
Journal of Biomedical Informatics 46 (2013) 15–32
Contents lists available at SciVerse ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
COnto–Diff: generation of complex evolution mappings for life science ontologies q

Michael Hartung ⇑, Anika Groß, Erhard Rahm
Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
Department of Computer Science, University of Leipzig, P.O. Box 100920, 04009 Leipzig, Germany
a r t i c l e i n f o

Article history:
Received 25 July 2011
Accepted 7 April 2012
Available online 8 May 2012

Keywords:
Ontology evolution
Ontology versions
Diff
Life science ontologies
1532-0464/$ - see front matter � 2012 Elsevier Inc. A
http://dx.doi.org/10.1016/j.jbi.2012.04.009

q This work is supported by the German Research
497/18-1 (‘‘Evolution of Ontologies and Mappings’’).
⇑ Corresponding author at: Department of Comp

Leipzig, P.O. Box 100920, 04009 Leipzig, Germany. Fa
E-mail addresses: hartung@izbi.uni-leipzig.de (M

k.uni-leipzig.de (A. Groß), rahm@informatik.uni-leipz
a b s t r a c t

Life science ontologies evolve frequently to meet new requirements or to better reflect the current
domain knowledge. The development and adaptation of large and complex ontologies is typically per-
formed collaboratively by several curators. To effectively manage the evolution of ontologies it is essen-
tial to identify the difference (Diff) between ontology versions. Such a Diff supports the synchronization
of changes in collaborative curation, the adaptation of dependent data such as annotations, and ontology
version management. We propose a novel approach COnto–Diff to determine an expressive and invert-
ible diff evolution mapping between given versions of an ontology. Our approach first matches the ontol-
ogy versions and determines an initial evolution mapping consisting of basic change operations (insert/
update/delete). To semantically enrich the evolution mapping we adopt a rule-based approach to trans-
form the basic change operations into a smaller set of more complex change operations, such as merge,
split, or changes of entire subgraphs. The proposed algorithm is customizable in different ways to meet
the requirements of diverse ontologies and application scenarios. We evaluate the proposed approach for
large life science ontologies including the Gene Ontology and the NCI Thesaurus and compare it with
PromptDiff. We further show how the Diff results can be used for version management and annotation
migration in collaborative curation.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Ontologies have become increasingly important, e.g., to seman-
tically and consistently annotate and categorize information. In life
sciences, large biomedical ontologies such as the Gene Ontology
(GO) [12] are used to describe the functions of genes or proteins,
e.g., in SwissProt [5] or Ensembl [10]. The ontological information
is utilized in many analytical studies such as for term enrichment
analysis [26,36]. The number of life science ontologies is continu-
ously growing. For instance, the Open Biological and Biomedical
Ontologies Foundry (OBO) [40] or the BioPortal [29] currently pro-
vide access to about 250 ontologies covering knowledge from dif-
ferent domains such as anatomy, phenotype, biological function or
biochemistry.

Most life science ontologies evolve heavily to meet new require-
ments, correct previous design errors or better incorporate new
domain knowledge [17]. Hence there is a continuous release of
new versions of an ontology that reflect the latest changes. The
analysis of the version history reveals that important ontologies
ll rights reserved.

Foundation (DFG), Grant RA

uter Science, University of
x: +49 0341 97 32209.
. Hartung), gross@informati-
ig.de (E. Rahm).
such as the Gene Ontology or the NCI Thesaurus [39] doubled their
size since 2004 [16]. Large ontologies are typically developed and
adapted collaboratively by several curators and experts [30,44].
For example, the Gene Ontology is maintained by a consortium
with members from several international organizations and pro-
jects1. While ontology developers typically focus on areas of their
expertise it is still valuable to them to know the overall changes of
the ontology that have already been applied.

In this paper we propose a new approach to automatically
determine the changes between two given versions of an ontology.
The changes are collected within a so-called diff evolution map-
ping which is helpful for ontology developers, ontology users and
applications:

� Ontology developers can see from the diff result how the ontol-
ogy has evolved and what changes are dominating. In collabora-
tive ontology development, it is important for both the
coordinators as well as individual developers to exactly know
what changes have already been performed and what changes
may still be missing. Previous changes may in fact serve as a
starting point for further modifications. Early approaches such
1 GO Consortium: http://www.geneontology.org/GO.consortiumlist.shtml

http://dx.doi.org/10.1016/j.jbi.2012.04.009
mailto:hartung@izbi.uni-leipzig.de
mailto:gross@informatik.uni-leipzig.de
mailto:gross@informatik.uni-leipzig.de
mailto:rahm@informatik.uni-leipzig.de
http://www.geneontology.org/GO.consortiumlist.shtml
http://dx.doi.org/10.1016/j.jbi.2012.04.009
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin

16 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
as the Protégé plugin PromptDiff [32] already show the need to
determine ontology changes to support collaborative ontology
development.
� The computed evolution mapping can be used to find out

whether existing applications or analysis studies are affected
by ontology changes so that they may have to be adapted or
redone. For instance, ontology changes may invalidate previous
findings of a term enrichment analysis [21] so that the analysis
may have to be repeated.
� The evolution mapping can support the propagation of ontology

changes to ontology-dependent artifacts such as annotations or
ontology mappings. For instance, curators of annotations can
quickly find and remove outdated annotations referring to
deleted or obsolete ontology concepts [16]. Annotation curators
may also collaboratively decide about how to deal best with
ontology changes.
� Evolution mappings can be used to optimize the management

of ontology versions by only storing the version differences
instead of the entire ontology versions [23].

Our approach to determine the Diff between ontology versions
is based on a previous matching of ontology versions which deter-
mines semantic correspondences between equivalent concepts.
There has been a huge amount of research on semi-automatic
ontology matching in the last decade [9,38] (see Section 2), and
we can therefore leverage existing approaches to (semi-) automat-
ically find correspondences. While Match focuses on the un-
changed ontology elements, Diff also has to consider added and
deleted ontology elements. Simple changes on individual ontology
elements (concepts, relationships) and their additions/ deletions
are relatively easy to find and supported by current developer tools
such as OBO-Edit [8] or OBO Explorer [1]. However, we observe
that such low-level mappings represented by long lists of primitive
changes are of limited usefulness for human users. Especially for
large ontologies it becomes difficult for individual curators to
understand the semantics behind changes performed by others.
We therefore aim at a much more compact and semantically more
expressive diff representation capturing complex ontology changes
such as merging, splitting and moving of ontology concepts or add-
ing and deleting entire subgraphs. Such mappings are likely to
serve much better the discussed purposes of evolution mappings,
in particular for ontology developers and ontology users.

For illustration we use the running example in Fig. 1 on the evo-
lution of a part of an anatomy ontology. The goal is to derive the
evolution mapping between the two ontology versions. A basic Diff
approach only supporting add/delete/change operations for indi-
vidual ontology elements would derive a deletion of the ‘accessory
cochlear nucleus’ and ‘anterior cochlear nucleus’ concepts
although these concepts are actually merged into concept ‘cochlear
ventral nucleus’. We propose a more expressive Match-based Diff
generation supporting complex changes. In Fig. 1, the names of
the white concepts remain unchanged during the evolution and
Fig. 1. Motivating example – evolution in a part of an anat
we assume that correspondences between these concepts are part
of the match result. Dashed lines indicate further relevant match-
ing concepts. The correspondences help our Diff approach to cor-
rectly determine that the redundant concepts ‘accessory cochlear
nucleus’ and ‘anterior cochlear nucleus’ have been merged into ‘co-
chlear ventral nucleus’. The original redundancy could have been
introduced by different developers and this is now corrected by a
merge change. In such cases the labels of the old concepts may
be introduced as synonyms in the new concept. This information
can be exploited to detect concept merges. Another complex
change is the addition of the sub-ontology rooted at ‘brain stem
white matter’. Especially for large life science ontologies it is valu-
able to identify such larger changed ontology portions. Further
complex changes include the move of concepts ‘trigeminal sensory
nucleus’ and ‘trigeminal motor nucleus’ from ’brainstem nucleus’
to the new inner concept ‘trigeminal nucleus’.

The contributions of this paper are as follows:

� We introduce a model for diff evolution mappings between
ontology versions that is based on a set of basic and complex
change operations. Based on this model we present a generic
Diff algorithm, COnto–Diff (Complex Ontology Diff), to auto-
matically determine expressive (compact) diffs between given
ontology versions. The approach is based on the result of a
(semi-) automatic match operation. The evolution mapping is
computed by a rule-based approach utilizing so-called COG
(change operation generating) rules.
� We propose an algorithm using the evolution mapping to

migrate an old ontology version to the newer one. We can also
derive an inverse evolution mapping to migrate from a changed
ontology version back to the original one. This underlines that
evolution mappings are executable and useful for the manage-
ment of ontology versions. We also discuss how our evolution
mappings can be used to update annotations and thus support
annotation curators.
� We comprehensively evaluate our approach for large life sci-

ence ontologies including the Gene Ontology and the NCI The-
saurus, and provide a comparison with the PromptDiff
approach. We also show that the determined diff mappings
allow a correct migration between ontology versions. The
results confirm the applicability and scalability of the approach
to large ontologies with many changes.

We made the functionality of COnto–Diff available within a
new web tool [15] so that users can interactively determine and
analyze diffs between ontology versions. While COnto–Diff is
based on a match step, matching is not the focus of this paper since
it has already been widely investigated. We further focus on deter-
mining evolution mappings solely at the ontology level and leave
related problems (e.g., instance migration) for future work.

We discuss related work in Section 2. In Section 3 we introduce
our ontology model, the considered set of basic and complex
omical ontology (left: old version, right: new version).

M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32 17
changes as well as our model of match mappings and evolution
mappings. COnto–Diff is presented in Sections 4 and 5. Section 4
introduces the set of COG rules to determine the change operations
that occurred during the evolution. Section 5 outlines the overall
approach for determining the diff evolution mapping based on
the introduced COG rules. The application of the diff evolution
mappings for ontology and annotation migration is explained in
Section 6. We present evaluation results in Section 7. We conclude
with a summarizing discussion on the strengths and current limi-
tations of our approach and on plans for future work. The appendix
provides details such as correctness proofs for the proposed
algorithms.
2. Related work

We first discuss related work on ontology evolution, in general.
Before we describe previous approaches to determine ontology
changes, we provide an overview of recent work on the related
problem of ontology matching.
2.1. Ontology evolution

There is already a substantial amount of related work on ontol-
ogy evolution (see [11,18] for surveys). The Protégé tool [30] sup-
ports both the development and evolution of ontologies. The
evolution framework is based on a change and annotation ontology
(CHAO) [31] including both simple and complex changes. Changes
can be specified via logging of incremental changes or by a direct
ontology version comparison (see PromptDiff later). The ontology
evolution process itself has been extensively studied by Stojanovic
et al. [43]. Oliver and colleagues [33] investigate the representation
of typical changes in controlled medical terminologies including
additions, renaming, hierarchical changes and merges. In contrast
to these works, we do not consider the active modification of
ontologies but focus on determining the changes between given
versions.

Tools such as OBO-Edit [8] or OBO2OWL [28] enable the man-
agement and development of OBO ontologies. OBO-Edit contains
a commandline tool obodiff 2 which can compare a pair of OBO files
and reports all edits that are necessary to transform the first into the
second file. Furthermore, information on changes of current ontolo-
gies (history tracking) is primarily limited to mailing lists and re-
ports by the ontology distributors. For instance, the GO consortium
summarizes changes on the Gene Ontology in a monthly report.3

Most of the tools and systems only report on primitive changes,
e.g., additions of concepts or relationships between succeeding ver-
sions of an ontology. In contrast COnto–Diff is able to detect more
meaningful, complex changes and is not restricted to succeeding
versions, i.e., the input versions may be from much different points
in time.

