Concurrency Control in DB-Sharing Systems
Erhard Rahm

Dept. of Computer Science, University of Kaiserslautern
P.0.-Box 3049, D-6750 Kaiserslautern

Abstract:

In a database sharing (DB~Sharing) system multiple Lloosely or closely couptled
processors share access to a single set of databases. Such systems primarily aim at
high availability and high performance demanded by large transaction processing
systems. To achieve high transaction rates with short response times an efficient
concurrency control is required for synchronizing accesses to the shared database.
This paper gives an overview of conceivable concurrency control algorithms for
DB-Sharing. We distinguish between Llocking and optimistic methods and between
centralized and distributed solutions. Five synchronization protocols are described

in some detail and compared with each other.

1. Introduction

Many applications in online transaction processing as in banking, inventory control
or flight reservation have a continually increasing need for high performance
database management systems (DBMS). In the near future, such systems must be capable
of processing 1000 transactions per second (tps) of the DEBIT-CREDIT-type [4,1] with
equivalent response times compared to present systems. Further major demands are
high availability [12], expandability (modular growth) and managability of the
system.

It has been clearly recognized that monolithic systems (uniprocessors or tightly
coupled multiprocessors) cannot meet these requirements for performance and availa-
bility reasons. More appropriate, however, are two basic multiprocessor approaches
called DB-Distribution and DB-Sharing [10]. These systems consist of a set of
autonomous processors that are Lloosely or closely coupled. Each processor ouwns a
local main memory and a separate copy of operating system (0S8) and DBMS. With Lloose
coupling inter-processor communication is exclusively based on messages, whereas in
closely coupled systems certain functions may be implemented using a common memory
partition [10,17]. The difference between DB-Distribution and DB-Sharing results

from the assignment of the disk drives to the processors:

- In DB-Distribution systems each processor owns some fraction of the disk devices
and the database stored on them. Accesses to "non-local' data require communi-
cation with the processor owning the corresponding database partition. This
approach 1is used among others by the TANDEM NonStop system and many distributed
DBMS such as Rx,

618

- In DB-Sharing systems each processor has direct access to the entire database.
This implies physical contiguity of all processors (e.g. in one room) and permits
a high-speed communication system (1 — 100 MB/sec). Examples of DB-Sharing systems
are the Data Sharing facility of IMS/VS [11], Computer Console's Power System [25]
and the AMOEBA project [231].

Terminals (:::) o e e <:::>

Front - ends Transaction Routing _J
(Load Control)

Communication
System

Processors

External
storage c e (}

shared databases global log
Figure 1: Structure of a loosely coupled DB-Sharing system

A detailed comparision between DB-Distribution and DB-Sharing can be found in [7]
and [10]. Here, we concentrate ourselves on loosely coupled DB-Sharing systems as
depicted in Fig. 1. A global Lload control, which may be located at one or more
front-ends, distributes each incoming transaction to one of the processors (trans~
action routing). A transaction can be completely executed at one processor because
each CPU has direct access to all parts of the shared database(s). This avoids the
necessity of a distributed 2-phase-commit protocol as required in DB-Distribution
systems.

A main advantage of DB-Sharing systems is flexibility. Since each processor can
access the entire database, transaction work may be dynamically distributed among
the processors according to current needs and system availability. Additional
processors can be added without altering the transaction programs or the database
schema. Likewise, the failure of a processor does hot prevent the surviving
processors from accessing the disks or the terminals. Transactions in progress on a
failed processor can be rolled back and redistributed automatically among the

available processors.

619

Naturally, some functional components must be redesigned compared to centralized

systems in order to take advantage of the DB-Sharing architecture:

The synchronization component has to coordinate accesses to the shared database
thereby guaranteeing serializability of the executed transactions. To enable high
transaction rates with short response times, concurrency control should require
minimal communication between the participating processors. The realization of

this component and the related problems are further discussed in the main part of

this paper.

Buffer control 1is needed to manage the problem of buffer invalidation that

results from the existence of a local buffer in each processor. An update
operation only modifies the processor's local copy of a database object; copies
of the same object in other buffers are getting obsolete. Therefore, accesses to
such 1invalidated objects must be avoided and a method to propagate the new
contents of modified objects to other processors has to be supplied. For the
latter point, there are two basic ways of exchanging modified objects between
processors, hamely via the inter-processor connections or across the shared
disks.

