4. Relationenalgebra

- Einleitung
- Selektion und Projektion
- Mengenoperatoren
 - Vereinigung, Durchschnitt, Differenz
 - kartesisches Produkt
- Verbundoperationen (Join)
 - Theta-Join
 - natürlicher Verbund
 - Semi-Join
 - äußerer Verbund
- Division
- Beispielanfragen

Sprachen für das Relationenmodell

- Datenmodell = Datenobjekte + Operatoren
- im RM wird vereinheitlichte Sprache angestrebt für:
 - Anfragen (Queries) im 'Stand-Alone'-Modus
 - Datenmanipulation und Anfragen eingebettet in eine Wirtssprache
 - Datendefinition
 - Zugriffs- und Integritätskontrolle
 - Unterstützung verschiedener Benutzerklassen:
 Anwendungsprogrammierer, DBA, gelegentliche Benutzer
- verschiedene Grundtypen von Sprachen
 - formale Ansätze: Relationenalgebra und Relationenkalkül
 - abbildungsorientierte Sprachen (z. B. SQL)
 - Graphik-orientierte Sprachen (z. B. Query-by-Example)

Relationenalgebra

- *Algebra*: ein System, das aus einer nichtleeren Menge und einer Familie von Operationen besteht
 - Relationen sind Mengen
 - Operationen auf Relationen arbeiten auf einer oder mehreren Relationen als Eingabe und erzeugen eine Relation als Ausgabe (Abgeschlossenheitseigenschaft)
 - => mengenorientierte Operationen

Operationen:

Klassische Mengenoperationen:

- Vereinigung
- Differenz
- kartesisches Produkt
- Durchschnitt (ableitbar)

Relationenoperationen:

- Restriktion (Selektion)
- Projektion
- Verbund (Join) (ableitbar)
- Division (ableitbar)

Selektion (Restriktion)

■ Auswahl von Zeilen einer Relation über Prädikate, abgekürzt _{OP}

$$\sigma_P(R) = \{ t \mid t \in R \land P(t) \}$$

P = log. Formel (ohne Quantoren!) zusammengestellt aus:

- Operanden: Attributnamen oder Konstanten
- Vergleichsoperatoren $\theta \in \{<, =, >, \le, \ne, \ge\}$
- logische Operatoren: ∨, ∧, ¬

Beispiele:

 $\sigma_{GEHALT \ < \ PROVISION} \ (PERS) \\ \sigma_{BERUF='Programmierer' \ \land \ ALTER \ < \ 50} \ (PERS)$

Eigenschaften

- grad $(\sigma_P(R))$ = grad (R)
- $\operatorname{card} (\sigma_{p}(R)) \leq \operatorname{card} (R)$

Projektion

■ Auswahl der Spalten (Attribute) $A_1, A_2, ..., A_k$ aus einer Relation R (Grad n >= k)

$$\pi_{A_1, A_2, ..., A_k}(R) = \{ p \mid \exists t \in R : p = < t [A_1], ..., t [A_k] > \}$$

Beispiel:

$$\pi_{\text{NAME, GEHALT}}(\text{PERS})$$

- Eigenschaften:
 - wichtig: Duplikate werden entfernt! (Mengeneigenschaft)
 - $\operatorname{grad}(\pi_{\mathbf{A}}(\mathbf{R})) \leq \operatorname{grad}(\mathbf{R})$
 - $\operatorname{card} (\pi_{\mathbf{A}}(\mathbf{R})) \leq \operatorname{card} (\mathbf{R})$

Relationenalgebra: Beispiel-DB

ABT

ANR	ANAME	ORT
K51	Planung	Leipzig
K53	Einkauf	Frankfurt
K55	Vertrieb	Frankfurt

PERS

<u>PNR</u>	Name	Alter	Gehalt	ANR	MNR
406	Abel	47	50700	K55	123
123	Schulz	32	43500	K51	-
829	Müller	36	40200	K53	406
574	Schmid	28	36000	K55	123

■ Finde alle Angestellten aus Abteilung K55, die mehr als 40.000 verdienen

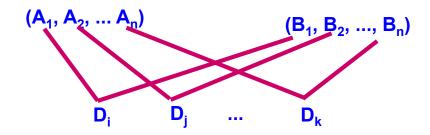
■ Finde alle Abteilungsorte

■ Finde den Abteilungsnamen von Abteilung K53

Klassische Mengenoperationen

■ Voraussetzung: *Vereinigungsverträglichkeit* der beteiligten Relationen:

