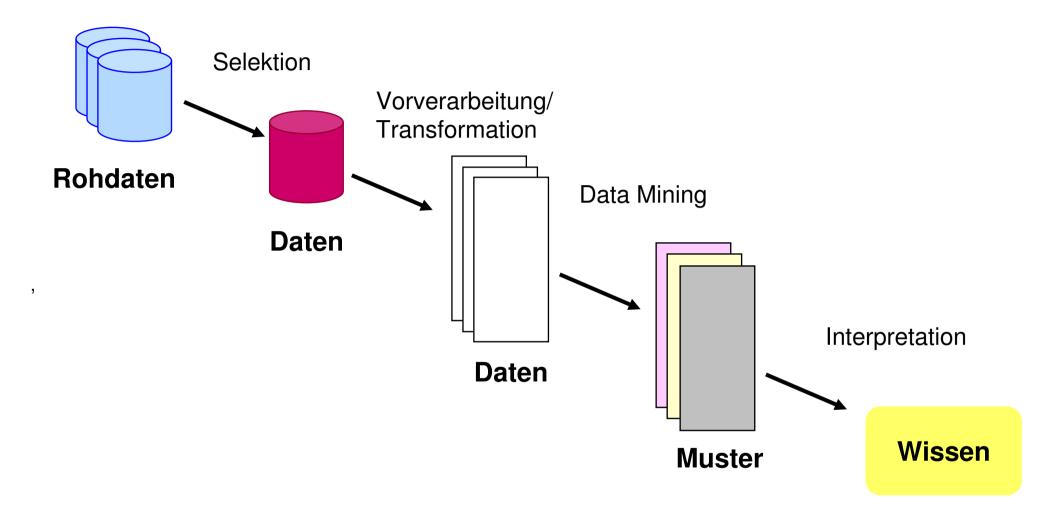
- sternförmiger Join der (relevanten) Dimensionstabellen mit der Faktentabelle
- Einschränkung der Dimensionen
- Verdichtung der Kennzahlen durch Gruppierung und Aggregation


Analysewerkzeuge

- (Ad Hoc-) Query-Tools
- Reporting-Werkzeuge, Berichte mit flexiblen Formatierungsmöglichkeiten
- OLAP-Tools
 - interaktive mehrdimensionale Analyse und Navigation (Drill Down, Roll Up, ...)
 - Gruppierungen, statistische Berechnungen, ...
- Data Mining-Tools


- Darstellung
 - Tabellen, insbesondere Pivot-Tabellen (Kreuztabellen)
 - Analyse durch Vertauschen von Zeilen und Spalten, Veränderung von Tabellendimensionen
 - Graphiken sowie Text und Multimedia-Elemente
- Nutzung über Web-Browser, Spreadsheet-Integration

Beispiel: OLAP-Ausgabe (Excel)



Monthly Report / Databases

Knowledge Discovery

Data Mining: Techniken

- Data Mining: Einsatz statistischer und wissensbasierter Methoden auf Basis von Data Warehouses
 - Auffinden von Korrelationen, Mustern und Trends in Daten
 - "Knowledge Discovery": setzt im Gegensatz zu OLAP ("knowledge verification") kein formales Modell voraus

Clusteranalyse

- Objekte werden aufgrund von Ähnlichkeiten in Klassen eingeteilt (Segmentierung)
- Bsp.: ähnliche Kunden, ähnliche Website-Nutzer ...

Assoziationsregeln

Warenkorbanalyse (z.B. Kunde kauft A und B => Kunde kauft C)

Klassifikation

- Klassifikation von Objekten
- Erstellung von Klassifikationsregeln / Vorhersage von Attributwerten
 (z.B. "guter Kunde" wenn Alter > 25 und ...)
- mögliche Realisierung: Entscheidungsbaum

Beispiel Warenkorbanalyse

Data-Warehouse-Systeme Architektur, Entwicklung, Anwendung von Andreas Bauer, Holger Günzel

Amazon-Preis: EUR 49,00 Kostenlose Lieferung. Siehe Details.

Gewöhnlich versandfertig bei Amazon in 24 Stunden.