Several studies have analyzed the evolution of life science
ontologies and terminologies. Study [46] analyzes the evolution
of GO with the help of simple change statistics on the number of
concepts, relationships and paths. A more comprehensive study
[17] analyzes the evolution of 16 life science ontologies and asso-
ciated annotations. Ceusters et al. [6] have studied the evolution of
SNOMED CT and found that the main changes are class modifica-
tions followed by class additions and deletions. They acknowledge
the importance of a diff or history mechanism to analyze and en-
hance the quality of ontologies, e.g., by identifying mistakes of
the past and avoiding them in the future.
2 obodiff: http://oboedit.org/docs/html/obodiff.htm.
3 GO Monthly Reports: http://www.geneontology.org/MonthlyReports/.
2.2. Ontology matching

Ontology matching is the process of determining a set of
semantic correspondences (ontology mapping) between concepts
of two ontologies O1 and O2. A manual matching by domain experts
is very time-consuming and for large ontologies almost infeasible.
Thus, many (semi-) automatic matching algorithms have been
developed for ontology matching (see [9,37,38] for surveys). Com-
mon match approaches utilize the linguistic and structural similar-
ity of ontology concepts; some approaches also consider the
similarity of ontology instances. State-of-the art match systems
such as COMA++ [2], Falcon [20] or SAMBO [25] combine multiple
matchers within a match strategy to achieve better match quality.
In general, automatically determined mappings are not perfect but
should be verified and revised by human experts (semi-automatic
matching). The revision process benefits from a collaborative
involvement of multiple experts to speed-up mapping creation
and to increase the included knowledge [27,47].

Previous work on matching life science ontologies showed that
linguistic matching methods based on the similarity of concept
names and synonyms produce very good results [13,14]. This work
applies such approaches to enable a largely automatic ontology
matching. We also exploit the fact that matching two versions of
the same ontology is facilitated by the large portion of shared iden-
tifiers between two versions.

2.3. Ontology change detection

Most related to this paper are previous approaches for detecting
ontology changes. They can be classified into incremental and direct
ones. Incremental approaches are based on a version log of
changes. For instance, [35] differentiates between simple and com-
posite changes which are defined declaratively using a Change Def-
inition Language (CDL). Based on an available change log, the
approach aims at detecting additional implicit changes by evaluat-
ing the definition of specified change operations. However, such
approaches require access to a version log of an ontology which
is often not possible. Furthermore, the occurrence of redundant
changes in a log makes change detection between two versions dif-
ficult. Hence, we consider a direct comparison of ontology versions
to determine the diff as more versatile.

The best known approach of this kind is PromptDiff [32] that is
part of the Protégé ontology management suite [30]. It uses several
heuristic matchers (e.g., single unmatched sibling, unmatched in-
verse slots, or same type/name) to detect changes between two
ontology versions. The algorithm works iteratively and applies
the heuristic matchers as long as no more changes are found. The
approach supports the detection of several basic as well as com-
plex changes including concept additions, deletions, splits and
merges. The result is a difference table which lists the detected
changes. Each row represents a change operation including its
parameters. Changes on entire subtrees can be recognized with
the PromptDiff plugin in the Protégé UI which allows users to visu-
alize tree-level changes [31], i.e., one can notice if all classes of a
subtree have changed in the same way, e.g., all were added or de-
leted. We will provide a more detailed comparison between
PromptDiff and COnto–Diff in the evaluation (see Section 7.4).

The OntoView system [24] focuses on versioning of RDF-based
ontologies. It can detect simple changes such as label modifications
as well as logical definition changes, e.g., changes on subClassOf
relationships or domain/range properties. The algorithm is based
on RDF triples and uses a graph representation as well as a set of
IF–THEN statements to detect changes between versions. More
complex changes such as merges or splits are not supported.

The authors of [34] describe an approach to detect high-level
changes such as moveClass in RDF/S knowledge bases. The pro-

http://oboedit.org/docs/html/obodiff.htm
http://www.geneontology.org/MonthlyReports/

18 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
posed framework distinguishes between basic, composite and heu-
ristic changes which are expressed in a formal language. The main
algorithm focuses on the detection of basic and composite changes
while the detection of heuristic changes such as rename, merge, or
split is considered as optional. The starting point is a so-called low-
level delta containing RDF triples that have been added/deleted be-
tween input versions V1 and V2. Changes are described by (1) re-
quired added RDF triples, (2) required deleted RDF triples and (3) a
set of conditions that need to be fulfilled. The detection algorithm
first uses the low-level delta and the defined change descriptions
to generate a set of possible changes between V1 and V2. After-
wards the algorithm iteratively selects change operations that
meet the conditions and reduces the low-level delta set accord-
ingly. The algorithm first tries to detect composite and then basic
changes. Changes on entire subgraphs cannot be recognized by
the approach.

In contrast to these previous change detection approaches we
adopt a two-phase Diff approach that starts with a match process-
ing to determine corresponding concepts in the input ontology ver-
sions. We then apply a rule-based approach to determine complex
ontology changes. Ontology matching is not performed in Onto-
View while PromptDiff employs matching in its heuristic matchers.
[34] utilizes ontology matching only as an optional step but not in
the main algorithm. Compared to all other approaches we distin-
guish between matching and diff computation and can thus flexi-
bly adapt our algorithm to work with different ontologies or to
utilize enhanced matching techniques. The proposed rule-based
Diff computation supports a large set of change operations and
can easily be adapted to deal with further types of changes.
3. Models and problem statement

We first introduce the assumed ontology model and describe
the change operations that may be applied during ontology evolu-
tion. We then define the notions of match and evolution mappings.
Finally, we state the specific problem we address with the COnto–
Diff approach.
3.1. Ontology model and versions

An ontology O = (C, A, R) consists of concepts C having associ-
ated attributes of A. The concepts are interrelated by directed rela-
tionships of R. Each ontology concept has a special attribute called
accession which is used to unambiguously identify a concept with-
in the ontology. Concepts can have optional concept attributes
a = (aconcept, aname, avalue) 2 A which semantically describe the con-
cept in more detail. For instance, life science ontologies often pro-
vide synonyms for a concept and use an ‘obsolete’ attribute to
mark outdated concepts.

R consists of a set of directed relationships r = (rsource, rtype, rtarget)
of type rtype interconnecting concepts rsource and rtarget. The most
important relationship type in life science ontologies is ‘is_a’
describing a subsumption relation between two concepts. Another
common relationship type is ‘part_of’ denoting an inclusion (part-
hood) relation. The ontology concepts connected by ‘is_a’ and ‘par-
t_of’ relationships form a directed acyclic graph (DAG). Between
two concepts c1 and c2 we allow at most one ‘is_a’ or one ‘part_of’
relationship, i.e., two coexistent relationships (c1, is_a, c2) and (c1,
part_of, c2) are not allowed. However, concepts may have addi-
tional domain-specific directed relationships [41] such as the types
‘positively_regulates’ or ‘negatively_regulates’ used in the Gene
Ontology.

Our ontology model is motivated by life science ontologies that
typically have no directly associated instance data. Instead sources
such as Ensembl [10] or SwissProt [5] use ontology concepts to
uniformly describe the properties of their objects (annotation).
The model is comparable to the OBO format [7] used to develop
and distribute many life science ontologies [29,40]. Recent studies
[28,45] showed how the OBO format is related to Semantic Web
languages such as RDF/S and OWL and the findings also hold for
our ontology model. RDF/S and OWL ontologies can be transformed
into our model as follows: OWL classes correspond to our concepts,
RDF/S ‘subClassOf’ to ‘is_a’ relationships, and RDF/S labels to the
concept names. RDF/S properties can be converted into attributes,
e.g., synonyms, or further relationships such as ‘part_of’. Thus, we
can also determine diffs for OWL ontologies. However, not all OWL
constructs can be mapped into appropriate OBO constructs (e.g.,
property restrictions) so that we currently do not support the full
OWL language.

An ontology version Ov = (Cv, Av, Rv) of version v represents a
snapshot of an ontology at a specific point in time. The elements
of Ov are assumed to be valid until a new ontology version is re-
leased. Ontology providers distribute new releases at regular time
intervals or whenever a significant number of changes has been
incorporated. For instance, the GO Consortium daily releases a
new version of the popular Gene Ontology.
3.2. Change operations

We consider two sets of change operations for ontology evolu-
tion: basic changes (set Bop) and complex changes (set Cop). The
presented operations are supported by our current design and
implementation. While the sets of possible changes are already
comprehensive our approach is flexible and customizable by sup-
porting the addition of further change operations to deal with spe-
cific requirements.

Table 1 gives an overview of the changes that are currently sup-
ported by COnto–Diff. Basic changes are applied on a single con-
cept, attribute or relationship and deal with either a map
(change), addition or deletion resulting in nine operations dis-
played in the upper part of the table. All other changes are called
complex changes and are shown in the middle/ lower part of the
table. As we will see they are based on basic changes or other com-
plex changes and thus specify changes at a higher level of abstrac-
tion. Some of the complex changes operate on single elements
(denoted with lower case letters), e.g., substitute. Most of our com-
plex changes refer to multiple ontology elements (sets denoted
with upper case letters), e.g., merge or addSubGraph. For example,
the merge of source concepts ‘accessory cochlear nucleus’ and
‘anterior cochlear nucleus’ into target concept ‘cochlear ventral nu-
cleus’ in our running example can be described as

mergeðfaccessory cochlear nucleus; anterior cochlear nucleusg;
cochlear ventral nucleusÞ:

Some of the changes such as merge, split and move are generally
useful and not limited to life science ontologies. Complex changes
w.r.t. entire subontologies such as addSubGraph are especially valu-
able for large life science ontologies to compactly describe the evo-
lution. Finally, the changes toObsolete and revokeObsolete are useful
to identify the concepts that should not be used anymore or for
which the obsolete status has been withdrawn.

Complex change operations can be implemented by a series of
basic change operations. For each complex change we maintain
the simpler underlying changes (see end of Section 4.3 for more
details). Furthermore, each change operation has an inverse that
undoes the effect of the change. For instance, the inverse of
merge(Source_C, target_c) is split(target_c, Source_C), i.e., a single
source concept is split into multiple target concepts (for the in-
verses of all change operations see Table 1). This symmetry of

Table 1
COnto–Diff operations with descriptions and their inverses. The upper part shows all basic change operations (Bop) while all complex change operations (Cop) operating whether
on single elements (denoted with lower case letters) or multiple elements (sets denoted with upper case letters) are displayed in the middle and lower part, respectively.

Change operation Description Inverse change operation

addC(c) Insertion of a new concept c in the changed ontology delC(c)
delC(c) Deletion of an existing concept c from the old ontology version addC(c)
mapC(c1, c2) Maps a concept c1 of the first ontology version to a concept c2 of the second version mapC(c2, c1)
addR(r) Insertion of a new relationship r delR(r)
delR(r) Deletion of an existing relationship r addR(r)
mapR(r1, r2) Maps a relationship r1 of the first ontology version to a (differently typed)

relationship r2 of the second version
mapR(r2, r1)

addA(a) Addition of an attribute a delA(a)
delA(a) Deletion of an existing attribute a addA(a)
mapA(a1, a,2) Maps an attribute a1 of the first to an attribute a2 of the second ontology version mapA(a2, a1)
substitute(c1, c2) Concept c1 is replaced by c2 substitute(c2, c1)
toObsolete(c) Concept c becomes obsolete, i.e., it should not be used anymore revokeObsolete(c)
revokeObsolete(c) The obsolete status of c is revoked, i.e., it becomes active again toObsolete(c)
move(c, C_To, C_From) Moves a concept c and its subgraph from concept set C_From to the concept set C_To move(c, C_From, C_To)
chgAttValue(c, att_name, V_Old, V_New) Changes the set of values of the att_name attribute of a concept c from V_Old to

V_New
chgAttValue(c, att_name, V_New, V_Old)

addLeaf(c, C_Parents) Insertion of a leaf concept c below the concepts in C_Parents delLeaf(c, C_Parents)
delLeaf(c, C_Parents) Deletion of a leaf concept c situated below the concepts in C_Parents addLeaf(c, C_Parents)
merge(Source_C, target_c) Merges multiple source concepts Source_O into one target concept target_c split(target_c, Source_C)
leafMerge(Child_C, parent_c) Special merge that fuses all child concepts Child_C into their parent concept

parent_C(parent_c becomes a leaf)
leaf Split(parent_c, Child_C)

split(source_C, Target_C) Splits one source concept source_c into multiple target concepts Target_C merge(Target_C, source_c)
leafSplit(parent_c, Child_C) Special split that refines a leaf concept parent_c by multiple child concepts

Child_C(parent_c becomes an inner concept)
leaf Merge(Child_C, parent_c)

addSubGraph(c_root, C_Sub) Inserts a new subgraph with root c_root and concepts C_Sub connected by ‘is_a’ and
‘part_of’ relationships

delSubGraph(c_root, C_Sub)

delSubGraph(c_root, C_Sub) Removes an existing subgraph with root C_root and concepts C_Sub connected by
‘is_a’ and ‘part_of’ relationships

addSubGraphi(c_root, c_Sub)

M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32 19
change operations allows us to derive for every change operation
the associated inverse change operation.