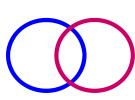
gleicher Grad - gleiche Bereiche: \Rightarrow W(A_i) = W(B_i) : i = 1, n



- Vereinigung: $R \cup S = \{t | t \in R \lor t \in S\}$
 - $\operatorname{card} (R \cup S) \leq \operatorname{card} (R) + \operatorname{card} (S)$
- Differenz: $R S = \{t | t \in R \land t \notin S\}$
 - $\operatorname{card} (R S) \leq \operatorname{card} (R)$
- Durchschnitt:

$$R \cap S = R - (R - S) = \{ t | t \in R \land t \in S \}$$

 $- \operatorname{card} (R \cap S) \leq \min (\operatorname{card} (R), \operatorname{card} (S))$



(Erweitertes) Kartesisches Produkt

R (Grad r) und S (Grad s) beliebig

$$\mathbf{R} \times \mathbf{S} = \{ \mathbf{k} \mid \exists \times \in \mathbf{R}, \mathbf{y} \in \mathbf{S} : \mathbf{k} = \mathbf{x} \mid \mathbf{y} \}$$

Beachte:
$$k = x \mid y = \langle x_1, \dots, x_r, y_1, \dots, y_s \rangle$$

nicht $\langle \langle x_1, \dots, x_r \rangle, \langle y_1, \dots, y_s \rangle$ wie übliches kart. Produkt

- grad $(R \times S)$ = grad (R) + grad (S); card $(R \times S)$ = card (R) * card (S)

Beispiel

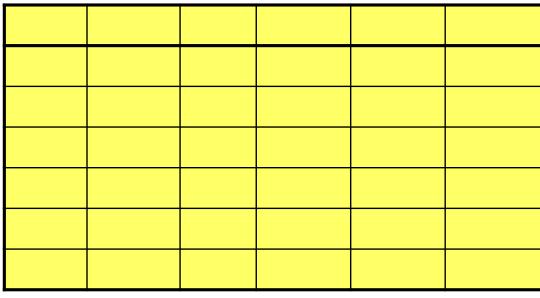
R

A	В	C
a	γ	1
d	α	2
b	β	3

S

D	E	F
b	γ	3
d	α	2

 $R \times S$



Allgemeiner Verbund (Theta-Join)

- grob:
 - kartesisches Produkt zwischen zwei Relationen R (Grad r) und S (Grad s).
 - eingeschränkt durch Θ -Bedingungen zwischen Attribut A von R und Attribut B von S.
- Θ-Verbund zwischen R und S:

$$R \bowtie_{A \Theta B} S = \sigma_{A \Theta B} (R \times S)$$

mit arithm. Vergleichsoperator $\Theta \in \{<, =, >, \leq, \neq, \geq\}$

- Bemerkungen:
 - Gleichverbund (Equijoin): $\Theta = '='$:

Natürlicher Verbund (Natural Join)

- grob: Gleichverbund über <u>alle</u> gleichen Attribute und Projektion über die verschiedenen Attribute
- natürlicher Verbund zwischen R und S:

gegeben:
$$R(A_1, A_2, ..., A_{r-j+1}, ..., A_r), S(B_1, B_2, ..., B_j, ..., B_s)$$

o.B.d.A.:(sonst. Umsortierung: $B_1 = A_{r-j+1}$, $B_2 = A_{r-j+2}$... $B_j = A_r$

$$R \bowtie S = \pi_{A_1,...,A_r,B_{j+1}},...,B_s \circ (R.A_{r-j+1} = S.B_1) \land ... \land (R.A_r = S.B_j) (R \times S)$$

 \bowtie Zeichen für Natural Join \Rightarrow \bigcirc = '='

Join-Attribute sind durch Übereinstimmungsbedingung gegeben

	R	
Α	В	С
a ₁	b ₁	C ₁
a_2	b ₂	c_{2}

	S	
С	D	Е
C ₁	d ₁	e ₁
C_3	d_2	e_2

Resultat				
Α	В	С	D	Е
a_1	b ₁	C ₁	d_1	e ₁

Join-Beispiel

ABT

ANR	ANAME	ORT
K51	Planung	Leipzig
K53	Einkauf	Frankfurt
K55	Vertrieb	Frankfurt

PERS

<u>PNR</u>	Name	Alter	Gehalt	ANR	MNR
406	Abel	47	50700	K55	123
123	Schulz	32	43500	K51	-
829	Müller	36	40200	K53	406
574	Schmid	28	36000	K55	123

■ Finde alle Angestellten (PNR, ALTER, ANAME), die in einer Abteilung in Frankfurt arbeiten und älter als 30 sind.

