
Rule-based Construction of Matching Processes
Eric Peukert

SAP Research Center Dresden
01187 Dresden, Germany

eric.peukert@sap.com

Julian Eberius
Dresden University of Technology

Dresden, Germany

julian.eberius@tu-dresden.de

Erhard Rahm
University of Leipzig
Leipzig, Germany

rahm@informatik.unileipzig.de

ABSTRACT
Semi-automatic schema matching systems have been developed to
compute mapping suggestions that can be corrected by a user.
However, constructing and tuning match strategies still requires a
high manual effort. We therefore propose a self-configuring
schema matching system that is able to automatically adapt to the
given mapping problem at hand. Our approach is based on
analyzing the input schemas as well as intermediate match results.
A variety of matching rules use the analysis results to
automatically construct and adapt an underlying matching process
for a given match task. The evaluation shows that our system is
able to robustly return good quality mappings across different
mapping problems and domains.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Data mapping

General Terms
Algorithms

Keywords
Matching system, rewrite rules, features, matching process

1. INTRODUCTION
Finding mappings between complex metadata structures is a
critical task in a number of domains such as data integration,
ontology alignment or model transformation. A multitude of
schema matching systems and matching algorithms were
proposed (see [1] for an overview) to speed up that process.
Except for some domain-specific matchers, the algorithms used in
the different systems are often similar, e.g. they consider the
linguistic and structural similarity of schema elements or the
similarity of instance data. Many systems are constructed for a
single schema type or domain and may even be tuned for specific
benchmarks such as the OAEI Benchmark [5]. Moreover, schema
matching publications typically report the maximally achieved
quality of automatically computed mapping suggestions using
some specially tuned parameter configuration. This construction
and tuning is a complex, manual and time-consuming task that
often requires substantial matching experience and expert
knowledge as well as given perfect mappings.
However, such an approach cannot be adopted for applying a
schema matching system in practice onto fully unknown matching
problems. Additionally, given default configurations may not be

robust enough to cope with largely differing matching problems
of diverse domains. Hence, there is a need for adaptive and robust
matching systems that return good mappings across different
matching problems without manual tuning.
There have already been some attempts to make parts of a
matching system more adaptive and self-tuning [9][13][10].
However, these adaptations are typically fixed in the code or seem
tailored to specific tasks. Other approaches like eTuner [14]
perform tuning based on a synthetically constructed gold standard.
However, this approach seems not applicable in practice since a
synthetic gold standard could differ a lot from the given mapping
problem. Learning techniques like YAM [3] or [7] were also
proposed, but in practice, gold mappings for learning are not
available. The concept of meta-level learning already aims at
adaptive matching processes based on schema features [4].
However they still rely on learning from existing mappings.
We aim at a comprehensive approach for a fully self-configuring
schema matching system that can automatically construct and
adapt a matching process for a given mapping problem. To this
end, we make the following contributions:

· We introduce so-called features that are computed from
the input schemas as well as from intermediate mapping
results.

· Based on the features, we introduce the concept of
matching rules that represent expert knowledge on how
to define or adapt a schema matching process.

· We propose an adaptive matching approach that
integrates features and matching rules. A matching
process is iteratively extended, rewritten and executed.

· We evaluate our approach on different match problems
and show its robustness.

2. PRELIMINARIES
We first provide some preliminaries on the assumed model of
schemas and schema matching.
A schema consists of a number of schema elements. Each
element carries a name, a data type, and optionally a description
(called annotation) as well as instances. The kind of schema is not
restricted and can refer to any metadata structure such as XML
schema trees, ontologies, database schemas or meta-models. The
goal of a schema matching system is to compute a mapping
suggestion between a source schema S and a target schema T. For
computing the mapping, most matching systems use several
matchers as well as other operators for aggregation and selection.
The matcher operator computes a similarity value for each pair of
schema elements from the source schema S and the target schema
T and constructs a similarity matrix as output. An entry in the
similarity matrix is a value between 0 and 1 representing the
similarity between two elements with 0 representing low and 1
representing high similarity. An aggregation operator is used to
combine multiple similarity matrices computed by different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10...$10.00.