The simplest strategy to avoid access to invalidated objects within a buffer is
to broadcast the identifier of modified objects to all processors before
committing a transaction. So, obsolete copies can be detected and discarded from
the buffers. The main deficiency of this general method is the large number
of broadcast messages, especially in applications where update transactions are
dominating. Much more efficient solutions are feasible if the synchronization

component can cope with buffer invalidation, too [16].

Load control has to find an effective strategy for transaction routing such that
all processors are well utilized (however, without overloading any processor) and
locality of reference (to decrease the amount of disk~I/0 and buffer invali-
dation) 1is maximized. Furthermore, Lload control should reduce the number of
global synchronization messages as far as possible. Obviously, the latter point
requires a close cooperation between load control and concurrency control.

Load control also has to react dynamically to changes in the workload and to the

crash or reintegration of a processor.

The recovery component is responsible for system-wide logging and recovery. Each
processor has to maintain a local log (not shown in Fig. 1) reguired for
transaction undo and crash recovery. Additionally, a global log (e.g. for media
recovery) is constructed by merging the local Llog data. Crash recovery is
performed by the surviving CPU's in order to continue transaction processing.
Uncommitted transactions of the failed processor are backed out and restarted on

another processor.

620

Concurrency control and Lload control are the most important functions 1in a
DB-Sharing system for attaining high performance. In this work we present solutions
to the synchronization problem, while load control is only discussed in the context
of synchronization. In section 2 we give an overview of the concurrency control
algorithms to be presented using a simple classification tree. It follows a
description of the algorithms and a qualitative comparision of the different

strategies.

2. Synchronization strategies for DB-Sharing

The fundamental problem of synchronization in a DB-Sharing system is due to the fact
that concurrency control requires message exchange among the processors, bhecause
there is no common, instruction adressable memory which could hold control
information for system-wide synchronization (e.g. a global Llock table). These
inter-processor communications are Llong and costly since sending and receiving
messages are some of the most expensive operations in conventional 0S. In order to
reduce this communication overhead, messages may be buffered for transmission.
This buffering, however, also increases waiting time for the response message.
Additional overhead results from process or task switches for deactivating the

calling process and activating the called process after receipt of a message.

Obviously, global synchronization requests are much more expensive than lock regquest
handling 1in centralized DBMS (typically a few hundred instructions per request).
Since transactions synchronously wait for the reply to a synchronization message,
the above mentioned communication overhead and message buffering delays (trans-
mission times are negligible on a high bandwidth network) increase response times
directly. To maintain throughput under these conditions, the Llevel of multi-
programming in each processor has to be increased what, in turn, enlarges the
conflict probability and 0S overhead for scheduling, paging, etc. Therefore, high
transaction rates with acceptable response times are only reachable if the
concurrency control algorithm minimizes the average number of synchronous messages
per transaction. In general, this is only feasible in cooperation with Load control
(see below).

In this paper we present five different concurrency control algorithms for
DB-Sharing that can be classified as shown in Fig. 2. We distinguish between locking
algorithms and optimistic methods, both of which can be centralized or decentra-
lized. Timestamp solutions are less attractive for DB-Sharing systems. Timestamps
permit a fast decision about transaction ordering in case of contention, but our
main problem is to detect access conflicts. Furthermore, the avoidance of deadlocks,
guaranteed by timestamp protocols, 1is Lless important in a local environment
compared to the price of a higher rate of transaction aborts as with a locking

scheme.

621

A first survey of concurrency control in DB-Sharing systems can be found in the
interesting paper [22]. In contrast to this work, we consider two additional schemes
(Extended PTB, FOCC) and describe the BOCC-approach partially in more detail.
Furthermore, we try a comparision of the algorithms with respect to general aspects

like hich performance, modular growth and availability.

locking optimistic
centralized decentralized centralized decentralized
control control control control
Central Lock Manager (CLM) Pass-the-Buck (PTB) BOCC-1like FOCC-1like

Primary Copy Locking (PCL)

Figure 2: Concurrency control atgorithms for DB-Sharing

The next section describes the three locking algorithms. Two of these schemes (CLM,
PCL) are based on proposals for distributed DBMS [2,24]. In section 4 the optimistic
methods are presented, and in section 5 we conclude with a comparision of the

proposed algorithms.