3.3. Match and evolution mappings

We represent changes between two ontology versions Oold

and Onew as a mapping. In model management [3,4] a mapping
map(Oold, Onew) connects elements of an old ontology version Oold

with elements of a new version Onew. We distinguish between a
match mapping match(Oold, Onew) and an evolution mapping
diff(Oold, Onew). Match mappings represent semantic correspon-
dences between two ontology versions and thus interrelate
unchanged elements as well as changed but corresponding
(semantically equivalent or related) ontology elements. For our
purpose, we only require simple match mappings consisting of
correspondences interlinking two concepts each, i.e., match(Oold,
Onew) = {matchC(c1, c2)jc1 2 Oold, c2 2 Onew}.

By contrast an evolution mapping highlights the differences and
covers all changes that occurred between two ontology versions.
Unchanged ontology elements included in a match mapping are
not part of an evolution mapping. Diff mappings can contain all
change operations as introduced in the previous section: diff(Oold,
Onew) = {chgOp(e1, . . .)jchgOp 2 BOp [COp}. The simplest kind of diff
mapping, diffbasic, only contains basic change operations, i.e.,
map, add and delete operations: diffbasic(Oold, Onew) = {chgOp
(e1, . . .)jchgOp 2 BOp}. However, the main goal is to derive a seman-
tically expressive diff specifying the occurred evolution by com-
plex changes as much as possible. This final diffcompact therefore
should contain only the semantically most expressive change oper-
ations which are not part of any other change operation. As the
name suggests, diffcompact(Oold, Onew) will generally have fewer
operations than the corresponding diffbasic since a complex change
typically replaces several basic changes. We also want to deter-
mine the inverse evolution mapping that can be used to migrate
Onew to Oold. We will use the inverse of the change operations in dif-
f(Oold, Onew) to create the inverse mapping and show that it is
equivalent to diff(Onew, Oold).
3.4. Problem statement

The problem that we investigate in this paper is the following.
For two given ontology versions Oold and Onew of the same ontology
and a match mapping match(Oold, Onew) the task is to compute the
basic evolution mapping diffbasic(Oold, Onew) and a semantically
expressive evolution mapping diffcompact(Oold, Onew) as well as their
inverse mappings. The Diff algorithm should be able to recognize
any defined change operation. The evolution mappings should be
complete and minimal. In particular, they should contain all
changes between the two input versions so that the new (old)
ontology version can be constructed from the old (new) ontology
version and the (inverse) diff evolution mapping. Furthermore,
diffbasic(Oold, Onew) should only contain those basic changes that
are required for a correct version migration. Analogously,
diffcompact(Oold, Onew) should only contain change operations that
are not included in any other complex change operation, i.e., the
most compact set of changes between Oold and Onew w.r.t. the
defined set of operations. The algorithms should also be scalable
to large life science ontologies.
4. Change operation generating rules

The identification of basic and complex change operations is
based on Change Operation Generating Rules (COG rules). Each rule
is defined by a set of pre-conditions. If all pre-conditions are ful-
filled, a sequence of resulting actions is applied to create new
change operations or eliminate existing ones. Depending on the
type of generated change operations we distinguish between (1)
Basic and (2) Complex COG rules. We further use (3) Aggregation
rules to iteratively determine more complex change operations
for sets of ontology elements. The various rules will be used by
the main Diff algorithm presented in Section 5.

In the following we describe the different types of rules in more
detail and provide examples for illustration. Please consult Appen-
dix A for the complete set of our current COG rules. In the rule def-

20 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
initions we denote single elements of an ontology with lower case
letters (a, b, . . . 2 O), and element sets with upper case letters
(A, B, . . . # O). Each rule has an unique number also indicating
the rule type rule (b1, b2, . . . for basic, c1, c2, . . . for complex, and
a1, a2, . . . for aggregation COG rules). The rule numbers reflect
dependencies between different rules that require a partial order
in which rules have to be applied. For instance, rules (b6) and
(b7) must be applied before (b8) since they create change opera-
tions (addR, delR) which are needed by (b8) to create mapR changes.
In some rules, we test the equality (=sign) or inequality (–sign) of
two elements. We regard two concepts as equal if they share the
same identifier, i.e., they have exactly the same accession number
or URI (disregarding namespace and versioning information
though).

4.1. Basic COG rules

The basic COG rules (b-COG) primarily use information from the
match mapping and the ontology versions to determine basic
change operations. The following five b-COG rules are used to
determine addC, delC and mapC change operations:

ðb1Þ c 2 Onew ^ 9= aða 2 Oold ^matchCða; cÞÞ ! create½addCðcÞ�

ðb2Þ c 2 Oold ^ 9= aða 2 Onew ^matchCðc; aÞÞ ! create½delCðcÞ�

ðb3Þ a 2 Oold ^ b 2 Onew ^matchCða; bÞ ^ a – b

^ :isObsoleteðaÞ ^ :isObsoleteðbÞ
! create½mapCða; bÞ�

ðb4Þ a 2 Oold;Onew ^matchCða; aÞ^
9bðb 2 Onew ^matchCða; bÞ ^ a – bÞ^
:isObsoleteðaÞ ^ :isObsoleteðbÞ
! create½mapCða; aÞ�

ðb5Þ a 2 Oold;Onew ^matchCða; aÞ^
9bðb 2 Oold ^matchCðb; aÞ ^ a – bÞ^
:isObsoleteðaÞ ^ :isObsoleteðbÞ
! create½mapCða; aÞ�

In our running example (b1) determines concept additions
(addC) such as for ‘trochlear nucleus’ and ‘trigeminal nucleus’.
(b3) creates mapC changes that map between changed concepts,
e.g., mapC (accessory cochlear nucleus, cochlear ventral nucleus).
Furthermore, (b4) and (b5) look for concepts that have multiple
matches to others and create corresponding mapC changes. The
existence of multiple correspondences implies a changed seman-
tics for the concept that is expressed in the evolution mapping.
Table A.1 lists six further b-COG rules to determine relationship-
and attribute-level changes.

4.2. Complex COG rules

Complex COG rules (c-COG) are non-recursive and determine
the complex changes based on either basic change operations or
other complex changes. Complex changes on sets of elements are
generally derived in two steps. We first apply c-COG rules to create
complex changes on single ontology elements and then use an
additional aggregation step (using aggregation rules) to combine
several element changes into complex changes on set-valued
parameters.

For example, for the complex merge operation we first derive
partial merge operations on a single input element using the fol-
lowing c-COG rule:
ðc8Þ a; b 2 Oold ^ c 2 Onew ^mapCða; cÞ ^mapCðb; cÞ ^ a – b

^ 9= dðd 2 Onew ^mapCða; dÞ ^ c – dÞ
^ 9= eðe 2 Onew ^mapCðb; eÞ ^ c – eÞ
! create½mergeðfag; cÞ;mergeðfbg; cÞ�;

eliminate½mapCða; cÞ;mapCðb; cÞ�

The left side of the rule ensures that there exist at least two dif-
ferent source concepts a and b(a – b) mapping to the same target
concept c, and that a and b have no further maps to other target
concepts d and e, respectively. If these pre-conditions are fulfilled
we create two element-level merge change operations one from
concept a into concept c and one from b into c, the corresponding
basic changes mapC(a, c) and mapC(b, c) are eliminated.

For our example mapC(accessory cochlear nucleus, cochlear
ventral nucleus) and mapC(anterior cochlear nucleus, cochlear ven-
tral nucleus) would produce change operations merge({accessory
cochlear nucleus}, cochlear ventral nucleus) and merge({anterior
cochlear nucleus}, cochlear ventral nucleus).
4.3. Aggregation COG rules

Aggregation COG rules (a-COG) are used to determine all af-
fected elements in set-valued complex change operations. Particu-
larly, several related element-level (or multi-valued) change
operations can be aggregated into a combined change operation
for a more compact representation. Furthermore, redundant ele-
ment-level change operations can be eliminated since they are
now covered in an aggregated change operation. a-COG rules are
recursive to incrementally aggregate elements for a particular
change operation.

For instance, the a-COG rule for merge looks as follows:

ða5Þ c 2 Onew ^ A;B # Oold ^mergeðA; cÞ ^mergeðB; cÞ ^ A – B

! create½mergeðA [B; cÞ�;
eliminate½mergeðA; cÞ;mergeðB; cÞ�

The rule specifies that two existing merge operations on con-
cept sets A and B for the same target concept c can be combined
into a merge on the union A [B into c. Since the merge from A into
c and from B into c are now covered by merge(A [B, c) we eliminate
the two previous ones. By iteratively applying the rule we can
increasingly aggregate the input sets of the operations until no fur-
ther aggregation is possible. In our example we would create
merge({accessory cochlear nucleus, anterior cochlear nucleus}, co-
chlear ventral nucleus) and eliminate merge({accessory cochlear
nucleus}, cochlear ventral nucleus) and merge({anterior cochlear
nucleus}, cochlear ventral nucleus).

As described in Section 3.2, each complex change operation can
be implemented by a series of basic change operations. When
applying a rule we keep track of the simpler change operations
and affected ontology components underlying a complex change
operation. For instance, our merge operation can be implemented
by the two basic mapC operations mapC(accessory cochlear nu-
cleus, cochlear ventral nucleus) and mapC(anterior cochlear nu-
cleus, cochlear ventral nucleus). Users can thus be provided with
complex changes for an overview but also with detailed change
information if needed.
5. Diff computation

In this section we present COnto–Diff to generate a diff evolu-
tion mapping. We first give an overview of the approach and dis-
cuss how to obtain the match mapping needed as input. In
Section 5.3 we describe the algorithm to determine the basic evo-

Match

Ontology
version
Oold

Ontology
version
Onew

Working
repository

Match System
•Single Matchers
•Match Workflows
•Set Operators

diffcompact
(Oold,Onew)

Rule library

Rules

Background
Knowledge

BK

match
(Oold,Onew) Basic

Change
Detection

Complex
Change
Detection

Aggregation

Ruled-based
Change Detection

diffbasic
(Oold,Onew)

Fig. 2. Schematic overview of COnto–Diff.

M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32 21
lution mapping diffbasic as well as the final evolution mapping
diffcompact.

5.1. Overview

The main phases of COnto–Diff are illustrated in Fig. 2. The in-
put are two versions of the same ontology (Oold, Onew). Optionally,
background knowledge (e.g., dictionaries) can be provided for
matching the ontologies. The result is an expressive diff evolution
mapping diffcompact(Oold, Onew) and a corresponding diffbasic(Oold,
Onew). Optionally we determine the inverse evolution mapping
(Section 6.2). The complete algorithm operates on a working repos-
itory which stores the ontology versions as well as intermediate
and final mappings.

The first phase is a Matching of the two ontology versions to
identify common as well as modified but corresponding ontology
elements. The result is a match mapping match(Oold, Onew) consist-
ing of a set of matchC correspondences. The following steps use this
result and are completely automatic. They utilize COG rules to
determine the diff evolution mapping according to Algorithm 1.
It sequentially applies the different kinds of COG rules for finding
basic changes (Basic Change Detection), complex changes (Complex
Change Detection), and aggregated complex changes (Aggregation).

5.2. Matching phase

The matching phase uses both input versions as well as optional
background knowledge to compute a match mapping. Matching
ontology versions is typically much easier than matching indepen-
dent ontologies. This is due to the fact that a new version evolves
from the older version and hence a larger part of the old version
usually remains unchanged. To achieve a largely automatic ontol-
ogy matching we use our GOMMA system that provides state-of-
the-art match capabilities and has been successfully applied to life
science ontologies [22]. The match strategy applied in this work is
further explained in Section 7.1. As already mentioned, matching is
generally semi-automatic, i.e., a domain expert should verify pro-
posed match correspondences and correct them if necessary. Our
Diff algorithm assumes that the match step provides the correct
and complete set of correspondences.

The result of the matching phase for our motivating example in
Fig. 1 is the following. All white categories exhibiting the same la-
bel in the old and new version do match as well as concept pairs
connected by a dashed line.