2421

matchers to a single aggregated similarity matrix. Finally, a
selection operator extracts the most probable element pairs from a
similarity matrix and sets all other values to zero (see [15] for an
overview to selection strategies). From the finally selected matrix
a mapping between a source schema S and a target schema T can
be constructed. A mapping consists of a set of correspondences (s,
t, sim) referring to a source- and a target element as well as a
similarity value.
Matching systems not only differ in the implementation of these
basic operators but also by the order in which these operators can
be executed. In this paper we adopt the notion of matching
processes similar to eTuner [14]. A matching process (or
matching strategy) is represented by a directed acyclic graph
describing the execution order of operators such as match,
aggregation or selection. It contains all steps necessary to come
from two input schemas to a final mapping. Operators in the graph
have one or more similarity matrices as input and return a
similarity matrix as output. The topology of a matching process
can be very different. Simple topologies that are commonly used
are parallel, sequential and iterative execution of matchers. These
basic topologies may also be combined in more sophisticated
match strategies.
In general, tuning a matching system involves defining the
underlying matching process structure, selecting the appropriate
operators and parameterizing individual operators. Our system
should be able to automatically choose promising matchers,
aggregation and selection operations and their parameters. Also
the structure of a matching process should be automatically
adaptable.

3. ADAPTIVE MATCHING SYSTEM
We took inspiration from how a matching expert would
interactively develop and execute a matching process. She
analyzes the source and target schema, selects appropriate
matchers and constructs an initial matching process. The process
is executed and the result is inspected. Depending on that result,
certain parts or parameters of the matching process can be
changed and extended manually.
Our approach performs similarly but in an automatic way. In
order to automate the analysis step, we rely on so-called features.
These are computed from the input schemas but also from
intermediate mapping results. Features try to give some indication
about schema properties or the quality of a mapping. Computed
features are used by so-called matching rules representing expert
knowledge about a relation between features and operators or
process patterns. Finally, an adaptive process execution system
(see Figure 1) selects and applies rules and incrementally executes
the constructed process. Our adaptive matching system gets two
schemas as input and returns a mapping as output. Ideally, no
further parameterization input should be needed when running the
system. All necessary parameters should be defined automatically.

The system consists of a registry that contains a number of so
called feature analyzers, matching rules as well as an operator
library that contains all necessary operators in particular the
matchers, aggregation or selection operators. The core component
of the system is the adaptive process construction that implements
a staged rule application approach that we describe below. In a
preprocessing step all schema features of the input schemas are
computed. The adaptive process construction starts with an empty

process and applies rewrite rules to add or change operators. After
every change of the process the matching process execution is
called to execute the new operators. This creates new intermediate
similarity matrices that can be analyzed by matrix feature
analyzers.

In the following, each of the components is described (Please see
extended version for more details1).

3.1 Features
In general a feature takes one or several schemas or similarity
matrices as input and computes a value between 0 and 1 as output.
We distinguish between schema features, and matrix features. The
notion of matrix features is newly introduced by this paper.
Schema features try to describe properties of schemas that can be
computed in a preprocessing step before actually executing a
matching process. In simple cases they reflect the schema size or
the relative frequency of schema element properties such as the
availability of element descriptions or data type information.
More complex features rely on value distributions of schema
elements or structural properties. For instance, the average length
of paths in a schema tree gives some indication of whether to use
a path matcher evaluating the name similarity of elements and
their predecessors. Some schema features evaluate the degree of
similarity between both input schemas. For example the structural
and linguistic schema similarity can be used to decide about the
appropriateness of applying a structure-based or name-based
matcher [9].
We additionally analyze intermediate similarity matrices after
executing operators of the matching process to derive matrix
features. They are used to evaluate the quality or similarity value
distributions of similarity matrices. For instance a so-called Noise
feature computes the number of low valued entries in a similarity
matrix in relation to the top-1 values in each row and column. The
resulting feature can be used to evaluate the quality of a matrix
and thus the operator that has generated it. Some matrix features
take more than two matrices as input to describe the degree of
commonalities and differences between them. For instance a
feature could measure the overlap of top-1 values of different
similarity matrices. If the overlap is higher, more confidence
could be put in the different matrices.

3.2 Matching Rules
We use schema and matrix features within so-called matching
rules. A matching rule captures a design decision a matching
process expert would take, e.g. to select and add matchers..
A matching rule consists of the following parts:

· A pattern that describes a part of a process graph where
the rule can be applied to. The pattern can be empty, in
particular within rules that start the process
construction.

1 http://arxiv.org/abs/1108.1925

Figure 1: Adaptive Matching System

Adaptive Process Construction

Process Execution
Source
Schema

Target
Schema

Mapping

 Rules Feature
Analyzer

 Operators

2422

· An action that applies a defined change to instances of
the found process pattern, e.g. additions and changes of
operators.

· A relevance function that computes the relevance of the
respective rule for the current matching process and
match task. It is based on computed schema and matrix
features on the input schemas and already computed
similarity matrices and computes a relevance value
between 0 and 1. The relevance is used to decide
whether a rule is executed.