Semi-Join

Ergebnisbeschränkung des Gleichverbundes auf eine der beiden Eingaberelationen

$$S \bowtie R = \pi_{S-Attribute} (S \bowtie R)$$

 $S \bowtie R = \pi_{R-Attribute} (S \bowtie R)$

S		
Α	В	С
a ₁	b ₁	C ₁
a ₂	b_2	C_2

	R	
C	D	Е
C ₁	d ₁	e ₁
C_3	d_2	e_2

Resultat		
Α	В	С
a ₁	b ₁	C ₁

	S	
Α	В	C
a ₁	b ₁	C ₁
a_2	b_2	C_2

	R	
С	D	E
C ₁	d_1	e ₁
C ₃	d_2	e_2

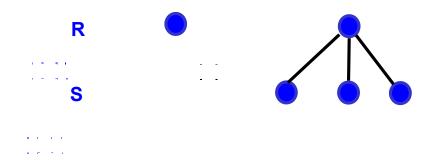
Resultat		
С	D	E
C ₁	d_1	e ₁

Äußerer Verbund (Outer Join)

- Ziel: Verlustfreier Verbund soll erzwungen werden
- ein Gleichverbund zwischen R und S heißt *verlustfrei*, wenn alle Tupel von R und S am Verbund teilnehmen. Die inverse Operation Projektion erzeugt dann wieder R und S (**lossless join**).

R ⋈ S verlustfrei ⇔

- Bisher: R ⋈ S liefert nur "vollständige Objekte"
 - es sollen aber auch Teilobjekte als Ergebnis geliefert werden (z. B. komplexe Objekte)



Trick: Einfügen künstlicher Verbundpartner

Outer Join (2)

Def.: Seien A die Verbundattribute, {≡} der undefinierte Wert und

$$\begin{array}{l} R' := R \cup ((\pi_A(S) - \pi_A(R)) \times \{\equiv\} \times ... \times \{\equiv\}) \\ S' := S \cup ((\pi_A(R) - \pi_A(S)) \times \{\equiv\} \times ... \times \{\equiv\}) \end{array}$$

Äußerer Gleichverbund

$$R \supset S := R' \bowtie S'$$
 $R.A = S.A \qquad R'.A = S'.A$

$$\ddot{A}u\beta erer\ nat \ddot{u}rlicher\ Verbund$$
 $R \supset S := R' \bowtie S'$

- Linker und rechter äußerer Gleichverbund
 - nur die linke bzw. rechte Argumentrelation bleibt verlustfrei (Einfügen künstlicher Verbundpartner in rechter bzw. linker Eingaberelation)

$$R \bowtie_{R,A=S,A} S := R \bowtie_{R,A=S',A} S'$$

Linker äußerer Gleichverbund

$$\begin{array}{c}
R \swarrow S := R' \bowtie S \\
R'.A = S.A
\end{array}$$

Rechter äußerer Gleichverbund

- Verallgemeinerung auf 2 (oder mehr) Joins, z.B. R ⊃ T
 - selbst isolierte Tupel können zu einem vollständigen Pfad expandiert werden

Outer Join - Beispiel

PERS ABT-ZUGEH ABT 0..* 0..1

PERS

PNR	ANR
P1	A 1
P2	A 1
P3	A2
P4	-
P5	-

PERS ⋈ ABT

PNR	ANR	ANAME
PERS MART		

PERS ⊠_ABT

PNR	ANR	ANAME

ABT

ANR	ANAME
A1	Α
A2	В
А3	С

PNR ANR ANAME ...