5.3. Rule-based change detection

Algorithm 1 shows the overall procedure implementing the
rule-based generation of diff evolution mappings. Its input are
two ontology versions O1 and O2, a match mapping M between
O1 and O2 as well as the list of COG rules R. The result contains
two diff evolution mappings namely a basic diff evolution mapping
diffbasic(O1, O2) and a semantically enriched one, diffcompact(O1, O2).
The algorithm has three main steps to apply the three kinds of
COG rules in order to generate the respective changes.

Algorithm 1. diffEvolMapGen

Input: two ontology versions O1 and O2, match mapping
M = match(O1, O2), list of rules R = [Rb�COG, Rc�COG, Ra�COG],
Output: diff evolution mappings diffbasic(O1, O2),
diffcompact(O1, O2)

1 diffbasic(O1, O2) diffBasicGen(O1, O2, M, Rb�COG);
2 D diffbasic(O1, O2);
3 foreach r 2 Rc�COG do
4 D applyRule (D, r);
5 end
6 diffcompact(O1, O2) applyAggRules(D, Ra�COG);
7 return [diffbasic(O1, O2), diffcompact(O1, O2)];

Step 1 calls a procedure diffBasicGen (see Algorithm 2) to gener-
ate the basic diff evolution mapping diffbasic(O1, O2) based on match
mapping M and the list of b-COG rules (Rb�COG). The b-COG rules
need only to be applied once (applyBasicRule) in the pre-defined or-
der (see numbering in Table A.1). We will use diffbasic for ontology
migration purposes (see Section 6.2).
Algorithm 2. diffBasicGen

Input: two ontology versions O1 and O2, match mapping
M = match(O1, O2), list of b-COG rules Rb�COG

Output: basic diff evolution mapping D = diffbasic(O1, O2)
1 D empty;
2 foreach r 2 Rb�COG do
3 D applyBasicRule (D, r, O1, O2, M);
4 end
5 return D;

The processing of c-COG rules (steps 2–5 of Algorithm 1) is sim-
ilar to the processing of b-COG rules in that each rule needs to be
applied only once in the predetermined order. Rule processing
starts with the basic diff evolution mapping and iteratively en-
riches the mapping with complex changes and the elimination of
basic ones.

The Aggregation step requires to apply the a-COG rules multiple
times to recursively aggregate set-valued change operations. This
functionality is realized by the applyAggRules procedure (Algorithm
3) called in step 6 of Algorithm 1.

22 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
Algorithm 3. applyAggRules

Input: diff evolution mapping D, list of a-COG rules Ra�COG

Output: diff evolution mapping D0

1 D0 D;
2 repeat
3 D D0;
4 foreach r 2 Ra�COG do
5 D0 applyRule (D0, r);
6 end
7 until D = D0;
8 return D0;

Algorithm 3 accepts an intermediate diff evolution mapping D
and an ordered list of a-COG rules Ra�COG as input. In each iteration
(repeat-until loop) the rules of Ra�COG are applied in their prede-
fined order (see numbering in Table A.3). Thus, we can apply
Table 2
Applying b-COG rules on motivating example.
a-COG rules multiple times (once per iteration) to recursively de-
tect and aggregate multiple change operations. The application of
one rule (applyRule) modifies the temporary evolution mapping
D0 according to the rule’s resulting actions (create, eliminate). We
apply rules as long as new changes are inferred and the temporary
mapping changes (D – D0).

Tables 2–4 contain the complete results of running the algo-
rithm diffEvolMapGen for the running example. The first column
shows the rule by which the change operation in column two
was derived. Column three represents the rule by which a
change operation was eliminated. Grey-shaded change opera-
tions had been created but later eliminated due to their coverage
by a more complex change operation. The basic diff evolution
mapping consists of the changes displayed in Table 2. All
white-shaded changes in Tables 2–4 form the final (compact)
diff evolution mapping which cannot further be compacted
w.r.t. the used set of rules. As a result, we note that the basic

Table 3
Applying c-COG rules on motivating example.

Table 4
Applying a-COG rules on motivating example.

M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32 23
evolution mapping comprises 26 basic change operations while
the semantically equivalent compact mapping contains merely
10 changes. Appendix B illustrates the generation of a complex
change in more detail, namely the addition of the ‘brainstem
white matter’ subgraph in the running example (right-hand side
in Fig. 1).

For the correctness proofs of the proposed algorithm we refer to
Appendix C.

6. Applications: migration of ontology versions and annotations

An important application of diff evolution mappings is the
migration of ontology versions. In this Section we will first show
how we can use the diff evolution mapping to migrate from an
old to a new (changed) ontology version (Section 6.1). We then
outline how we can use the inverse diff evolution mappings to
migrate also in the backward direction (Section 6.2). Furthermore,
we discuss how an evolution mapping can be used to adapt
dependent data in particular annotations and ontology mappings
(Section 6.3).

6.1. Basic version migration

We can migrate an old version O1 to the changed version O2 by
applying the basic diff evolution mapping diffbasic(O1, O2) on O1.
This approach results in an in-place ontology version migration
that retains the unchanged ontology elements. Changes are thus
limited to the ontology parts affected by the evolution supporting
an efficient migration.

Algorithm 4 (ontVersionMig) implements the migration of ontol-
ogy version O1 to O01 based on the basic diff evolution mapping
diffbasic(O1, O2).

24 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
Algorithm 4. ontVersionMig

Input: ontology version O1, basic diff evolution mapping D = diffbasic(O1, O2)
Output: migrated ontology version O01

1 O01 O1;
2 performOrder [delA, delR, delC, mapC, mapA, mapR, addC, addA, addR];
3 foreach chgOp 2 performOrder do
4 O01 performðD:getChgOpðchgOpÞ;O01);
5 end
6 return O01;

It executes the basic change operations of diffbasic in a prede-
fined order (performOrder). For the deletions, we first remove con-
cept attributes. We then remove the concepts from the ontology
structure and finally eliminate themselves. For the map changes
we first need to substitute concepts (mapC), afterwards mapR
and mapA can be executed, e.g., we update a changed attribute va-
lue or relationship type. Finally, for additions we first add the con-
cept and then its attributes and relationships. We show the
correctness of ontVersionMig in Appendix D.1.
6.2. Inverse diff mappings

Inverse diff evolution mappings can be applied to undo the
changes in an evolution, i.e., we want to switch back from a chan-
ged ontology version to the old one. Our change model allows an
easy way to determine an inverse diff evolution mapping because
every change operation has an unique inverse change operation as
introduced in Section 3 and listed in Table 1. Hence, we can simply
replace every change operation by its inverse change operation to
obtain the inverse mapping. The inverse of diffbasic(O1, O2) gives us a
basic evolution mapping that, using the algorithm ontVersionMig,
can be used to correctly migrate from O2 to O1. We show the cor-
rectness of the inverse diff mapping in Appendix D.2.

To evaluate and verify the proposed algorithms we can apply a
roundtrip migration between two ontology versions as illustrated
in Fig. 3. We first migrate version O1 to a changed version O01 as fol-
lows: O01 ¼ ontVersionMigðO1; diffbasicðO1;O2ÞÞ. Due to the correct-
ness of the migration algorithm, O01 should equal O2. Second, we
determine the inverse of diffbasic(O1, O2), i.e., diffbasic(O2, O1), and
use it to migrate O01: O001 ¼ ontVersionMigðO01; diffbasicðO2;O1ÞÞ. The
resulting ontology O001 should equal O1 due to the correctness of in-
verse mappings and their migration. We evaluate the roundtrip
migration for real-world ontologies in Section 7.3.

6.3. Migration of annotations and dependent mappings

The generated evolution mappings are also useful to migrate
annotations or ontology mappings affected by ontology changes.
For instance, collaborating annotation curators can make use of
COnto–Diff evolution mappings between their current ontology
version and the newest release. Each curator would then be able
Fig. 3. Roundtrip migration of ontology versions using diff evolution mappings.
to recognize whether or not changes occurred in his area of exper-
tise and can (semi-) automatically migrate affected annotations. In
general, additive changes such as addSubGraph or addLeaf may not
affect existing annotations so that there is no immediate need to
update annotations. However, other changes such as merge, split, -
substitute or delSubGraph require an update of affected annotations.
The adaptation should be performed in a semi-automatic manner
to limit the amount of manual effort but should still give curators
the chance to make manual decisions. The necessary steps for
adaptation depend on the type of change and include the
following:

� merge, leafMerge: annotations of the source concepts of the old
ontology version need to be migrated to the merged (target)
concept of the new ontology version,
� substitute: affected annotations from the source concept need to

be migrated (associated) to the new target concept,
� delSubGraph, delLeaf: an expert should be consulted to deter-

mine whether the annotations of the deleted concepts should
also be deleted or whether they can be migrated to alternate
concepts such as the parents of deleted concepts,
� toObsolete: an expert should be consulted to determine whether

the annotations of the obsolete concepts should also be marked
as obsolete or migrated to an alternate concept, e.g., parent
concept,
� split, leafSplit: an expert should be consulted to determine to

which new target concepts (selected from the ones listed in
the change operation) one should migrate the annotations of a
split source concept.

When annotations can be adapted in different ways the final
decision can be reached in a collaborative way. For example, if
there are multiple alternatives for an obsolete concept, a team of
curators could vote which of the alternatives would be the best
solution to migrate an annotation. We have already realized a first
annotation migration functionality in our OnEX tool [16] covering
merge, toObsolete and delC changes. In Section 7.3 we evaluate how
annotations were influenced by changes in the Gene Ontology. In
the future we plan to extend this work by incorporating more com-
plex change operations for annotation migration. In a similar way,
we plan to use evolution mappings to adapt ontology mappings
(see Section 8).
7. Evaluation experiments

We first describe the setup, in particular the tested ontologies
and evolution scenarios. We then evaluate the basic and compact
evolution mappings determined by COnto–Diff. We also analyze
the use of the evolution mappings for a roundtrip migration of
the ontologies and the adaptation of annotations. Finally, we com-
pare the evolution mappings of COnto–Diff with those determined
by PromptDiff.
7.1. Evaluation setup

We determine and evaluate evolution mappings for four large
life science ontologies namely the Gene Ontology (GO) [12], the
National Cancer Institute Thesaurus (NCIT) [39], the Mammalian
Phenotype Ontology (MP) [42] and the Mouse Adult Gross Anat-
omy Ontology (MA) [19]. GO is widely used in bioinformatics for
a uniform annotation of molecular-biological objects such as pro-
teins or genes. NCIT is maintained at the National Cancer Institute
and consists of 20 main categories which cover cancer-related top-
ics such as drugs, tissues or anatomical structures. MP provides a
set of standard terms for annotating mammalian phenotypic data

Table 5
Statistics for GO, NCIT, MP and MA scenarios.

Oold � Onew jOoldj(jCj, jRj) jOnewj(jCj, jRj) jmatchj jdiffbasicj jdiffcompactj Ratio in %

GO2009–01 � GO2010–01 75,180 84,654

27,870 30,719 28,442 13,570 4304 31.7

47,310 53,935

GO2010–01 � GO2011–01 84,654 93,366

30,719 33,271 31,151 13,691 4179 30.5

53,935 60,095

NCIT2009–01 � NCIT2010–01 152,772 165,179

71,916 77,908 72,561 21,553 9360 43.4

80,856 87,271

NCIT2010–01 � NCIT2011–01 165,179 184,818

77,908 87,396 79,275 25,065 8210 32.8

87,271 97,422

MP2009–01 �MP2010–01 14,528 15,820

6807 7430 6971 1939 810 41.8

7721 8390

MP2010–01 �MP2011–01 15,820 17,657

7430 8230 7576 2926 1072 36.6

8390 9427

MA2009�01 �MA2010–01 6492 6611

2873 2926 2902 205 76 37.1

3619 3685

MA2010–01 �MA2011–01 6611 6715

2926 2968 2945 168 62 36.9

3685 3747

M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32 25
while MA is a structured controlled vocabulary of the adult anat-
omy of the mouse. We consider two yearly evolution periods
(three ontology versions) for each ontology: 2009 (2009–
01 ? 2010–01) and 2010 (2010–01 ? 2011–01). The ontology ver-
sions are from the archives of GO,4 NCIT 5 and OBO.6 COnto–Diff is
implemented in Java. We utilize a MySQL database as a working
repository and for storing ontology versions as described in [23].
The experiments are conducted on a Windows XP desktop computer
with an Intel Core 2 Duo CPU (2.66 GHz) and 4 GB of RAM.