3. Locking algorithms

Thus far, we have emphasized that a locking algorithm should minimize the number of
globat lock requests. For this, load control must route a transaction to that
processor where most of the lock requests can be satisfied locally. Load control
therefore needs a prediction of the presumable reference behavior of any incoming
transaction. This is usually done by looking at the transaction type and possibly by
analyzing input data [211].

In this section we do not discuss detection or avoidance of deadlocks because the

techniques for that are the same as in distributed DBMS [2].

3.1 Central Lock Manager (CLM)

In this scheme the CLM resides at one processor and maintains a global lock table to
answer lock requests from other CPU's. In the simplest form, each lock request is

sent to the CLM for immediate processing. Since this straightforward strategy is

622

certainly too expensive, the communication overhead has to be decreased, e.g. by
applying hierarchical locks. In such a scheme, the CLM shares the work with local
lock managers Llocated on each processor. Hence, a lock request can be handled
locally 1if the Llocal Llock manager holds a (hierarchical) lock for the requested
object. Local Llock management is always possible if sole interest exists for an
object, that is, only local transactions are interested in accessing the object. The
usefulness of the concept of sole 1interest heavily depends on the locality of
reference, which should be preserved by the Lload control as far as possible.
In general, however, sole interest can be maintained only if a relatively small
number of transactions references the object. Moreover, sole interest may be
destroyed by a single stray reference from any other processor [22].

The central Llock manager approach is used in the DB-Sharing system of Computer
Console. In their Power System 5/55, the CLM controls up to eight (medium-sized)
application processors. A passive standpby should overtake the synchronization
responsibility in case the primary CLM fails [25].

3.2 Pass-the-Buck (PTB) algorithms

The basic form of the PTB-algorithm is used in the data sharing facility of IMS [11]

which is restricted to DB-Sharing with two processors. In this approach, the two

processors are alternately master of the system (decentralized control). Global lock

information being kept by each processor may be altered only when the corresponding

processor plays the role of the master. At the end of a master phase, a so-called

buck is passed to the other processor. The reception of a buck indicates the

beginning of a processor's master phase. In a buck there may be information of

the following kind:

- modifications of the global lock information during the last master phase,

- lock requests which are not locally decidable and lock responses for such Llock
requests,

- notifications of modified objects to recognize buffer invalidation,

- other messages like commands of global interest.

In order to reduce the number of lock request messages, a so—called global hash

table (GHT) 1is used. It contains a two-bit entry for each hash class of the lock

table indicating which processor has interest in an object of the hash class. For

instance, a 01-entry means that only transactions at processor 2 have interest. With

the GHT a Llock request at processor 1 can be locally satisfied if the respective

entry has value 10, or if the value is 00 and processor 1 is master; in these cases,

no conflict with processor 2 is possible.

An improved version of this approach called Extended PTB (EPTB) is presented in [9].

Though also designed for only two processors, it provides a number of enhancements:

- Use of a lock hierarchy

- Extended global lock information to reduce the number of lock request messages

623

— Effective treatment of buffer invalidation by introducing new Llock types
('duration Llocks'). These new Llocks also try to exploit locality of reference
to achieve a further reduction of global lock requests.

- The special case in which only one processor is permitted to modify the database
(while the other can only issue read transactions) is particularly supported.

As simulations with a number of real-life page reference strings have shown, the

algorithm provides good results especially with only one update processor [9]. In

this case, throughput increase of factor 1.8 to 1.95 with response time degradations
from 10 to 20 7% compared to the single processor case could be obtained. In

general, more than 95 % of the lock requests could be treated locally. As a

consequence, short transactions issued Lless than one lock request message per

transaction in average.

The scheme has the major drawback that many lock requests are satisfiable in the

processor's master phase only. Therefore, response times are often increased by

waiting for the next master phase in order to process a lock request. With more than

two processors, these waiting delays would have been still worse.