· An optional check function that is used after a rule was
applied to a process. It rates the quality of the changes
that were introduced by the action. It also relies on
matrix features to compute a value between 0 and 1.

We identified different types of matching rules that are starting-,
aggregation-, rewrite-, refine and selection rules. Starting rules
can be applied to an empty process when no intermediate matrix
was computed yet. Each application of a starting rule creates so
called dangling nodes that are possible end-points of the process
and do not have following nodes. Aggregation rules add
aggregation operators to a process and combine a number of
dangling operators from a matching process. Rewrite rules
change the structure of a given process without changing the input
and dangling output nodes. For instance the order of operators
could be changed or additional operations can be added in
between others. Selection Rules are used to add a selection
operator to the last dangling node of the current matching process.

3.3 Adaptive process construction
The different kinds of rules are applied in a certain order to
control the degree of process adaptations. Different rule classes
depend on each other since some rules add operators and others
combine the output of several operators as done by the
aggregation rule. In order to restrict complexity we perform the
application of rules only within a fixed number of stages as shown
in the left part of Figure 2. This reduces the structural diversity an
adaptively created process can have but simplifies the rule
selection process significantly. If all rules would be able to
compete in all stages of the process side-effects of rule application
could not be controlled and termination could not be ensured.
The process starts with importing the input schema and analyzing
them to compute the schema features. An empty matching process
is created. In the next stage starting rules can be selected and
applied. Starting rules mostly add element-based matchers.
However, also more complex starting rules can be defined that
already construct an advanced matching process structure, e.g. to
enforce the sequential execution of several matchers. In the next
stage the dangling nodes from applying the starting rules need to
be combined and the result matrices are aggregated. After the
aggregation, rewrite rules can be applied. If no relevant rewrite
rules can be found, a selection rule is applied. Based on the
selection result the process can be finished or refine rules can be
applied iteratively.
Within each stage of the process a predefined rule selection
process is started (see right state chart from Figure 2). The
selection process begins with filtering all rules that can be
executed within the current stage. This set of rules is only created
once within a stage. If the remaining set of rules is empty the
stage can be finished directly. If there are rules left to be applied,
their relevance is computed for each rule using the rules relevance
functions. The most relevant rule is selected and applied.

Applying a rule implies changes to the current matching process.
After that the current process is executed. However no operator is
executed twice and only new or changed parts are executed. The
matrix result of executing the most recently applied rule is
evaluated using the rules check function. It often happens that
rules are rated as relevant due to the existence of certain attributes
in the source and target schema. However, after executing the
matchers that were added by the rule the matrix result quality is
sometimes very low, indicating that the most recent rule should be
ignored. For that purpose the most recent rule effect is reverted.
After executing a rule it is removed from the remaining list of
rules. Again the most relevant rule is selected and the process runs
on until the rule set is empty.

3.4 Example

Figure 3: Example adaptive construction

For illustration we explain the adaptive process construction for
matching two anatomy taxonomies that are also used in our
evaluation. In Figure 4 different states of the adaptive construction
are visualized. Our system starts with constructing a new process
with an input node that imports the source and target schemas and
computes the schema features. In (1) a starting rule is applied that
measures the number of repeating tokens in element names and
selects a name matcher with term weighting. In (2) a rule adds the
datatype matcher and executes it. However it is then removed due
to a low quality detected by the check function. After all relevant
starting rules are executed, an aggregation rule is executed (3) that
combines multiple dangling nodes (these are operators that need
to be consumed by other operators to complete the matching
process). In the example, only one dangling node exists so that the

sufficient

no

yes

Filter Rules by State

Compute Relevance

Execute Process (non
executed parts)

Apply rule

Not sufficient

Stage Finished

Check Result

Rules left

Stage Begin

 revert Refine

Starting

Rewrite

Select and Add
to Result

Import &
Analyze
Schemas

Finish

Aggregate

Figure 2: Stages and rule selection

2423

Aggregation operator can be removed. In (4) a rewrite rule has
been found relevant and applied; it adds a selection operator after
the matcher operator. In (5) a refine rule that adds a path matcher
after the dangling selection to refine the intermediate match result.
Finally an aggregate/selection rule is applied that combines the
results of both matchers.

