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ABSTRACT 
Semi-automatic schema matching systems have been developed to 
compute mapping suggestions that can be corrected by a user. 
However, constructing and tuning match strategies still requires a 
high manual effort. We therefore propose a self-configuring 
schema matching system that is able to automatically adapt to the 
given mapping problem at hand. Our approach is based on 
analyzing the input schemas as well as intermediate match results. 
A variety of matching rules use the analysis results to 
automatically construct and adapt an underlying matching process 
for  a  given  match  task.  The  evaluation  shows  that  our  system is  
able to robustly return good quality mappings across different 
mapping problems and domains. 

Categories and Subject Descriptors 
D.2.12  [Interoperability]: Data mapping 

General Terms 
Algorithms 

Keywords 
Matching system, rewrite rules, features, matching process 

1. INTRODUCTION 
Finding mappings between complex metadata structures is a 
critical task in a number of domains such as data integration, 
ontology alignment or model transformation. A multitude of 
schema matching systems and matching algorithms were 
proposed (see [1] for an overview) to speed up that process. 
Except for some domain-specific matchers, the algorithms used in 
the different systems are often similar, e.g. they consider the 
linguistic and structural similarity of schema elements or the 
similarity  of  instance  data.  Many  systems  are  constructed  for  a  
single schema type or domain and may even be tuned for specific 
benchmarks such as the OAEI Benchmark [5]. Moreover, schema 
matching publications typically report the maximally achieved 
quality of automatically computed mapping suggestions using 
some specially tuned parameter configuration. This construction 
and tuning is a complex, manual and time-consuming task that 
often requires substantial matching experience and expert 
knowledge as well as given perfect mappings. 
However, such an approach cannot be adopted for applying a 
schema matching system in practice onto fully unknown matching 
problems. Additionally, given default configurations may not be 

robust enough to cope with largely differing matching problems 
of diverse domains. Hence, there is a need for adaptive and robust 
matching systems that return good mappings across different 
matching problems without manual tuning. 
There have already been some attempts to make parts of a 
matching system more adaptive and self-tuning [9][13][10]. 
However, these adaptations are typically fixed in the code or seem 
tailored to specific tasks. Other approaches like eTuner [14] 
perform tuning based on a synthetically constructed gold standard. 
However, this approach seems not applicable in practice since a 
synthetic gold standard could differ a lot from the given mapping 
problem. Learning techniques like YAM [3] or [7] were also 
proposed, but in practice, gold mappings for learning are not 
available. The concept of meta-level learning already aims at 
adaptive matching processes based on schema features [4].  
However they still rely on learning from existing mappings. 
We aim at a comprehensive approach for a fully self-configuring 
schema matching system that can automatically construct and 
adapt a matching process for a given mapping problem. To this 
end, we make the following contributions: 

· We introduce so-called features that are computed from 
the input schemas as well as from intermediate mapping 
results.  

· Based on the features, we introduce the concept of 
matching rules that represent expert knowledge on how 
to define or adapt a schema matching process.  

· We propose an adaptive matching approach that 
integrates features and matching rules. A matching 
process is iteratively extended, rewritten and executed.  

· We evaluate our approach on different match problems  
and show its robustness. 