3.3 Primary Copy Locking (PCL)

This approach 1is an extension of the CLM scheme in order to reduce the amount of
tock request messages. Instead of having one CLM, the synchronization responsibility
is now distributed among all processors. The database is therefore logically
partitioned into N disjoint parts, and each of the N processors performs the globatl
synchronization for one partition. A processor is said to have the primary copy
authority (PCA) for 1its partition [22]. As shown in Fig. 3, each lock manager
maintains a global tock table (GLT) to control the objects of its partition. As
opposed to the GLT, the local lock table (LLT) keeps information about granted or

requested locks for local transactions only.

P1 p2
LLT LLT
6LT1 l l " {leLT2

message
subsystem

P3 ‘—__I‘ L__» P4
LLT LLT
6LT3 6LT4

Figure 3: Primary Copy Locking (N = 4)
PCL has the obvious advantage that Llock requests from processor P within the

624

partition controlled by P can be managed locally, regardless of external contention.
Lock requests for a partition of another processor are sent to the authorized
Llock manager.

To take full advantage of the primary copy approach, transactions should not be
routed to processors at random. Rather, load control has to attune the partitioning
of the data and the assignment of the load such that the total number of 'long' tock
requests is minimal. Furthermore, the distribution of the PCAs and the routing
strategy can be dynamically modified in case a processor fails or is added, or when
the transaction Lload profile changes significantly [15]. Thus, PCL allows a tight
and effective cooperation with the load control permitting flexible adaption to
changing working conditions; these properties should result in much less messages
for synchronization than using a CLM.

In [191 an optimization of the primary copy algorithm is proposed which provides a
more effective treatment of read locks, especially for level-2-consistency (short
read locks). Furthermore, solutions are given to cope with buffer invalidation using
additional 1information in the GLT and avoiding any extra messages. Algorithms for a
coordinated calculation of a routing strategy and a PCA distribution are presented
in [181.

4. Optimistic concurrency control

With optimistic concurrency control (0CC) any transaction consists of a read phase,
a validation phase, and a possible write phase [13]. During the read phase a
transaction performs all updates within a private buffer not accessible by other
transactions. The validation has to guarantee serializibility of the transactions;
conflict resolution relies on transaction abort. The write phase is only required
for update transactions which have successfully validated. In that phase, sufficient
log data has to be forced to a safe place and the modifications are made visible to
other transactions (update propagation).

In [6] two kinds of OCC schemes are distinguished: First, the backward-oriented
approach (BOCC), originally introduced in [13], and second, the forward oriented
method (FOCC).

With BOCC, each transaction is validated against all committed transactions that
have been running in parallel with the validating transaction at any point in time.
Validation compares the read and uwrite set of the validating transaction to the
write sets of these completed transactions. In case of conflict, the vali-
dating transaction must be aborted.

With FOCC, on the other hand, the write set of a validating transaction is checked
against the current read sets of all ongoing transactions. Accordingly, only update
transactions have to validate. For conflict resolution, FOCC provides more flexibi-

Llity than BOCC because all conflicting transactions are not yet committed [61.

625

In a DB-Sharing environment, OCC is particular attractive because long synchroni-
zation requests are necessary for validation only. Therefore, with BOCC the number
of messages is restricted to one per transaction, and with FOCC to one per update
transaction validation conflicts notwithstanding. Since the number of synchroni-
zation requests is fixed, OCC has somewnhat different design goals than locking

algorithms. A 'good' OCC scheme must mainly provide two characteristics:

1. Validation must be fast for attaining high transaction rates since only one
transaction can be validated at any time.
2. The number of transaction aborts must be low since rolling back a transaction

increases response time and induces additional overhead.

One problem with 0CC in a distributed environment as DB-Sharing comes from the fact
that validation has to be (at least logically) centralized to avoid that more than
one validation is performed at any time. Furthermore, all updates of successfully
validated transactions must be propagated in an uninterruptable way to ensure that
other transactions see all the modifications or none. These requirements show the
need of a centralized authority for validation and propagation control which can

basically be implemented in two ways [81]:

a) Star topology b) Token ring topology
Figure 4: Synchronization topologies for 0CC in distributed systems

- In a star topology (Fig. 4a), a central concurrency controlier (CCC) can be used
for all validations and also for controlling update propagation (and possibly
buffer invalidation).