PNR	ANR	ANAME

PERS → ABT 4 - 15

Division

- Beantwortung von Fragen, bei denen eine "ganze Relation" zur Qualifikation herangezogen wird
- Simulation des Allquantors => ein Tupel aus R steht mit allen Tupeln aus S in einer bestimmten Beziehung

Definition

```
Voraussetzung: S-Attribute \subset R-Attribute sei R vom Grad r und S vom Grad s, r > s t sei (r-s)-Tupel, u sei s-Tupel; dann gilt: R \div S = \{ t \mid \forall \ u \in S : t \ u \in R \} grad (R \div S) = (r-s)-Card (R \div S)
```


Division (2)

Beispiel

LPT

LNR	PNR	TNR
L1	P1	T1
L1	P2	T1
L2	P1	T1
L2	P1	T2
L2	P2	T1

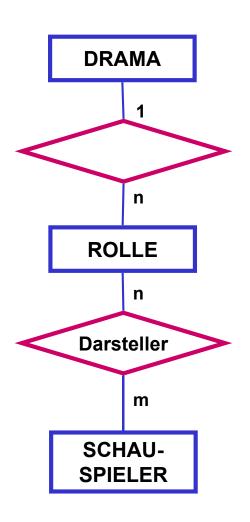
PT

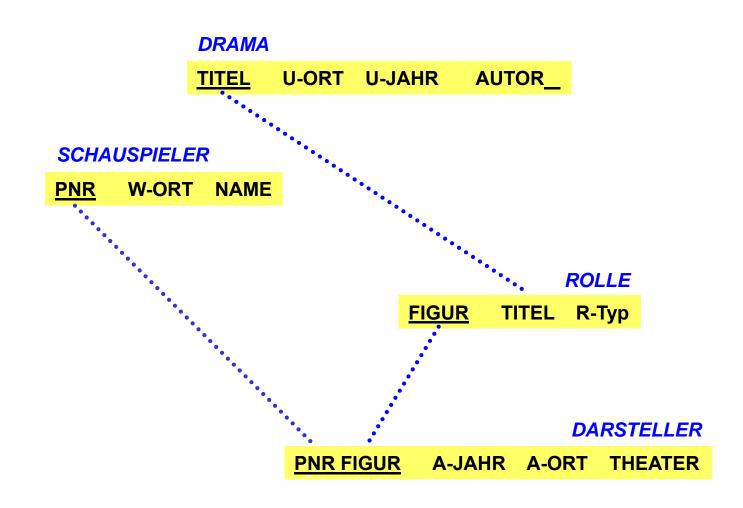
PNR	TNR
P1	T1
P1	T2
P2	T1

- welche Lieferanten beliefern alle Projekte?
- welche Lieferanten liefern alle Teile?

Zusammenhang zwischen Division und kartesischem Produkt: $(R \times S) \div S = R$

Beispiel-DB: Bühne





Beispielanfragen

Welche Darsteller (PNR) haben im Schauspielhaus gespielt?

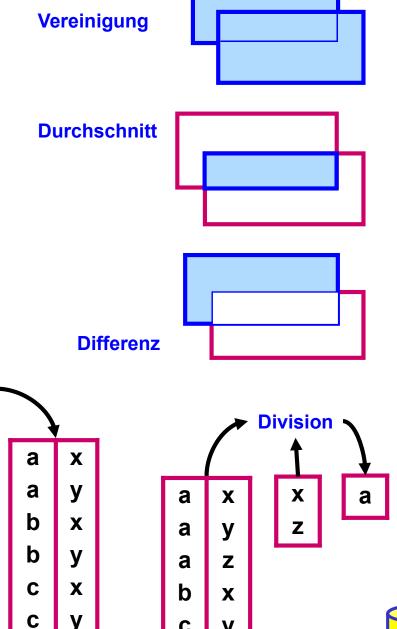
■ Finde alle Schauspieler (NAME, W-ORT), die einmal im 'Faust' mitgespielt haben.

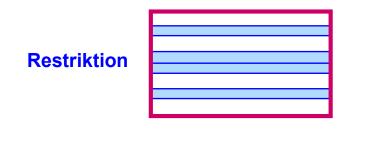
■ Finde alle Schauspieler (NAME), die bei in Weimar uraufgeführten Dramen an ihrem Wohnort als 'Held' mitgespielt haben

- Finde die Schauspieler (PNR), die nie gespielt haben
- Finde alle Schauspieler (NAME), die alle Rollen gespielt haben.

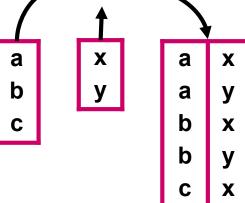
Zusammenfassung Relationenalgebra

- saubere mathematische Definition
- mengenorientierte Operationen
- keine Änderungsoperationen!
- für Laien nicht leicht verständlich





Projektion



Produkt