2. PRELIMINARIES 
We first provide some preliminaries on the assumed model of 
schemas and schema matching. 
A schema consists  of  a  number  of  schema  elements.  Each  
element carries a name, a data type, and optionally a description 
(called annotation) as well as instances. The kind of schema is not 
restricted and can refer to any metadata structure such as XML 
schema trees, ontologies, database schemas or meta-models. The 
goal of a schema matching system is to compute a mapping 
suggestion between a source schema S and a target schema T. For 
computing the mapping, most matching systems use several 
matchers as well as other operators for aggregation and selection. 
The matcher operator computes a similarity value for each pair of 
schema elements from the source schema S and the target schema 
T and constructs a similarity matrix as output. An entry in the 
similarity matrix is a value between 0 and 1 representing the 
similarity between two elements with 0 representing low and 1 
representing high similarity.  An aggregation operator is used to 
combine multiple similarity matrices computed by different 
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matchers to a single aggregated similarity matrix. Finally, a 
selection operator extracts the most probable element pairs from a 
similarity matrix and sets all other values to zero (see [15] for an 
overview to selection strategies). From the finally selected matrix 
a mapping between a source schema S and a target schema T can 
be constructed. A mapping consists of a set of correspondences (s, 
t, sim) referring to a source- and a target element as well as a 
similarity value. 
Matching systems not only differ in the implementation of these 
basic operators but also by the order in which these operators can 
be executed. In this paper we adopt the notion of matching 
processes  similar  to  eTuner  [14].  A  matching process (or 
matching strategy) is represented by a directed acyclic graph 
describing the execution order of operators such as match, 
aggregation or selection. It contains all steps necessary to come 
from two input schemas to a final mapping. Operators in the graph 
have one or more similarity matrices as input and return a 
similarity matrix as output. The topology of a matching process 
can be very different. Simple topologies that are commonly used 
are parallel, sequential and iterative execution of matchers. These 
basic topologies may also be combined in more sophisticated 
match strategies. 
In general, tuning a matching system involves defining the 
underlying matching process structure, selecting the appropriate 
operators and parameterizing individual operators. Our system 
should be able to automatically choose promising matchers, 
aggregation and selection operations and their parameters. Also 
the structure of a matching process should be automatically 
adaptable.   

3. ADAPTIVE MATCHING SYSTEM 
We took inspiration from how a matching expert would 
interactively develop and execute a matching process. She 
analyzes the source and target schema, selects appropriate 
matchers and constructs an initial matching process. The process 
is executed and the result is inspected. Depending on that result, 
certain parts or parameters of the matching process can be 
changed and extended manually. 
Our approach performs similarly but in an automatic way. In 
order to automate the analysis step, we rely on so-called features. 
These are computed from the input schemas but also from 
intermediate mapping results. Features try to give some indication 
about schema properties or the quality of a mapping. Computed 
features are used by so-called matching rules representing expert 
knowledge about a relation between features and operators or 
process patterns. Finally, an adaptive process execution system 
(see Figure 1) selects and applies rules and incrementally executes 
the constructed process. Our adaptive matching system gets two 
schemas as input and returns a mapping as output. Ideally, no 
further parameterization input should be needed when running the 
system. All necessary parameters should be defined automatically.  
 
The  system  consists  of  a  registry  that  contains  a  number  of  so  
called feature analyzers, matching rules as well as an operator 
library that contains all necessary operators in particular the 
matchers, aggregation or selection operators. The core component 
of the system is the adaptive process construction that implements 
a staged rule application approach that we describe below. In a 
preprocessing step all schema features of the input schemas are 
computed. The adaptive process construction starts with an empty 

process and applies rewrite rules to add or change operators. After 
every change of the process the matching process execution is 
called to execute the new operators. This creates new intermediate 
similarity matrices that can be analyzed by matrix feature 
analyzers. 

 
In the following, each of the components is described (Please see 
extended version for more details1). 

3.1 Features 
In general a feature takes one or several schemas or similarity 
matrices as input and computes a value between 0 and 1 as output. 
We distinguish between schema features, and matrix features. The 
notion of matrix features is newly introduced by this paper. 
Schema features try to describe properties of schemas that can be 
computed in a preprocessing step before actually executing a 
matching process. In simple cases they reflect the schema size or 
the relative frequency of schema element properties such as the 
availability of element descriptions or data type information. 
More complex features rely on value distributions of schema 
elements or structural properties. For instance, the average length 
of paths in a schema tree gives some indication of whether to use 
a path matcher evaluating the name similarity of elements and 
their predecessors. Some schema features evaluate the degree of 
similarity between both input schemas. For example the structural 
and linguistic schema similarity can be used to decide about the 
appropriateness of applying a structure-based or name-based 
matcher [9].  
We additionally analyze intermediate similarity matrices after 
executing operators of the matching process to derive matrix 
features. They are used to evaluate the quality or similarity value 
distributions of similarity matrices. For instance a so-called Noise 
feature computes the number of low valued entries in a similarity 
matrix in relation to the top-1 values in each row and column. The 
resulting feature can be used to evaluate the quality of a matrix 
and thus the operator that has generated it. Some matrix features 
take more than two matrices as input to describe the degree of 
commonalities and differences between them. For instance a 
feature could measure the overlap of top-1 values of different 
similarity matrices. If the overlap is higher, more confidence 
could be put in the different matrices. 