- In a token ring topology (Fig. 4b), on the other hand, control is distributed.
Here, validations are only allowed at the site that owns the token which is

circulating along a virtual ring connecting all processors.

In the remainder of this section we first describe a BOCC-scheme with a CCC. After
that, a FOCC-Like algorithm using a token ring topology is investigated.

626

4.1 Centralized BOCC—algorithm

In this scheme, each transaction has to send a validation request to the CCC after
the read phase. The validation request contains the start time of the transaction as
well as the read and urite set. Before validation, the transaction is assignhed a
unique transaction number derived from a transaction number count (TNC). The TNC is
increased by 1 each time a transaction number is assigned. Besides of the TNC, the
CCC also maintains a so—called transaction table (Fig. 5a) to store the write sets
of successfully validated transactions required for validation. The insertion order
in the transaction table is determined by the transaction number.

To validate a transaction T, the CCC firstly uses the start time of T to find out
the oldest update transaction T* that had run in parallel with T at any point in
time. For validation of T each element of T's read set (we assume that the write set
is part of the read set) must be compared to the write set of T* and to all write
sets of transactions younger than Tx being kept in the transaction table. Obviously,
this simple implementation requires a huge number of comparisions per valtidation
that grows with the transaction rate of the system. The total number of comparisions
increases as a square function of the transaction rate. For this very reason, in [8]
the whole approach is argued to be infeasible for high performance. It was estimated
that the CCC would require 185 MIPS for validation of 1000 transactions per
second (tps)! However, it is quite easy to eliminate the validation bottleneck by

using a more appropriate implementation.

1 [
—> .
T write set OBI-ID
o of T i 0/2
T TMAX
m+1
NG —> — v
write set H .
of Tm+1
a) transaction table b) object table

Figure 5: Data structures of the CCC in a BOCC-~scheme

Improved implementation

The number of comparisions can be drastically reduced by keeping an additional data
structure named object table (Fig. 5b). The object table is organized as a hash
table and contains an entry for each element of the write sets stored in the
transaction table. Besides of the object identifier, a field TMAX is maintained in

627

each entry of the object table indicating the number of that transaction which has
modified the object most recently.

The great advantage of the object table is that it altlows for a fast validation,
though additional storage requirement and maintenance overhead is introduced. With
the object table it is no longer necessary to scan large parts of the transaction
table in order to validate a transaction T. Now, for each element of T's
read set one merely has to look up whether the object table contains an entry. A

conflict is given if an entry is found with TMAX >= T* where T* is defined as above.

The usefulness of the improved implementation can already be demonstrated by a rough
assessment of the processing capacity required for validation. The number of
instructions per second (#vi) for validation can be estimated as follows:
fivi = t *xr xv

t transaction rate (tps)
C average size of a read set

number of instructions for looking up an entry in the object
table and for comparing TMAX with Tx

with

The formula shows that the number of instructions for a single validation does not
depend on the transaction rate, but only on the size of the read set and on
parameter v. The value of v can be kept small if the average number of entries per
hash class is low, what can be attained by choosing the number of hash classes lLarge
enough. With t=1000 tps, r=10, and v=50, the above expression yields that the CCC
must merely provide 0.5 MIPS for validation (instead of 185 MIPS) !

In a similar way, the number of instructions needed for maintenance of the data
structures and for communication can be estimated. Although the processing capacity
required for these actions 1i1s about one order of magnitude higher than for
validation, the needed instruction rate also depends only linearly on the trans-
action rate. In our opinion, a 20-MIPS-processor (with a utilization of less than 50
% to keep contention smatl) should be sufficient for the work of the CCC in a

DB-Sharing system with 1000 tps.

Further optimizations
In [22] two further improvements for the centralized BOCC-scheme are proposed in
order to avoid multiple rollbacks of the same transaction and to deal with Long

transactions, for which a validation conflict is very likely:

- For transactions failed to validate, the CCC enters the read and write sets into
the tables used for vatidation yet. This has the effect of preclaiming and
guarantees that the second execution suceeds providéd the same objects are
referenced what is very likely for short transactions.