Nur noch 5 Stück verfügbar -- jetzt bestellen. (Warenneulieferung ir Sie möchten dieses Produkt morgen bis 12 Uhr geliefert bekom nächsten 2 Stunden und 9 Minuten und wählen Sie Dernig

Kunden, die dieses Buch gekauft haben, haben auch diese Bücher gekauft:

- The Data Warehouse Stag
- Der Data-Warehouse-Rah

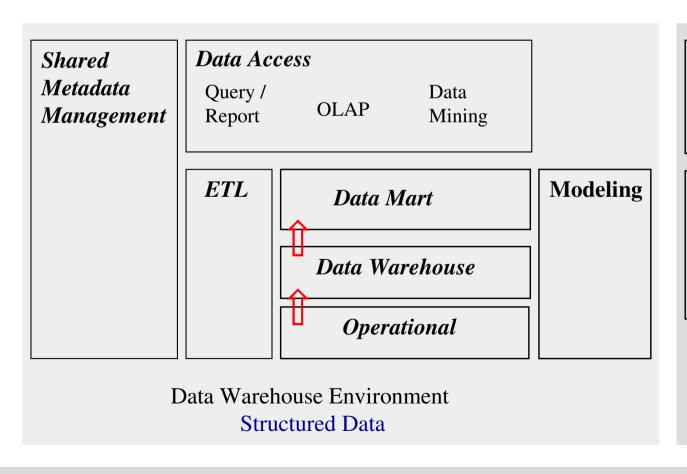
Kunden, die Bücher von A

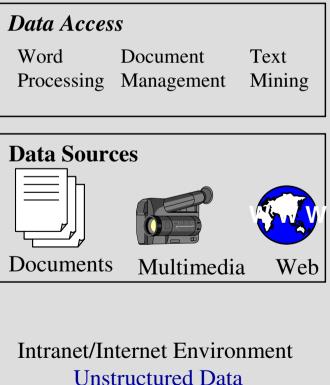
- · Norbert Egger
- Ralph Kimball
- · Hans-Georg Kemper
- · Wolfgang Lehner
- · Lothar Schirmer

Kunden, die Artikel gekauft haben, welche Sie sich kürzlich angesehen haben, kauften auch:

Datenbanksysteme. Konzepte und Techniken der Implementierung. von Theo Härder, Erhard Rahm

Grundlagen von
Datenbanksystemen. Ausgabe
Grundstudium
von Ramiz Elmasri, Shamkant B.
Navathe

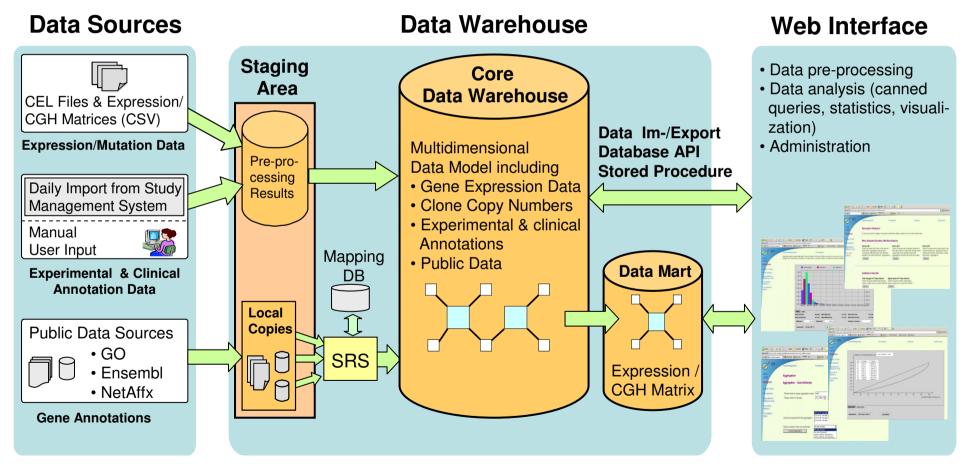




Enterprise Information Portale

 einheitlicher unternehmensweiter Zugang zu strukturierten und unstrukturierten Daten

Enterprise Information Portal


Data Warehouse Hype & Realität

- "turning data into knowledge"
- "360° view of customer"
- "a single version of the truth"
- "getting you closer to the customer"
- "Better decision making"
- Fragen
 - Wie werden welche Kundendaten genutzt?
 - Wie erfolgt die Sicherung der Datenqualität?

GeWare: Expression Data Warehouse*

- Verwaltung und Analyse großer Mengen von Genexpressionsdaten
- Integration weiterer Informationen zu Genen, Patienten, etc.

^{*}E. Rahm, T. Kirsten, J. Lange: *The GeWare data warehouse platform for the analysis of molecular-biological and clinical data.*Journal of Integrative Bioinformatics, 4(1):47, 2007.

Zusammenfassung

- Data Warehousing: DB-Anfrageverarbeitung und Analysen auf integriertem Datenbestand für Decision Support (OLAP)
- riesige Datenvolumina
- Hauptschwierigkeit: Integration heterogener Datenbestände sowie Bereinigung von Primärdaten
- Physische Datenintegration ermöglicht aufwändige Datenbereinigung und effiziente Analyse auf großen Datenmengen
- Mehrdimensionale Datenmodellierung und -organisation
- Breites Spektrum an Auswertungs- und Analysemöglichkeiten
- Data Mining: selbständiges Aufspüren relevanter Muster in Daten
- Data Warehouse ist weit mehr als Datenbank