4. EVALUATION
In the evaluation we want to investigate the effectiveness and
robustness of our approach. For that reason we compare our
adaptive schema matching system to currently known alternative
approaches for diverse problems. We currently have implemented
20 feature analyzers and 18 rules. For details, please refer to the
extended version of the paper.
We consider a wide range of schema mapping problems from
different domains. To be comparable to existing work we include
the OAEI-Benchmark and Anatomy as well as the ModelCVS
Benchmark [6] in our evaluation. The Purchase Order dataset and
mappings were already used in the early evaluations from COMA
[2] and they are publicly available. We also use them for
computing a default configuration to compare against.
We precomputed a best configuration for the Purchase Order
dataset similar to the way the default strategy proposed in [2] was
computed. We call this computed strategy our DEFAULT
configuration. It consists of the matchers WeightedName, Path,
Children, Leaf, Sibling and Datatype. The best selection strategy
found was parameterized with delta=0.021 and a threshold=0.5
(see [2] for details on selection strategies).
Secondly we implemented the Meta-level learning proposed in
[4]. This approach is a valid comparison since it includes schema
features in a learning process of a decision tree to increase
adaptivity. The learning also takes the Purchase Order dataset as
gold mappings. We include all schema features in the learning
process. The learning was implemented using the weka2 library.
The computed decision trees are then translated into matching
processes without loss of information. In order to reduce possible
overfitting we restricted the size of the decision tree. We then
executed the default configuration, the decision tree and our new
adaptive matching system with all provided mapping problems.

4.1 Results
The results of our evaluations are summarized in Figure 4.

 Figure 4: Evaluation results for adaptive execution

For each dataset we compared the average achieved F-Measure of
the individual approaches DEFAULT, DT and ADAPT. Our
adaptive approach (ADAPT) returned good results across all
different test cases and thus proved its viability. For the Purchase
Order data set ADAPT is only closely behind the DEFAULT

2 http://www.cs.waikato.ac.nz/~ml/weka/index.html

configuration and the computed decision tree (DT). The slightly
better outcome for DEFAULT is not surprising since DEFAULT
was tuned on this data set by testing all possible parameter
configurations. DT had problems to learn a good process since the
diversity of matches is too big to derive a representative rule in a
decision tree. We also experienced strong overfitting which was
already experienced by the authors of [4].

5. CONCLUSIONS
We proposed a new self-configuring and adaptive schema
matching system. It uses a series of schema and matrix features
and different matching rules to automatically construct and adapt
matching processes. Our evaluations show that the approach is
able to return good results for diverse match problems and that it
can compete with manually tuned approaches.The proposed
approach is in its initial version and we plan further
improvements, e.g. to support more complex adaptations.

6. REFERENCES
[1] Rahm, E. and Bernstein, P. A. 2001. A survey of

approaches to automatic schema matching. The VLDB
Journal 10.

[2] Do , H. H. and Rahm, E. 2002. COMA - A System for
Flexible Combination of Matching Approaches. VLDB
Proc.

[3] Duchateau, F., et. al. 2009. YAM: a schema matcher
factory, CIKM.

[4] Eckert, K., Meilicke C., Stuckenschmidt, H. 2009.
Improving ontology matching using meta-level learning. In
ESWC 2009.

[5] Euzenat, J., et. al. 2010. Results of the Ontology Alignment
Evaluation Initiative 2010. Workshop on Ontology
Matching.

[6] Falleri, J.-R., et. al. 2008. Metamodel matching for
automatic model transformation generation. MoDELS '08

[7] Gal, A., and Sagi, T., 2010, Tuning the Ensemble Selection
Process of Schema Matchers, Information Systems 35

[8] Gusfield, D., Irving, R. W. 1989. The stable marriage
problem: structure and algorithms. MIT Press.

[9] Hu, W. and Qu, Y. 2008. Falcon-AO: A practical ontology
matching system. Web Semant., 6(3).

[10] Li, J. et al. 2009. RiMOM: A Dynamic Multistrategy
Ontology Alignment Framework. IEEE Transactions on
Knowledge and Data Engineering, 21(8).

[11] Meilicke, C., Stuckenschmidt, H. 2007. Analyzing Mapping
Extraction Approaches. ISWC - Workshop on Ontology
Matching.

[12] Noy, N. F. and Musen, M. A. 2003. The PROMPT
Suite:Interactive Tools for Ontology Merging and Mapping.
Int. J. Hum.-Comput. Stud.

[13] Pirrò, G.,Talia, D., 2010: UFOme: An ontology mapping
system with strategy prediction capabilities. Data Knowl.
Eng. 69(5)

[14] Y. Lee et. al. 2007. eTuner: tuning schema matching
software using synthetic scenarios. The VLDB Journal,
16(1).

2424