- It was further shown in [22] that the BOCC-scheme can be combined with a locking
strategy where the CCC plays a similar role as the CLM discussed in 3.1. Although
the whole protocol 1is getting more complicated, it also allows a 'pessimistic’
synchronization advisable for long transactions in order to avoid cyclic

628

restarts. Since response time is not supposed to be critical for long trans-

actions, the locking strategy seems to be zppropriate for them.

4.2 Decentralized FOCC-algorithm

In this scheme, a processor can validate transactions in its master phase only (i.e.
when the processor 1is hosting the token) guaranteeing that only one validation is
possible at any time. Validation against local transactions can be done with the
same techniques as in centralized systems. For validation against non-local
transactions, the write sets of locally validated transactions (recall that only
update transactions must validate) are sent along with the token (in a buck) to the
other processors. Therefore, a processor must check all local transactions against
these urite sets in the buck after receipt of the token.

If a locally validated transaction T is permitted to be aborted at other processors,
its write phase must be delayed until its write set has successfully passed all
processors. This delay, however, can be avoided if the so-called kill policy is
applied against external transactions. With this policy, all transactions are
aborted that conflict with any write set in the buck. Therefore, the success of a
transaction is guaranteed as soon as it has survived the local validation.

In such a scheme, the following actions take place after reception of a buck at

processor P:

1. The uwrite sets of transactions that have been executed on P are removed from the
buck because they have just completed their round trip on the ring.

2. Global validation.
The remaining urite sets in the buck (originating from external transactions) are
checked against the read sets of transactions currently in progress on P. If 2a

conflict occurs, the local transaction is aborted (kill policy).

3. Local validation.
Local update transactions having finished their read phases are validated against

local transactions.

4. Update propagation.
The updates of external transactions for which a global validation has been
performed 1in step 2 must now be made visible at processor P. The write sets in
the buck indicate the modified objects and can be used to detect invalidated
copies in the local buffer [16].

5. Transmission of the token.
The write sets of locally validated transactions are appended to the buck which
is now forwarded to the next processor.

6. Write phases of locally validated transactions.

629

For transactions that have successfully validated in step 3 sufficient log data

must be written and their updates are made visible to local transactions.
Steps 2 to 4 must run in a critical section.

To achieve high performance with this FOCC-scheme it is extremely important to keep
the master phases as short as possible. In [8] it is even demonstrated that the
whole algorithm is collapsing if the token remains longer than a certain time t at
one node (the value of t 1is getting smaller with more nodes). The reason for
this is that if the token remains too long at one node, all other nodes produce even
more transactions waiting for global validation. Therefore, the validation periods

after the receipt of the token are ever increasing what leads to the breakdown.

In order to avoid such problems, the write phases of local transactions (step 6)
must be performed after the master phase (steps 1 to 5) because they require
physical I/0 (at least COMMIT-records of successful transactions must be written to
the log). A further reduction of the master phases may be achieved if local
validation (step 3) is partially performed before the token arrival. Although we
cannot discuss possible realizations due to space Llimitations, it should be

mentioned that this would considerably increase the complexity of the protocol.

Empirical studies for centralized DBMS have shown [14] that FOCC with a kill policy
for conflict resolution leads to a high abort rate, especially for long transactions
and in environments with a high share of update transactions. This should also hotd
for DB-Sharing systems where the global level of multiprogramming and hence the
resulting conflict probability is even higher. Therefore, more flexible resotution
strategies must be applied, in general, to avoid frequent restarts and to guarantee
a fair scheduling. However, such alternative resolution strategies increase the
response times of update transactions, because a validation now needs the agreement
of all processors inducing an additional delay of one token round trip. Since the
circulation time of the token raises with more nodes, only a few processors

can be used in this approach due to the response time impact.

5. Conclusions

In the previous sections we have discussed 5 different concurrency control
algorithms for DB-Sharing: three locking (CLM, EPTB, PCL) and two optimistic methods
(BOCC, FOCC). Although sufficient quantitative analysis is still outstanding for
most of the schemes, we will try to give a coarse comparision of the algorithms for

a variety of aspects:

Response times
Response times are mainly determined by the average number of synchronization

messages per transaction and - in particular with optimistic schemes - by the amount

630

of transaction abort. In algorithms based on a token ring topology (FOCC, EPTB.,
response time is also increased by waiting for the arrival of the token.