Matching two ontology versions in the context of ontology evo-
lution is facilitated by the large portion of unchanged concepts
occuring in both versions. In the initial matching phase we thus ap-
ply the following automatic strategy. We utilize the fact that con-
cepts of life science ontologies have unambiguous accession
numbers and can thus easily identify most corresponding concepts
in two ontology versions. Furthermore, we generate additional cor-
respondences by checking if accessions or labels of concepts in the
old version appear as synonyms of a concept in the new version.
For instance, if the accession of a concept a appears as a synonym
of concept b we would create the correspondence matchC(a, b). We
manually checked the match results especially correspondences
between unequal concepts (correspondences like matchC(a, a) are
clear) and found that the automatically determined correspon-
dences are correct and useful for our diff computation. In the com-
parison with PromptDiff (Section 7.4) we provide a specific match
example that helped to find a merge change.
4 GO: http://archive.geneontology.org/.
5 NCIT: http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/.
6 OBO: http://obo.cvs.sourceforge.net/viewvc/obo/obo/ontology/.
7.2. Basic vs. compact Diff evolution mappings

Table 5 lists details on the size of the considered ontology ver-
sions and the determined match and evolution mappings for the
eight different evolution scenarios. For the ontology sizes we spec-
ify the number of concepts jCj and relationships jRj. NCIT is the
largest ontology followed by GO, MP and MA. The first three ontol-
ogies grew substantially in the two years (between 8% and 12% in-
crease in each year) while MA only had a modest increase in size
(2% per year).

The further columns show the sizes of match, diffbasic and
diffcompact, i.e., the number of match correspondences and the num-
ber of changes in the diff evolution mappings. For all investigated
ontologies we could find a correspondence for each concept in the
old ontology version, i.e., no ontology concept has been deleted but
has at most been declared as obsolete. The number of match corre-
spondences is even slightly higher than the number of concepts in
the old versions since some source concepts are matched to several
target concepts. The number of basic changes in diffbasic is relatively
high but much smaller than the number of correspondences under-
lining that the majority of concepts remained unchanged. For all
scenarios the number of changes in diffcompact could be substan-
tially reduced with only between 30% and 43% of the number of
changes in diffbasic (see ratio in the last column of Table 5). The evo-
lution mapping is also compact in comparison to the ontology
sizes. For instance, diffcompact(GO2010–01, GO2011–01) is about a factor
20 smaller than the single versions GO2010–01 and GO2011–01. For MA
the compactness of the diff is even higher (up to a factor of 100)
due to a lower change intensity. These observations show that
ontologies remain largely unchanged during evolution (many more

http://archive.geneontology.org/
http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/
http://obo.cvs.sourceforge.net/viewvc/obo/obo/ontology/

Table 6
Distribution of change operations. add, del and map represent all remaining basic
changes for concepts (mapC, addC, delC) and relationships (mapR, addR, delR) in
diffcompact.

GO NCIT MP MA

2009 2010 2009 2010 2009 2010 2009 2010

add 1375 1157 186 334 99 130 12 12
del 238 267 81 79 94 125 7 10
map 44 45 0 0 0 0 5 0
addLeaf 646 478 4,250 4,129 231 243 20 14
merge 89 113 28 28 6 17 4 0
leafSplit 239 182 161 318 65 58 7 6
substitute 1 3 1 0 6 41 0 0
move 1185 1526 4341 2387 177 305 18 18
toObsolete 63 44 67 189 56 31 0 0
addSubGraph 424 364 245 746 76 122 3 2
P

4304 4179 9360 8210 810 1072 76 62

Table 8
Influence of ontology evolution on the Uniprot-GOA Human annotation set of version
63. The table shows the number of all and influencing changes occurred in GO
between May 2008 and January 2011 as well as the number of affected annotations
(changes with no impact are not displayed).

Change Occurence With impact Affected annotations

merge 209 38 125
leaf Split 445 144 707
toObsolete 292 115 197

946 297 1029

26 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
match correspondences than basic changes). Furthermore, despite
significant increases in ontology size our algorithm is able to find
compact evolution mappings that we will now analyze in more
detail.

To analyze the determined evolution mappings, we show in Ta-
ble 6 the number of basic and complex change operations within
the compact evolution mappings. We group all remaining basic
changes into the three groups add, del and map. The large ontology
growth is reflected in a high number of information extending
operations such as addLeaf, leafSplit as well as subgraph additions.
For instance, the largest subgraph (GO:0070887 – ‘cellular re-
sponse to chemical stimulus’) added in 2009 encompasses 126
new concepts; in 2010 the largest added subgraph on ’renal system
development’ (GO:0072001) consisted of 168 concepts. There have
been additions of large subgraphs in NCIT as well, e.g., ‘MicroR-
NA_Gene’ (C80699) with 285 concepts in 2009 or ‘Gastrointesti-
nal_System_Cancer_TNM_Finding_v7’ (C89710) with 359
concepts in 2010. Furthermore, our algorithm was able to assign
all mapC changes (no mapC changes in diffcompact) to a complex
change such as merge or substitute. mapR changes were especially
identified in GO where new relationship types such as ‘nega-
tively_regulates’ or ‘positively_regulates’ have been introduced.
Thus, existing relationships have been modified to include these
new types and to enhance the semantics of GO.

Note that no concepts have been deleted in the ontologies un-
der investigation (the delete frequencies in Table 6 are only delR
changes and contain no delC changes). Outdated concepts are
merely marked as obsolete but the outdated information is re-
tained for compatibility reasons. Setting concepts to obsolete has
frequently been performed in GO, NCIT and MP. For GO and MP
we also observe a relative high number of merge changes. For
example, in 2010 the four GO concepts GO:0001622 (‘super
conserved receptor expressed in brain receptor activity’),
Table 7
Roundtrip migration results for all investigated scenarios. The intersection ðO1 \ O001Þ
contains exactly the same elements as the union ðO1 [O001Þ. For visualization, we show
only set-sizes.

diff(O1, O2) jO1j jO1 \ O001j jO1 \ O001j

GO2009–01 � GO2010–01 75,180 75,180 75,180
GO2010–01 � GO2011–01 84,654 84,654 84,654
NCIT2009–01 � NCIT2010–01 152,772 152,772 152,772
NCIT2010–01 � NCIT2011–01 165,179 165,179 165,179
MP2009–01 �MP2010–01 14,528 14,528 14,528
MP2010–01 �MP2011–01 15,820 15,820 15,820
MA2009–01 �MA2010–01 6492 6492 6492
MA2010–01 �MA2011–01 6611 6611 6611
GO:0001623 (‘Mas proto-oncogene receptor activity’), GO:0001624
(’RDC1 receptor activity’) and GO:0001625 (‘Epstein-Barr Virus-
induced receptor activity’) have been merged into GO:0004930
(‘G-protein coupled receptor activity’). Interestingly, in NCIT some
concepts have become obsolete and merged into another concept
at the same time, e.g., ‘Mammoplasty’ (C51614) is obsolete since
August 2009 but was also merged into ‘Breast_Reconstruction’
(C15354). Using our c-COG rule (c14) we could identify such
co-occurring modifications and prefer merge over toObsolete for
the final diff result. Move changes, i.e., the rearrangement of
concepts within the ontology have occurred for all investigated
evolution scenarios.
7.3. Ontology version and annotation migration

To evaluate the correctness of the determined evolution map-
pings we performed the roundtrip migration experiment described
in Section 6.2. For comparing O1 with O001 we utilize their represen-
tation as sets of concepts and relationships as introduced in Sec-
tion 3.1. By testing O1 [O001 ¼ O1 \ O001 we evaluate whether the
migrated ontology version O001 contains exactly the same elements
(concepts, relationships) as O1, indicating the completeness of
the evolution mapping and its inverse mapping. The results are
presented in Table 7. The first column shows the number of ele-
ments in the source version (jO1j), the last two columns indicate
the number of elements in the intersection and union of O1 with
O001. We can verify that O1 and O001 contain exactly the same elements
for all scenarios confirming that the determined evolution map-
pings allow for the correct migration of ontologies and that COn-
to–Diff has been correctly implemented.

To analyze the migration of annotations we use the manually-
curated Uniprot-GOA Human annotations in version 63 from May
2008.7 The annotations are based on the GO version from May
2008 and we compute the evolution mapping diffcompact(GO2008–05,
GO2011–01) to study changes w.r.t. the GO version of January 2011.
The results in Table 8 show the change frequency for three complex
changes and how many annotations were affected by these changes.
Overall we observe that more than 1,000 annotations are affected
and that about every third change operation influenced at least
one annotation. For example, we determined 38 merge operations
affecting 125 annotations. We could use this mapping to automati-
cally update the annotations with the new ontology concepts.
7.4. Comparison with PromptDiff

We now compare the results obtained with COnto–Diff with
those determined by PromptDiff [32]. For this analysis, we evaluate
the MA diff evolution mapping for 2009. We loaded the two ver-
sions MA2009–01/MA2010–01 into the current version of Protégé and
executed PromptDiff to get the difference table. PromptDiff uses
a somewhat different set of change operations, in particular they
7 Uniprot-GOA archive: ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/old/HUMAN/.

Table 9
Quantitative statistics of the COnto–Diff–PromptDiff comparison for the MA 2009 scenario. The table shows the number of detected changes (occ.) as well as information about
their manually verified correctness (corr.). Ticks denote correct results while crosses signal wrong change operations.

COnto–Diff PromptDiff

Change occ. corr. corr. occ. Change

Addition of concepts
addC 5 U U 59 add
addleaf 20 U

addSubgraph 3 U

leafSplit 7 U

Structural changes
addR 7 U U 15 add
delR 7 U U 15 delete
mapR 5 U

move 18 U U 15 change

Revision of concepts
merge 4 U 2 delete

2 map

Overall 76 108

M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32 27
distinguish between add, delete, merge, split, map and change mod-
ifications. For a better comparison, we group our changes and
those of PromptDiff into three categories namely ‘Addition of con-
cepts’, ‘Structural changes’ and ‘Revision of concepts’ as shown in
Table 9.

PromptDiff generates a total of 108 changes, while COnto–Diff
determines only 76 complex change operations. Many changes are
similar in the two diff results but there are also substantial differ-
ences caused by the different sets of changes and different detec-
tion approaches. While PromptDiff has found 59 concept
additions, COnto–Diff classifies and aggregates those into more
expressive changes like leafSplit or addSubGraph. For instance, the
addition of a new subgraph MA:0002901 (‘aorta wall’) represent-
ing knowledge about the wall of the aorta and its different layers
was identified. Another example is the split of MA:0001722 (‘de-
cidua’) into the two more fine-grained leaf concepts MA:0002905
(‘decidua basalis’) and MA:0002906 (‘decidua capsularis’). These
examples show why there are fewer change operations in the COn-
to–Diff result and that these changes are more precise and under-
standable than just listing individual additions.

With respect to ‘Structural changes’, both tools identify the
same concepts involved. However, PromptDiff sometimes does
not aggregate basic changes into more complex ones, e.g., it often
reports one add and one delete change instead of a move. Particu-
larly, COnto–Diff also detects the 15 relationship changes found
by PromptDiff either as a mapR or as a move change. COnto–Diff
detects eight additional mapR/ move changes which are classified
as relationship additions and deletions by PromptDiff. Thus, the
diff of PromptDiff contains 16 more structural changes (8 addi-
tions, 8 deletions) resulting in a less compact diff representation.

The most significant differences occur for changes of the last
category ‘Revision of concepts’. COnto–Diff determines four cor-
rect merges, including a merge of the apparently redundant con-
cept MA:0002440 (‘smooth muscle tissue’) into the retained
concept MA:0000166 (‘smooth muscle tissue’) as well as the merge
of MA:0002832 (‘ventricle trabecula carnea’) into MA:0002831
(‘trabecula carnea’). PromptDiff does not recognize any merge of
concepts but detects two concept maps and two deletions. In par-
ticular, PromptDiff maps MA:0002440 to MA:0002930 (‘postero-
medial cortical amygdaloid nucleus’) and MA:0002832 to
MA:0002922 (‘basomedial amygdaloid nucleus’) which are appar-
ently both wrong. PromptDiff also recognizes two wrong deletions
of MA:0000056 and MA:0001485. By contrast, COnto–Diff cor-
rectly finds that these concepts are involved in merge operations,
namely MA:0000056 (‘fat’) is merged into MA:0000009 (‘adipose
tissue’) and MA:0001485 (‘incisive bone’) into MA:0001493 (‘pre-
maxilla’). This is made possible by our match strategy using acces-
sion numbers and synonyms of ontology concepts. For example,
the concept MA:0000009 in the new version contains a synonym
MA:0000056 so that the match step generates a correspondence
matchC(MA:0000056, MA:0000009) which together with the triv-
ial matchC(MA:0000009, MA:000009) is later rewritten into a
merge. We suspect that the PromptDiff problems are due to its
match approach. It seems that PromptDiff first applies an exact
matching of concept accessions/labels and then tries to perform a
fuzzy lexical matching of unmatched concepts. It therefore does
not create correspondences to already matched concepts leading
to wrong correspondences.