3.2 Matching Rules 
We use schema and matrix features within so-called matching 
rules. A matching rule captures a design decision a matching 
process expert would take, e.g. to select and  add matchers.. 
A matching rule consists of the following parts: 

· A pattern that describes a part of a process graph where 
the rule can be applied to. The pattern can be empty, in 
particular within rules that start the process 
construction. 
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Figure 1: Adaptive Matching System 
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· An action that applies a defined change to instances of 
the found process pattern, e.g. additions and changes of 
operators. 

· A relevance function that computes the relevance of the 
respective rule for the current matching process and 
match task. It is based on computed schema and matrix 
features on the input schemas and already computed 
similarity matrices and computes a relevance value 
between 0 and 1. The relevance is used to decide 
whether a rule is executed. 

· An optional check function that is used after a rule was 
applied to a process. It rates the quality of the changes 
that were introduced by the action. It also relies on 
matrix features to compute a value between 0 and 1. 

We identified different types of matching rules that are starting-, 
aggregation-, rewrite-, refine and selection rules. Starting rules 
can be applied to an empty process when no intermediate matrix 
was computed yet. Each application of a starting rule creates so 
called dangling nodes that are possible end-points of the process 
and do not have following nodes. Aggregation rules add 
aggregation operators to a process and combine a number of 
dangling operators from a matching process. Rewrite rules 
change the structure of a given process without changing the input 
and dangling output nodes. For instance the order of operators 
could be changed or additional operations can be added in 
between others. Selection Rules are used to add a selection 
operator to the last dangling node of the current matching process. 

3.3 Adaptive process construction 
The different kinds of rules are applied in a certain order to 
control the degree of process adaptations. Different rule classes 
depend on each other since some rules add operators and others 
combine the output of several operators as done by the 
aggregation rule. In order to restrict complexity we perform the 
application of rules only within a fixed number of stages as shown 
in the left part of Figure 2. This reduces the structural diversity an 
adaptively created process can have but simplifies the rule 
selection process significantly. If all rules would be able to 
compete in all stages of the process side-effects of rule application 
could not be controlled and termination could not be ensured. 
The process starts with importing the input schema and analyzing 
them to compute the schema features. An empty matching process 
is created. In the next stage starting rules can be selected and 
applied. Starting rules mostly add element-based matchers. 
However, also more complex starting rules can be defined that 
already construct an advanced matching process structure, e.g. to 
enforce the sequential execution of several matchers. In the next 
stage the dangling nodes from applying the starting rules need to 
be combined and the result matrices are aggregated. After the 
aggregation, rewrite rules can be applied. If no relevant rewrite 
rules  can  be  found,  a  selection  rule  is  applied.  Based  on  the  
selection result the process can be finished or refine rules can be 
applied iteratively.   
Within each stage of the process a predefined rule selection 
process  is  started  (see  right  state  chart  from  Figure  2).  The  
selection process begins with filtering all rules that can be 
executed within the current stage. This set of rules is only created 
once  within  a  stage.  If  the  remaining  set  of  rules  is  empty  the  
stage can be finished directly. If there are rules left to be applied, 
their relevance is computed for each rule using the rules relevance 
functions. The most relevant rule is selected and applied.  

 
 
Applying a rule implies changes to the current matching process. 
After that the current process is executed. However no operator is 
executed twice and only new or changed parts are executed. The 
matrix result of executing the most recently applied rule is 
evaluated using the rules check function. It often happens that 
rules are rated as relevant due to the existence of certain attributes 
in the source and target schema. However, after executing the 
matchers that were added by the rule the matrix result quality is 
sometimes very low, indicating that the most recent rule should be 
ignored. For that purpose the most recent rule effect is reverted. 
After  executing  a  rule  it  is  removed  from  the  remaining  list  of  
rules. Again the most relevant rule is selected and the process runs 
on until the rule set is empty. 