When concentrating on the number of messages, the optimistic protocols and the
EPTB-algorithm are best, because they allow one message per transaction or less in
average. The number of transaction aborts with BOCC and FOCC is not predictable; it
primarily depends on the policy for conflict resolution, on the workload, and on
transaction routing.

The CLM approach seems to require most synchronization messages since, in general,
sole interest 1is not stable enough to provide a significant Llevel of local
synchronization. The PCL scheme 1is evidently superior to the CLM-design even so
response times (and transaction rates) do heavily depend on the application and on

the cooperation with the Load controtl.

Transaction rates

The EPTB-approach can only support modest transaction rates (about 200 - 300 tps)
for being Llimited to 2 processors. Among the other algorithms, the CLM approach
appears to have the lowest performance due to the large message requirements. The

performance of the remaining protocols is currently investigated in simulations.

Expandability and modular growth

Modular growth means that transaction throughput should grow almost linearly when
adding a new processor whereas response times must not increase significantly. This
is hard to achieve since the transactions at the new processor usually lead to a
higher conflict probabilty and hence to more lock waits, deadlocks and transaction
aborts.

The EPTB-protocol has been Llimited to two processors (no expandability) because
otherwise waiting for the token arrival would have increased response times
unacceptably. The token ring topology also restricts the FOCC-scheme to a small
number of processors (less than 10) as explained in 4.2.

The CLM- and PCL-algorithms are also not likely to permit modular growth for more
than a small number of processors. Due to the weakness of the sole interest concept,
the CLM approach is restricted to few processors anyway; each additional processor
makes sole interest situations even less probable. With PCL the distribution of the
PCAs and the transaction routing must be adapted when a new processor is added in
order to make use of the extended processing capacity. For modular growth, these
adaptions - performed by the Lload control - must assure the same degree of
Ltocal synchronization. This, however, is only possible if the number of significant
transaction types is greater or equal to the number of processors and if these
transaction types are mainly operating on distinct parts of the database. In our
opinion, in many applications these prerequisites are only given for a small
number of processors.

In the BOCC-scheme with the implementation technique described above, the CCC is not

631

likely to cause a bottleneck in the range of 1000 tps. The critical question with
this scheme 1is whether or not the amount of transaction abort can be kept small

enough when a new processor is added.

Dependence on load control
Load control has direct influence on system performance - irrespective of what

synchronization technique 1is 1in use - since transaction routing determines the
amount of buffer invalidations. For efficient synchronization, the locking algo—-
rithms (and mostly the PCL-scheme) depend more on the load control than the opti-

mistic methods.

Availability

To provide high availability, concurrency control must guarantee the consistency of
the database even 1in the presence of failures. Especially a processor crash must
leave the database available for transaction processing at the surviving processors.
Therefore, the concurrency control algorithm must be capable of correctly continuing
synchronization after a processor failure.

Since the centralized algorithms (CLM, BOCC) offer single points of failure,
provisions must be made for the crash of the central authority (CLM or CCC). The
techniques for this are well—known from the design of fault-tolerant systems, e.g.
one could install a shadow at a different processor that is periodically updated by
checkpoint messages [51.

With distributed protocols, information essential for synchronization after a
processor crash must also be maintained redundantly at different sites. For the
PCL-scheme a method has been developed for reconstructing global lock tables that

have been lost during a processor crash [15].

_Hot spots and batch transactions

ALl proposed algorithms have problems to ensure high performance in the presence of
hot spots and long (batch) transactions. In [4] it is advised to avoid hot spots in
the database design, if possible. Batch transactions should be splitted into a
number of mini-batches that can be run as a normal part of transaction processing.

If hot spots cannot be eliminated, one must use special protocols for synchroni-
zation. Such protocols based on locking are already proposed or implemented (IMS

Fast Path) for centralized systems [3,20].

ALl in all, two of the five algorithms (CLM, EPTB) appear not to be appropriate to
meet the requirements for a high performance DB-Sharing system. The other protocols
are currently investigated 1in simulations driven by real-life database reference
strings in order to dquantify the performance behavior and to allow a more

comprehensive comparision.

632

References

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

2z2.

23.

24.

25.