In summary, we observe that COnto–Diff can determine a more
expressive and more compact diff result than PromptDiff and that
PromptDiff determines wrong changes, probably because of limita-
tions in the applied matching.
8. Discussion and future work

We presented a new rule-based approach COnto–Diff to deter-
mine an expressive and invertible diff evolution mapping between
two versions of the same ontology. The diff evolution mapping cov-
ers basic and complex changes. The approach is based on an initial
matching between the ontology versions and utilizes Change Oper-
ation Generating Rules (COG rules) to find the basic as well as com-
plex change operations. The rules also specify which simpler
changes are replaced by more expressive changes. The evaluation
on large life science ontologies showed that our Diff approach gen-
erates semantically expressive and compact evolution mappings.
We also showed that the determined evolution mappings allow
the correct migration of old into new ontology version or vice ver-
sa. They can also be used to semi-automatically adapt annotations
and ontology mappings after ontology modifications. We expect
the expressive evolution mappings to be useful for ontology devel-
opers and users such as curators, especially for large ontologies.

A key advantage of the proposed COnto–Diff approach over
previous solutions such as PromptDiff is its high modularity and
flexibility. First, COnto–Diff separates matching from diff compu-
tation and can thus leverage customized match strategies, e.g., to
deal with domain-specific ontology characteristics such as the
use of synonyms in life science ontologies. Using this strategy we
are able to automatically compute diffs for all OBO-based ontolo-
gies available in the OBO Foundry or in BioPortal. Second, the
rule-based approach supports an easy extension of COnto–Diff to
identify additional kinds of changes. We could thus incorporate

28 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
specific changes to deal with obsolete concepts. The comparative
evaluation with PromptDiff (see Section 7.4) showed that COnto–
Diff can determine more compact and more correct diff evolution
mappings due to its use of tailored matching techniques and the
ability to correctly identify complex changes such as merges. We
made the proposed diff functionality already available within a
web tool [15]. Thus, users can compute and analyze evolution
mappings for different life science ontologies online or via a web
service interface.

There are still some limitations of COnto–Diff and its usability
for further kinds of ontologies. First, the matching step which we
could apply automatically for life science ontologies in this paper
may require human intervention, e.g., for correcting/ revising
determined correspondences. Especially if we cannot make use of
unambiguous concept accession numbers, we need to apply fur-
ther matching techniques to find correspondences. Second, to sup-
port further changes corresponding COG rules must be defined
correctly, i.e., domain knowledge about the evolution of ontologies
needs to be formally defined in rules to detect the changes. A de-
signer of such rules needs to keep possible effects in mind, i.e.,
one must be aware of the consequences by introducing defective
rules or manipulating their order. Third, COnto–Diff does not yet
cover OWL constructs such as disjunctive classes or property
restrictions. Fourth, COnto–Diff is currently not integrated in an
ontology editor such Protégé, however it would be possible to pro-
vide COnto–Diff as a plugin so that it can be used in editors as well.

In future work, we plan to address these issues as well as the
following topics. We want to apply COnto–Diff to additional ontol-
ogies and domains. We also want to investigate in more detail the
adaptation of ontology mappings and of ontology instances.

Acknowledgments

We thank all anonymous reviewers for their useful comments
to improve the paper. This work is supported by the German Re-
search Foundation (DFG), Grant RA 497/18-1 (‘‘Evolution of Ontol-
ogies and Mappings’’).

Appendix A. Summary of COG rules

The following Tables A.1–A.3 list all COG rules (b-COG, c-COG,
a-COG) that allow the determination of all change operations
introduced in Section 3.2.

Appendix B. Example walkthrough for Diff algorithm

In the following we illustrate an example walkthrough to deter-
mine the subgraph addition in our running example (see Fig. 1). For
this subgraph example the b-COG addition rule (b1) would detect
seven concept additions: addC(brainstem white matter), ad-
dC(crura cerebri), addC(cerebellar peduncle), addC(superior cere-
bellar peduncle), addC(middle cerebellar peduncle), addC(inferior
cerebellar peduncle) and addC(posterior commissure). For detect-
ing subgraph additions the following c-COG rules are applied:

ðc6Þ a;r2Onew^addCðaÞ^addRðrÞ^a¼ rsource^ 9=sðs
2Onew^addRðsÞ^a¼ stargetÞ^rtype;stype 2f0is a0; 0part of 0g
!create½addLeaf ða;frtargetgÞ�;eliminate½addCðaÞ;addRðrÞ�

ðc10Þ a; b 2 Onew ^ B # Onew ^ addCðaÞ ^ addLeaf ðb;BÞ^
a 2 B! create½addSubGraphða; fbgÞ�;
eliminate½addCðaÞ; addLeaf ðb;BÞ�

The first rule (c6) is used to detect leaf concept additions. Rule
(c10) is based on the results of (c6) and infers subgraph additions
connecting a newly added concept a and a leaf concept b rooted
at a. In our example ‘crura cerebri’, ‘superior cerebellar peduncle’,
‘middle cerebellar peduncle’, ‘inferior cerebellar peduncle’ and
‘posterior commissure’ are classified as leaf concept additions.
Afterwards rule (c10) infers addSubGraph(brainstem white matter,
{crura cerebri}), addSubGraph(brainstem white matter, {posterior
commissure}), addSubGraph(cerebellar peduncle, {superior cere-
bellar peduncle}), addSubGraph(cerebellar peduncle, {middle cere-
bellar peduncle}) and addSubGraph(cerebellar peduncle, {inferior
cerebellar peduncle}). We then can apply the following a-COG
rules:

ða9Þ a;b;r2Onew^A#Onew^addSubGraphða;AÞ^addCðbÞ^addRðrÞ
^rsource¼a^rtarget¼b^rtype 2f0is a0; 0part of 0g
!create½addSubGraphðb;fag[AÞ�;
eliminate½addSubGraphða;AÞ;addCðbÞ;addRðrÞ�

ða10Þ a 2 Onew ^ A;B # Onew ^ addSubGraphða;AÞ
^ addSubGraphða;BÞ ^ A – B

! create½addSubGraphða;A [BÞ�;
eliminate½addSubGraphða;AÞ; addSubGraphða;BÞ�

Particularly, (a9) recursively aggregates added concepts into
larger subgraphs. If multiple subgraph additions with the same
root exist, we can aggregate these into one by fusing their sub
concepts (a10). In our example (a9) would detect three changes:
addSubGraph(brainstem white matter,{cerebellar peduncle,
superior cerebellar peduncle}), addSubGraph(brainstem white
matter,{cerebellar peduncle, middle cerebellar peduncle}) and
addSubGraph(brainstem white matter,{cerebellar peduncle,
inferior cerebellar peduncle}) which are finally aggregated into
addSubGraph(brainstem white matter, {crura cerebri, posterior
commissure, cerebellar peduncle, superior cerebellar peduncle,
middle cerebellar peduncle, inferior cerebellar peduncle}) by (a10).

Appendix C. Correctness of Diff algorithm

We will show that the proposed algorithm for generating diff
evolution mappings (see Section 5.3) is correct, in particular that
it generates all changes and that it terminates. We first show that
the generation of the basic diff evolution mapping is complete, i.e.,
determines all basic changes between two input ontology versions
Oold and Onew. We focus on concept changes; the correctness proof
for relationship and attribute changes is analogous.

Theorem 1. The b-COG rules applied in diffBasicGen generate a
complete basic diff evolution mapping diffbasic(Oold, Onew) containing

(a) all concept additions (addC) between Oold and Onew,
(b) all concept deletions (delC) between Oold and Onew,
(c) all concept changes (mapC) including concepts that map to

multiple concepts in the other ontology version.

To prove the theorem, we refer to the five b-COG rules (b1–b5)
introduced in Section 4.1 and applied in diffBasicGen. The rules dis-
tinguish between concepts that match with at least one concept in
the other ontology version and those that do not match. For all
non-matching concepts of Onew b-COG rule (b1) generates addC
change operations. b-COG rule (b2) generates concept deletions
(delC) for all non-matching concepts of Oold. Matching concepts oc-
cur in correspondences matchC(a, b) 2match(Oold, Onew) and are
processed by b-COG rules (b3), (b4) and (b5). Rule (b3) creates a
mapC(a, b) change if a and b are unequal (a – b). For (a = b), rules
(b4) and (b5) ensure that we only create a mapC change if the con-
cept is involved in further correspondences, i.e., has not remained

Table A.1
List of all b-COG rules.

ID Rule

b1 Creation of a concept addition:
c 2 Onew ^ 9= a(a 2 Oold ^matchC(a, c))
?create[addC(c)]

b2 Creation of a concept addition:
c 2 Oold ^ 9= a(a 2 Onew ^matchC(c, a))
?create[delC(c)]

b3 Creation of a concept map between different concepts based on a match correspondence:
a 2 Oold ^ b 2 Onew ^matchC(a, b) ^ a – b
^:isObsolete(a) ^ :isObsolete(b)
?create[mapC(a, b)]

b4 Creation of a concept map between equal concepts if source is involved in multiple match correspondences:
a 2 Oold, Onew ^matchC(a, a) ^ $ b(b 2 Onew ^matchC(a, b) ^ a – b)
^:isObsolete(a) ^ :isObsolete(b)
?create[mapC(a, a)]

b5 Creation of a concept map between equal concepts if source is involved in multiple match correspondences:
a 2 Oold, Onew ^matchC(a, a) ^ $ b(b 2 Onew ^matchC(b, a) ^ a – b)
^:isObsolete(a) ^ :isObsolete(b)
?create[mapC(a, a)]

b6 Creation of a relationship addition:
r 2 Onew ^ r R Oold

?create[addR(r)]

b7 Creation of a relationship deletion:
r 2 Oold ^ r R Onew

?create[delR(r)]

b8 Creation of a relationship map if only the relationship type between two concepts changed:
r 2 Oold ^ s 2 Onew ^ delR(r) ^ addR(s) ^ rsource = ssource ^
rtarget = starget ^ rtype – stype

?create[mapR(r, s)],eliminate[delR(r),addR(s)]

b9 Creation of an attribute addition:
p 2 Onew ^ p R Oold

?create[addA(p)]

b10 Creation of an attribute deletion:
p 2 Oold ^ p R Onew

?create[delA(p)]

b11 Creation of an attribute map if value has changed:
p 2 Oold ^ q 2 Onew ^ delA(p) ^ addA(q) ^ pconcept = qconcept ^
pname = qname ^ pvalue – qvalue

?create[mapA(p, q)],eliminate[delA(p),addA(q)]

M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32 29
the same. Hence, all matchC(a, a) connecting unchanged concepts
are not included in diffbasic. In summary, diffbasic reflects all basic
changes but does not relate unchanged ontology parts.

Theorem 2. The c-COG and a-COG rules applied in the second part of
diffEvolMapGen terminate and generate a complete and the most
compact diff evolution mapping diffcompact(Oold, Onew) w.r.t. our
defined change operation set and rules.
We first show that algorithm diffEvolMapGen terminates. This is
mainly ensured by two facts. First, all rules operate on a finite
number of ontology elements in Oold/Onew and do not create new
ontology elements. Second, the evaluation of all rules terminates
since we apply them only once or as long as the mapping changes.
The application of c-COG rules terminates since they are non-
recursive and are applied only once based on a pre-defined order.
a-COG rules are recursive but always reduce the number of change
operations by aggregating ontology elements. Particularly, each
rule uses at least two input change operations which are fused into
one; the input change operations are eliminated. This steady
reduction of change operations terminates when the most aggre-
gated change operations have been found.

To prove the completeness of the generated diffcompact we have
to show that this mapping covers all changes. This is ensured by
the completeness of the input (diffbasic) and since our rules cover
all possible changes and the rule execution always terminates.