3.4 Example 

 
Figure 3: Example adaptive construction 

For illustration we explain the adaptive process construction for 
matching two anatomy taxonomies that are also used in our 
evaluation. In Figure 4 different states of the adaptive construction 
are visualized. Our system starts with constructing a new process 
with an input node that imports the source and target schemas and 
computes the schema features. In (1) a starting rule is applied that 
measures the number of repeating tokens in element names and 
selects a name matcher with term weighting. In (2) a rule adds the 
datatype matcher and executes it. However it is then removed due 
to a low quality detected by the check function. After all relevant 
starting rules are executed, an aggregation rule is executed (3) that 
combines multiple dangling nodes (these are operators that need 
to be consumed by other operators to complete the matching 
process). In the example, only one dangling node exists so that the 
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Aggregation operator can be removed. In (4) a rewrite rule has 
been found relevant and applied; it adds a selection operator after 
the matcher operator. In (5) a refine rule that adds a path matcher 
after the dangling selection to refine the intermediate match result. 
Finally an aggregate/selection rule is applied that combines the 
results of both matchers. 

4. EVALUATION 
In the evaluation we want to investigate the effectiveness and 
robustness of our approach. For that reason we compare our 
adaptive schema matching system to currently known alternative 
approaches for diverse problems. We currently have implemented 
20 feature analyzers and 18 rules. For details, please refer to the 
extended version of the paper. 
We consider a wide range of schema mapping problems from 
different domains. To be comparable to existing work we include 
the OAEI-Benchmark and Anatomy as well as the ModelCVS 
Benchmark [6] in our evaluation. The Purchase Order dataset and 
mappings were already used in the early evaluations from COMA 
[2] and they are publicly available. We also use them for 
computing a default configuration to compare against.  
We precomputed a best configuration for the Purchase Order 
dataset similar to the way the default strategy proposed in [2] was 
computed. We call this computed strategy our DEFAULT 
configuration. It consists of the matchers WeightedName, Path, 
Children, Leaf, Sibling and Datatype. The best selection strategy 
found was parameterized with delta=0.021 and a threshold=0.5 
(see [2] for details on selection strategies). 
Secondly we implemented the Meta-level learning proposed in 
[4]. This approach is a valid comparison since it includes schema 
features in a learning process of a decision tree to increase 
adaptivity. The learning also takes the Purchase Order dataset as 
gold mappings. We include all schema features in the learning 
process. The learning was implemented using the weka2 library. 
The computed decision trees are then translated into matching 
processes without loss of information. In order to reduce possible 
overfitting we restricted the size of the decision tree. We then 
executed the default configuration, the decision tree and our new 
adaptive matching system with all provided mapping problems. 

4.1 Results 
The results of our evaluations are summarized in Figure 4.  

 
 Figure 4: Evaluation results for adaptive execution 

For each dataset we compared the average achieved F-Measure of 
the individual approaches DEFAULT, DT and ADAPT. Our 
adaptive approach (ADAPT) returned good results across all 
different test cases and thus proved its viability.  For the Purchase 
Order  data  set  ADAPT  is  only  closely  behind  the  DEFAULT  

                                                             
2 http://www.cs.waikato.ac.nz/~ml/weka/index.html 

configuration and the computed decision tree (DT). The slightly 
better  outcome for DEFAULT is not  surprising since DEFAULT 
was tuned on this data set by testing all possible parameter 
configurations. DT had problems to learn a good process since the 
diversity of matches is too big to derive a representative rule in a 
decision tree. We also experienced strong overfitting which was 
already experienced by the authors of [4].  

5. CONCLUSIONS 
We proposed a new self-configuring and adaptive schema 
matching system. It uses a series of schema and matrix features 
and different matching rules to automatically construct and adapt 
matching processes. Our evaluations show that the approach is 
able to return good results for diverse match problems and that it 
can compete with manually tuned approaches.The proposed 
approach is in its initial version and we plan further 
improvements, e.g. to support more complex adaptations.  
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