Thi

Anon. et al.: A Measure of Transaction Processing Power. Datamation, April 1985

Bernstein, P.A., Goodman, N.: Concurrency Control 1in Distributed Database
Systems. ACM Comp. Surveys, 13 (2), 195 - 225, 1981

Gawlick, D.: Processing Hot Spots in High Performance Systems. Proc. IEEE Spring
CompCon, San Francisco, 249 - 251, 1985

Gray, J. et al: One Thousand Transactions per Second. Proc. IEEE Spring CompCon,
San Francisco, 96 - 101, 1985

Gray, J.: Why Do Computers Stop and What Can Be Done About It. in: Proc. Office
Automation 85, German Chapter of the ACM, Teubner-Verlag, 128 - 145, 1985

Harder, T.: Observations on Optimistic Concurrency Control Schemes. Information
Systems 9 (2), 111 - 120, 1984

Harder, T.: DB=Sharing vs. DB-Distribution - die Frage nach dem Systemkonzept
zukiinftiger DB/DC-Systeme. Proc. 9th NTG/GI conf. on Computer Architecture and
Operating Systems, NTG-Fachberichte 92, VDE-Verlag, 151 — 165, 1986, in German

Harder, T., Peini, P., Reuter, A.: Optimistic Concurrency Control in a Shared
Database Environment. Manuscript, Univ. of Kaiserslautern/Stuttgart, 1985

Harder, T., Rahm, E.: Quantitative Analysis of a Synchronization Algorithm for
DB-Sharing. Proc. 3rd GI/NTG conf. on Measurement, Modelling and Evaluation of
Computer Systems, IFB 110, Springer-Verlag, 186 - 201, 1985, in German

Harder, T., Rahm, E.: Multiprocessor Database Systems for High Performance
Transaction Systems. Informationstechnik 28 (4), 1986, in German

Keene, W.N.: Data Sharing Overview. In: IMS/VS V1, DBRC and Data Sharing User's
Guide, Release 2, G30-5911-0, 1982

Kim, W.: Highly Available Systems for Database Applications. ACM Comp. Surveys
16 (1), 71 - 98, 1984

Kung, H.T., Robinson, J.T.: On Optimistic Methods for Concurrency Controt. ACM
TODS 6 (2), 213 - 226, 1981

Peinl, P., Reuter, A.: Empirical Comparision of Database Concurrency Controtl
Schemes. Proc. 9th Int. conf. on VLDB, 97 -108, 1983

Rahm, E.: A Reliable and Efficient Synchronization Protocol for DB-Sharing.
Internal Report 139/85, Dept. of Comp. Science, Univ. of Kaiserslautern, 1985

Rahm, E.: Buffer Invalidation Problem in DB-Sharing Systems. Internal Report
154/86, Dept. of Computer Science, Univ. of Kaiserslautern, 1986

Rahm, E.: Closely Coupled Architectures for a DB-Sharing System. Proc. 9th
NTG/GI conf. on Computer Architecture and Operating Systems, NTG-Fachbe-
ricnte 92, VDE-Verlag, 166 - 180, 1986, in German

Rahm, E.: Algorithms for Efficient Load Control in Multiprocessor Database
Systems. Angewandte Informatik 4/86, 161 — 169, 1986, in German

Rahm, E.: Primary Copy Synchronization for DB-Sharing. To appear in: Information
Systems 11 (4), 1986

Reuter, A.: Concurrency on High-Traffic Data Elements. Proc. Principles of
Database Systems, 83 - 93, 1982

Reuter, A.: Load Control and Load Balancing in a Shared Database Management
System. Proc. 2nd Data Engineering Conf., 1986

Reuter, A., Shoens, K.: Synchronization in a Data Sharing Environment. IBM San
Jose Research Lab., preliminary version, 1984

Shoens, K. et al.: The AMOEBA Project. Proc. IEEE Spring CompCon, San Francisco,
102 - 105, 1985

Stonebraker, M.: Concurrency Control and Consistency of Multiple Copies in
Distributed Ingres. IEEE Trans. on Software Eng., SE-5 (3), 188 - 194, 1979

West, J.C, et al.: PERPOS Fault-Tolerant Transaction Processing. Proc. 3rd Symp.
on Reliability in Distributed Software and Database Systems, 189 — 194, 1983

s work was financially supported by SIEMENS AG, Munich.