The derivation of the most compact evolution mapping is en-
sured by the design of our rules. In particular, we can show for
every change operation that it will be rewritten by the algorithm
to at most one complex change operation in a unique way. This
is because the preconditions using a particular kind of change
operation in different rules are mutually exclusive. Together with
the termination and completeness properties this confluence
behavior ensures that we determine the most compact evolution
mapping. We will illustrate the confluence only for the non-trivial
mapC change operation, the proof for the other basic change oper-
ations is analogous. For the map of a concept a into another con-
cept b(mapC(a, b)) four variants may occur:

1. mapC(a, b) belongs to a substitute, i.e., a is exactly replaced by b
2. mapC(a, b) belongs to a merge of multiple concepts A into b
3. mapC(a, b) belongs to a split of a into multiple concepts B
4. mapC(a, b) cannot be rewritten

From the c-COG rules only rules (c1), (c8) and (c9) can consume
mapC changes. The preconditions in the three rules are mutually
exclusive, i.e., exactly one of them or no rule is applicable. If mapC
connects two concepts a and b which are not involved in any other

Table A.2
List of all c-COG rules.

ID Rule

c1 Creation of a substitute if exactly two different concepts map:
a 2 Oold ^ b 2 Onew ^mapC(a, b) ^ a – b ^
9= c(c 2 Onew ^mapC(a, c) ^ b – c) ^ 9= d(d 2 Oold ^mapC(d, b) ^ a – d)
?create[substitute(a, b)],eliminate[mapC(a, b)]

c2 Creation of a move if a concept’s is_a/part of relationship changed:
r 2 Oold ^ s 2 Onew ^ delR(r) ^ addR(s) ^ rsource = ssource ^ rtarget – starget

^rtype = stype ^ rtype, stype 2 {0 is_a0 , 0part_of0}
?create[move(rsource,{rtarget},{starget})], eliminate[delR(r),addR(s)]

c3 Creation of an attribute value change:
p 2 Oold ^ q 2 Onew ^mapA(p, q)
?create[chgAttValue(pconcept, pname,{pvalue},{qvalue})],
elimitnate[mapA(p, q)]

c4 Creation of toObsolete if a concept’s status changed from false to true:
c 2 Onew ^ chgAttValue(c, n, V, W) ^ n = ’obsolete’ ^ ’false’ 2 V ^
’true’ 2W
?create[toObsolete(c)],eliminate[chgAttValue(c, n, V, W)]

c5 Creation of revokeObsolete if a concept’s status changed from true to
false:
c 2 Onew ^ chgAttValue(c, n, V, W) ^ n = ’obsolete’ ^ ’true’ 2 V ^ ’false’ 2W
?create[revokeObsolete(c)],eliminate[chgAttValue(c, n, V, W)]

c6 Creation of a leaf addition if a concept with no children was added:
a, r 2 Onew ^ addC(a) ^ addR(r) ^ a = rsource ^ rtype 2 {0is_a0 , 0part_of0} ^
9= s(s 2 Onew ^ addR(s) ^ a = starget ^ stype 2 {0is_a0 , 0part_of0})
?create[addLeaf(a,{rtarget})],eliminate[addC(a),addR(r)]

c7 Creation of a leaf deletion if a concept with no children was deleted:
a, r 2 Oold ^ delC(a) ^ delR(r) ^ a = rsource ^ rtype 2 {0is_a0 , 0part_of0} ^
9= s(s 2 Oold ^ delR(s) ^ a = starget ^ stype 2 {0is_a0 , 0part_of0})
?create[delLeaf(a,{rtarget})],eliminate[delC(a),delR(r)]

c8 Creation of a concept merge if multiple maps to one target exist:
a, b, 2 Oold ^ c 2 Onew ^mapC(a, c) ^mapC (b, c) ^ a – b ^
9= d(d 2 Onew ^mapC(a, d) ^ c – d) ^ 9= e(e 2 Onew ^mapC(b, e) ^ c – e)
?create[merge({a}, c)],eliminate[mapC(a, c),mapC(b, c)]

c9 Creation of a merge from a leaf concept into its parent:
a, b, 2 Oold ^ A # Oold ^ c 2 Onew ^mapC(b, c) ^ delLeaf(a, A) ^ b – A ^
9= r(r 2 Onew ^ rtarget = c ^ rtype 2 {0is_a0 , 0part_of0})
?create[leafMerge({a}, c)],eliminate[mapC(b, c),delLeaf(a, A)]

c10 Creation of a concept split if multiple maps from one source exist:
c 2 Oold ^ a, b 2 Onew ^mapC(c, a) ^mapC(c, b) ^ a – b ^
9= d(d 2 Oold ^mapC(d, a) ^ c – d) ^ 9= e(e 2 Oold ^mapC(e, b) ^ c – e)
?create[split(c,{a}),split(c,{b})],eliminate[mapC(c, a),mapC(c, b)]

c11 Creation of a split from a leaf concept into its children:
c 2 Oold ^ a, b 2 Onew ^ A # Onew ^mapC(c, b) ^ addLeaf(a, A) ^ b 2 A ^
9= r(r2Oold ^ rtarget = c ^ rtype 2 {0is_a0 ,0part_of0})
?create[leafSplit(c,{a})],eliminate[mapC(c,b),mapC(a, A)]

c12 Creation of a subgraph addition based on a leaf and inner concept
addition:
a, b 2 Onew ^ B # Onew ^ addC(a) ^ addLeaf(b, B) ^ a 2 B
?create[addSubGraph(a,{b})],eliminate[addC(a),addLeaf(b, B)]

c13 Creation of a subgraph deletion based on a leaf and inner concept
deletion:
a, b 2 Oold ^ B # Oold ^ delC(a) ^ delLeaf(b, B) ^ a 2 B
?create[delSubGraph(a,{b})],eliminate[delC(a),delLeaf(b, B)]

c14 Prioritization of merges over toObsolete changes if one and the same
concept is affected:
a 2 Oold ^ A # Oold ^ b 2 Onew ^merge(A, b) ^ toObsolete(a) ^ a 2 A
?eliminate[toObsolete(a)]

30 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
mapC change, only rule (c1) can be executed since (c8) and (c9) re-
quire a second mapC change operation involving either a or b. In
this case mapC(a, b) is rewritten to a substitute (substitute(a, b))
which cannot be aggregated (no a-COG rule). If the target concept
b of mapC(a, b) is involved in another mapC change mapC(c, b) it is
possible that rule (c8) can be executed. However, the precondition
ensures that a as well as c must not be involved in another mapC
change, e.g., mapC(a, d) or mapC(b, d). If this applies, both changes
belong to a merge into the common target b. (c8) would generate
two partial merges, one from a into b and one from c into b. In
the aggregation step (rule (a5) for merge), these partial merges
are unified in one common merge change operation, i.e., all mapC
which belong to a merge are rewritten to one common merge oper-
ation. On the opposite, the source concept may be involved in mul-
tiple mapC changes, i.e., another mapC change mapC(a, c) exists. In
this case, the split rule (c9) could be executed if the targets b and c
are not involved in any other mapC change operation. If the precon-
dition is fulfilled we would derive two partial splits, one from a to b
and one from a to c. In the aggregation phase, rule (a6) then unifies
all partial splits with the same source concept (in our case a).
Hence, all mapC changes which belong to a common split change
are rewritten to exactly one split change operation. The fourth var-
iant occurs in situations where no exact decision can be reached.
For instance, if mapC(a, b) exists, a is mapped to another target con-
cept c(mapC(a, c)) and b is mapped to another source concept
d(mapC(d, b)) we cannot clearly find out what happened. On the
one hand, a and d could be merged into b. On the other hand, a
could be split into b and c. Since we cannot automatically treat this
case, we do not derive any complex change operation so that we
keep the basic change operation.

The properties of our rule set guaranteeing termination and
confluence need to be preserved when extending it for the support
of additional change operations. In particular, new COG rules
should not introduce cyclic dependencies between rules and only
aggregation rules reducing the number of changes may be recur-
sive. Furthermore, the use of a new change operation in multiple
rules must use mutually exclusive preconditions for this change
operation.

Appendix D. Correctness of version migration algorithms

D.1. Correctness of basic version migration

We will show the correctness of the ontVersionMig algorithm
presented in Section 6.1.

Theorem 3. Algorithm ontVersionMig is correct, i.e., for the basic diff
evolution mapping diffbasic(O1, O2) determined by algorithm diffBasic-
Gen, it creates the new ontology version O2 from the original version
O1.

We prove the theorem for concept changes. We need to show
that the generated ontology version is complete, i.e., it (1) contains
all concepts and (2) contains no further/other concepts. First, it is
easy to see that the algorithm removes deleted concepts indicated
by delC changes so that they do not become part of O2. Analogously,
the concepts of the domain of mapC changes are eliminated and
thus do not appear in O2. Second, an unchanged concept c already
available in O1 should be present in O2 as well. Particularly, such a c
is not covered by any change operation of diffbasic and thus remains
in O2. Finally, concepts specified by addC changes are added to the
unchanged ontology part and thus become part of O2. In the same
way the range concepts of mapC changes in diffbasic are inserted.

D.2. Correctness of inverse diff mappings

In the following we will prove the correctness of our inverse diff
mappings.

Theorem 4. The inverse of a basic diff evolution mapping
diffbasic(O1, O2) is correct, i.e., is identical to diffbasic(O2, O1).

We prove this theorem for concept changes. We will show that
the inverse of every change operation in diffbasic(O1, O2) is in
diffbasic(O2, O1) and also that diffbasic(O2, O1) does not contain
additional changes. The addition of a concept c(addC(c)) in
diffbasic(O1, O2) has delC(c) as inverse. Since c is not in O1 but in O2

Table A.3
List of all a-COG rules.

ID Rule

a1 Aggregation of move changes if they refer to the same concept:
c 2 Onew ^ A, C # Oold ^ B, D # Onew ^move(c, A, B) ^move(c, C, D) ^ (A – C _ B – D)
?create[move(c, A [C, B [D)],eliminate[move(c, A, B), move(c, C, D)]

a2 Aggregation of chgAttValue changes if multiple values of an attribute changed:
c 2 Onew ^ chgAttValue(c, n, A, B) ^ chgAttValue(c, n, C, D) ^ (A – C _ B – D)
?create[chgAttValue(c, n, A [C, B [D)],eliminate[chgAttValue(c, n, A, B), chgAttValue(c, n, C, D)]

a3 Aggregation of addLeaf changes if they refer to the same concept:
a 2 Onew ^ A, B # Onew ^ addLeaf(a, A) ^ addLeaf(a, B) ^ A – B
?create[addLeaf(a, A [B)],eliminate[addLeaf(a, A),addLeaf(a, B)]

a4 Aggregation of delLeaf changes if they refer to the same concept:
a 2 Oold ^ A, B # Oold ^ delLeaf(a, A) ^ delLeaf(a, B) ^ A – B
?create[delLeaf(a, A [B)],eliminate[delLeaf(a, A),delLeaf(a, B)]

a5 Aggregation of merges if they share the same target concept:
c 2 Onew ^ A, B # Oold ^merge(A, c) ^merge(B, c) ^ A – B
?create[merge(A [B, c)],eliminate[merge(A, c),merge(B, c)]

a6 Aggregation of leaf merges if they share the same target concept:
c 2 Onew ^ A, B # Oold ^ leafMerge(A, c) ^ leafMerge(B, c) ^ A – B
?create[leafMerge(A [B, c)],eliminate[leafMerge(A, c),leafMerge(B, c)]

a7 Aggregation of splits if they share the same source concept:
c 2 Oold ^ A, B # Onew ^ split(c, A) ^ split(c, B) ^ A – B
?create[split(c, A [B)],eliminate[split(c, A),split(c, B)]

a8 Aggregation of leaf splits if they share the same source concept:
c 2 Oold ^ A, B # Onew ^ leafSplit(c, A) ^ leafSplit(c, B) ^ A – B
?create[leafSplit(c, A [B)],eliminate[leafSplit(c, A),leafSplit(c, B)]

a9 Extension of an added subgraph if a relationship to another added concept exists:
a, b, r 2 Onew ^ A # Onew ^ addSubGraph(a, A) ^ addC(b) ^ addR(r) ^
rsource = a ^ rtarget = b ^ rtype 2 {0is_a0 ,0 part_of0}
?create[addSubGraph(b,{a} [A)],eliminate[addSubGraph(a,A), addC(b),addR(r)]

a10 Aggregation of two added subgraphs if they refer to the same root:
a 2 Onew ^ A, B # Onew ^ addSubGraph(a, A) ^ addSubGraph(a, B) ^ A – B
?create[addSubGraph(a, A [B)],eliminate[addSubGraph(a, A),addSubGraph(a, B)]

a11 Aggregation of two added subgraphs if one of them is contained in the other:
a, b, r 2 Onew ^ A, B # Onew ^ addSubGraph(a, A) ^ addSubGraph(a, B) ^
addR(r) ^ rsource = a ^ (rtarget = b ^ rtarget 2 B) ^ rtype 2 {0is_a0 ,0part_of0}
?create[addSubGraph(b,{a} [A [B)],eliminate [addSubGraph(a, A),addSubGraph(b, B),addR(r)]

a12 Extension of a deleted subgraph if a relationship to another deleted concept exists:
a, b, r 2 Oold ^ A # Oold ^ delSubGraph(a, A) ^ delC(b) ^ delR(r) ^
rsource = a ^ rtarget = b ^ rtype 2 {0is_a0 ,0part_of0}
?create[delSubGraph(b,{a} [A)],eliminate [delSubGraph(a, A),delC(b),delR(r)]

a13 Aggregation of two deleted subgraphs if they refer to the same root:
a 2 Oold ^ A, B # Oold ^ delSubGraph(a, A) ^ delSubGraph(a, B) ^ A – B
?create[delSubGraph(a, A [B)],eliminate[delSubGraph(a, A),delSubGraph(a, B)]

a14 Aggregation of two deleted subgraphs if one of them is contained in the other:
a, b, r 2 Oold ^ A, B # Oold ^ delSubGraph(a, A) ^ delSubGraph(b, B) ^
delR(r) ^ rsource = a ^ (rtarget = b _ rtarget 2 B) ^ rtype 2 {0is_a0 ,0part_of0}
?create[delSubGraph(b,{a} [A [B)], eliminate[delSubGraph(a, A),delSubGraph(b, B),delR(r)]

M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32 31
b-COG rule (b2) will create a delC(c) change in diffbasic(O2, O1). Anal-
ogously, (b1) would create addC(c) in diffbasic(O2, O1) if c is in O1 but
not in O2 which corresponds to a delC(c) change (inverse of addC(c))
in diffbasic(O1, O2). A mapC(a, b) change in diffbasic(O1, O2) has mapC
(b, a) as its inverse and, according to rules (b3, b4, b5), requires a
correspondence matchC(a, b). Changing the domain and range
leads to a matchC(b, a) correspondence and thus to a mapC(b, a)
change in diffbasic(O2, O1). The concept changes in diffbasic(O2, O1)
are only created by rules (b1) to (b5) like those of diffbasic(O1, O2).
Hence, there can be no further changes in addition to the changes
in the inverse of diffbasic(O1, O2).
References

[1] Aitken S, Chen Y, Bard J. OBO explorer: an editor for open biomedical
ontologies in OWL. Bioinformatics 2008;24(3):443.

[2] Aumueller D, Do HH, Massmann S, Rahm E. Schema and ontology matching
with COMA++. In: Proc of ACM SIGMOD. ACM; 2005. p. 906–8.
[3] Bernstein PA. Applying model management to classical meta data problems.
In: Proceedings of conference on innovative database research (CIDR); 2003. p.
209–20.

[4] Bernstein PA, Melnik S. Model management 2.0: manipulating richer
mappings. In: Proceedings of the 2007 ACM SIGMOD international
conference on management of data; 2007. p. 1–12.

[5] Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al.
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.
Nucl Acids Res 2003;31(1):365–70.

[6] Ceusters W, Spackman K, Smith B. Would SNOMED CT benefit from realism-
based ontology evolution? In: AMIA annual symposium proceedings, vol.
2007; 2007. p. 105.

[7] Day-Richter J. The OBO flat file format specification, version 1.2. <http://
www.geneontology.org/go.format.obo-1_2.shtml>.

[8] Day-Richter J, Harris M, Haendel M, Lewis S. OBO-edit – an ontology editor for
biologists. Bioinformatics 2007;23(16):2198.

[9] Euzenat J, Shvaiko P. Ontology matching. New York: Springer-Verlag; 2007.
[10] Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, et al. Ensembl 2008.

Nucl Acids Res 2008;36(Database issue):D707–14.
[11] Flouris G, Manakanatas D, Kondylakis H, Plexousakis D, Antoniou G. Ontology

change: classification and survey. Knowl Eng Rev 2008;23(2):117–52.
[12] Gene Ontology Consortium. The gene ontology project in 2008. Nucl Acids Res

2008;36(Database issue):D440–4.

http://www.geneontology.org/go.format.obo-1_2.shtml
http://www.geneontology.org/go.format.obo-1_2.shtml

32 M. Hartung et al. / Journal of Biomedical Informatics 46 (2013) 15–32
[13] Ghazvinian A, Noy N, Musen M. Creating mappings for ontologies in bio-
medicine: simple methods work. In: Proc of AMIA annual symposium; 2009.

[14] Gross A, Hartung M, Kirsten T, Rahm E. Mapping composition for matching
large life science ontologies. In 2nd Intl conference on biomedical ontology
(ICBO); 2011.

[15] Hartung M, Gross A, Rahm E. CODEX: exploration of semantic changes
between ontology versions. Bioinformatics 2012;26(6):895–6.

[16] Hartung M, Kirsten T, Gross A, Rahm E. OnEX: exploring changes in life science
ontologies. BMC Bioinformatics 2009;10:250.

[17] Hartung M, Kirsten T, Rahm E. Analyzing the evolution of life science
ontologies and mappings. In: Data integration in the life sciences (DILS);
2008. p. 11–27.

[18] Hartung M, Terwilliger J, Rahm E. Recent advances in schema and ontology
evolution. In: Bellahsene Z, Bonifati A, Rahm E, editors. Schema matching and
mapping. Springer; 2011. p. 149–90 [chapter 6].

[19] Hayamizu TF, Mangan M, Corradi JP, Kadin JA, Ringwald M. The adult mouse
anatomical dictionary: a tool for annotating and integrating data. Genome Biol
2005;6(3):R29.

[20] Hu W, Qu Y. Falcon-AO: a practical ontology matching system. Web
Semantics: Sci. Services Agents World Wide Web 2008;6(3):237–9.

[21] Huang D, Sherman B, Lempicki R. Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of large gene lists. Nucl Acids
Res 2009;37(1):1.

[22] Kirsten T, Gross A, Hartung M, Rahm E. Gomma: a component-based
infrastructure for managing and analyzing life science ontologies and their
evolution. J Biomed Semantics 2011;2:6.

[23] Kirsten T, Hartung M, Gross A, Rahm E. Efficient management of biomedical
ontology versions. In: OTM workshops; 2009. p. 574–83.

[24] Klein M, Fensel D, Kiryakov A, Ognyanov D. Ontology versioning and change
detection on the web. Knowl Eng Knowl Manage: Ontol Semantic Web
2002:247–59.

[25] Lambrix P, Tan H. Sambo – a system for aligning and merging biomedical
ontologies. Web Semantics: Sci Services Agents World Wide Web
2006;4(3):196–206.

[26] Maere S, Heymans K, Kuiper M. Bingo: a cytoscape plugin to assess
overrepresentation of gene ontology categories in biological networks.
Bioinformatics 2005;21(16):3448.

[27] McCann R, Shen W, Doan A. Matching schemas in online communities: a web
2.0 approach. In: 24th International conference on data engineering; 2008. p.
110–9.

[28] Moreira D, Musen M. OBO to OWL: a protege OWL tab to read/save OBO
ontologies. Bioinformatics 2007;23(14):1868.

[29] Noy NF, Shah N, Dai B, Dorf M, Griffith N, Jonquet C, et al. Bioportal: a web
repository for biomedical ontologies and data resources. In: Proc of ISWC;
2008.

[30] NoyNF, Chugh A, Liu W, Musen MA. A framework for ontology evolution in
collaborative environments. In: The semantic web – ISWC 2006, 5th
international semantic web conference; 2006. p. 544–58.
[31] Noy NF, Kunnatur S, Klein M, Musen MA. Tracking changes during ontology
evolution. In: Proc of ISWC; 2004. p. 259–73.

[32] Noy NF, Musen MA. PromptDiff: a fixed-point algorithm for comparing
ontology versions. In: Proceedings of the national conference on artificial
intelligence; 2002. p. 744–50.

[33] Oliver D, Shahar Y, Shortliffe E, Musen M. Representation of change in
controlled medical terminologies. Artif Intel Med 1999;15(1):53–76.

[34] Papavassiliou V, Flouris G, Fundulaki I, Kotzinos D, Christophides V. On
detecting high-level changes in RDF/S KBs. In: Prof of ISWC; 2009. p. 473–
88.

[35] Plessers P, Troyer O. Ontology change detection using a version log. In: Proc of
ISWC; 2005.

[36] Prüfer K, Muetzel B, Do H, Weiss G, Khaitovich P, Rahm E, et al. Func: a package
for detecting significant associations between gene sets and ontological
annotations. BMC Bioinformatics 2007;8(1):41.

[37] Rahm E. Towards large scale schema and ontology matching. In: Bellahsene Z,
Bonifati A, Rahm E, editors. Schema matching and mapping. Springer; 2011. p.
3–27 [chapter 1].

[38] Rahm E, Bernstein PA. A survey of approaches to automatic schema matching.
VLDB J 2001;10(4):334–50.

[39] Sioutos N, Coronado S, Haber MW, Hartel FW, Shaiu WL, Wright L. NCI
thesaurus: a semantic model integrating cancer-related clinical and molecular
information. J Biomed Inform 2007;40(1):30–43.

[40] Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO
foundry: coordinated evolution of ontologies to support biomedical data
integration. Nat Biotechnol 2007;25(11):1251–5.

[41] Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, et al. Relations in
biomedical ontologies. Genome Biol 2005;6(5):R46.

[42] Smith C, Goldsmith C, Eppig J. The mammalian phenotype ontology as a tool
for annotating, analyzing and comparing phenotypic information. Genome
Biol 2004;6(1):R7.

[43] Stojanovic L, Maedche A, Motik B, Stojanovic N. User-driven ontology
evolution management. Knowl Eng Knowl Manage: Ontol Semantic Web
2002:133–40.

[44] Sure Y, Erdmann M, Angele J, Staab S, Studer R, Wenke D. Ontoedit:
collaborative ontology development for the semantic web. In: Proc of ISWC;
2002. p. 221–35.

[45] Tirmizi S, Aitken S, Moreira D, Mungall C, Sequeda J, Shah N, et al. Mapping
between the obo and owl ontology languages. J Biomed Semantics
2011;2(Suppl 1):S3.

[46] Yang Z, Zhang D, Ye C. Ontology analysis on complexity and evolution based on
conceptual model. In: Data integration in the life sciences. Springer; 2006. p.
216–23.

[47] Zhdanova AV, Shvaiko P. Community-driven ontology matching. In: ESWC;
2006. p. 34–49.

	COnto–Diff: generation of complex evolution mappings for life science ontologies
	1 Introduction
	2 Related work
	2.1 Ontology evolution
	2.2 Ontology matching
	2.3 Ontology change detection

	3 Models and problem statement
	3.1 Ontology model and versions
	3.2 Change operations
	3.3 Match and evolution mappings
	3.4 Problem statement

	4 Change operation generating rules
	4.1 Basic COG rules
	4.2 Complex COG rules
	4.3 Aggregation COG rules

	5 Diff computation
	5.1 Overview
	5.2 Matching phase
	5.3 Rule-based change detection

	6 Applications: migration of ontology versions and annotations
	6.1 Basic version migration
	6.2 Inverse diff mappings
	6.3 Migration of annotations and dependent mappings

	7 Evaluation experiments
	7.1 Evaluation setup
	7.2 Basic vs. compact Diff evolution mappings
	7.3 Ontology version and annotation migration
	7.4 Comparison with PromptDiff

	8 Discussion and future work
	Acknowledgments
	Appendix A Summary of COG rules
	Appendix B Example walkthrough for Diff algorithm
	Appendix C Correctness of Diff algorithm
	Appendix D Correctness of version migration algorithms
	D.1 Correctness of basic version migration
	D.2 Correctness of inverse diff mappings

	References

