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Abstract. There is an increasing need to interconnect biomedical on-
tologies. We investigate a simple but promising approach to generate
mappings between ontologies by reusing and composing existing map-
pings across intermediate ontologies. Such an approach is especially promis-
ing for highly interconnected ontologies such as in the life science domain.
There may be many ontologies that can be used for composition so that
the problem arises to find the most suitable ones providing the best re-
sults. We therefore propose measures and strategies to select the most
promising intermediate ontologies for composition. Experimental results
for matching anatomy ontologies demonstrate the effectiveness of our
approaches.
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1 Introduction

In recent years ontologies have become increasingly important in the life sci-
ences [BII8]. For instance, Bio2RDF [3], the OBO Foundry [24] or BioPor-
tal [20028] distribute a growing number of biomedical ontologies from different
domains such as anatomy and molecular biology. The ontologies are primar-
ily used to annotate objects such as proteins, genes or literature to achieve a
better information exchange. Often there are different ontologies from one do-
main containing overlapping or related information. As an example information
about mammalian anatomy is available in NCI Thesaurus [19], Adult Mouse
Anatomy [I] or the Unified Medical Language System [27]. In such cases on-
tology mappings can be used to express correspondences between different but
related ontologies, e.g., which concepts of two different ontologies are equivalent.

Mappings between related ontologies are useful in many ways, in particular
for data integration and enhanced analysis [20/14]. They are needed to merge
ontologies, e.g., to create an integrated cross-species anatomy ontology such
as the Uber ontology [26] or may also be useful to transfer knowledge from
different experiments between species [6]. There are already numerous mappings
between ontologies available, e.g., BioPortal provides mappings between approx.
300 ontologies. However, there is still a strong need for increasing the number of
mappings as most ontologies are interlinked to only one or a few other ontologies.



Fig. 1. Mapping composition with multiple intermediate alternatives

Furthermore, new ontologies need to be connected to existing ones. The size of
biomedical ontologies makes a manual generation of new mappings unfeasible,
hence (semi-) automatic match algorithms are required.

We focus on the reuse and composition of existing mappings between on-
tologies to indirectly determine new ontology mappings and correspondences.
Such an approach is especially promising for the life science domain where many
mappings can be reused (e.g., from BioPortal). A main advantage of such a com-
position approach is its simplicity and high efficiency even for large ontologies.
As shown in Fig. [I} one can use multiple alternatives (routes) to establish a
new mapping between a source (S) and target (") ontology using composition.
First, there can be multiple intermediate ontologies IO (IO ...I10,,) leading to
questions like: ”Is it better to use IO instead of 105 or both?”. Second, for one
single intermediate ontology there can be several alternatives if there are multi-
ple mappings between two ontologies (dotted/dashed lines between S and 10y),
e.g., determined by different match approaches. Considering a large number of
possible composition alternatives we need an automatic approach to select the
most suitable intermediates that likely result in the best composed mappings.

In this paper we study such selection methods and make the following con-
tributions:

— We propose an efficiently computable measure to determine the effectiveness
of composition routes via intermediate ontologies. For the case of composing
two mappings, the effectiveness measure helps to find the most promising
intermediate ontology.

— We describe two strategies using the proposed effectiveness measure to rank
and select the top-k intermediates for mapping composition. Combining the
derived mappings for the top-k routes helps to improve the overall mapping
quality.

— We evaluate the proposed approach on the OAEI [21] anatomy match task
by using existing mappings determined by different match approaches. The
obtained mapping quality results demonstrate the effectiveness of the pro-
posed selection strategies.

In Sec. 2] we introduce our ontology and mapping model. Sec. [3] presents the
composition-based match approach. We describe our effectiveness measure and
outline two strategies for selecting the most promising routes. We evaluate the
approach in Sec. [4l After a discussion of related work (Sec. , we summarize
and outline possible future work.



2 Preliminaries — Ontologies and Mappings

An ontology O = (C, R, A) consists of a set of concepts C which are interrelated
by directed relationships R. Each concept has an unique identifier (e.g., accession
number, URI) that is used to reference the concept, e.g., the concept 'Vertebra’
in NCI Thesaurus is unambiguously referenced by C12933. A concept typically
has further attributes a € A to describe the concept, e.g., C12933 has the name
"Vertebra’ and a synonym ’Vertebrae’. A relationship r € R forms a directed
connection between two concepts and has a specific type, e.g., is_a or part_of. In
our case €12933 is a special 'Bone’ (C12366): [C12933, is_a, C12366].

A mapping between two ontologies S and T, Mgy = {(c1,ce, sim)|c1 €
S,co € T, sim € [0,1]}, consists of a set of correspondences between these on-
tologies, e.g., as determined by some ontology match method (see Related Work).
Each correspondence interconnects two related concepts ¢; and co. Their related-
ness is represented by a similarity value sim between 0 and 1 determined by the
used match approach. The greater the sim value the more similar are the cor-
responding objects. Note that we focus on equality correspondences and leave
the consideration of other correspondence types for future work. For already
validated mappings we assume a similarity of 1 for each correspondence.

3 Rating and Selection of Composition Routes

In this section we present our approach to rate composition routes and to select
the most promising ones. After introducing the concept of mapping composi-
tion, we propose an effectiveness measure to rate the value of routes in Sec.
Using this measure we describe the strategies top KByEffectiveness and topK By-
Complement for ranking and selecting the routes (Sec. . We finally describe
in Sec. the combined use of multiple selected routes to create a new mapping.

3.1 Composition for Generating new Mappings

The general idea behind mapping composition is to derive new mappings be-
tween two ontologies by reusing already existing mappings. Thus, new mappings
are generated indirectly via one or more intermediate ontologies instead of a
direct match between the two input ontologies. The typical situation for one in-
termediate is depicted in Fig. . The input consists of two ontologies S/T and
two mappings Ms ro/Mior w.r.t. an intermediate ontology IO. The domain
and range of the mappings can be used to find out which concepts are covered
by the given mappings. For instance, all concepts of S covered by the mapping
to IO are in its domain: domain(Mg ;o). Similarly, IO concepts covered by this
mapping are in its range: range(Ms ;o). Mapping composition is then applied
in the following way. A compose operator takes as input two mappings (from
S/T to I0) and produces new correspondences between concepts of S and T
if correspondences share the same concept in 1O. The result is a new mapping
MS,T:



(a) Positive example (b) Negative example

Fig. 2. Examples for applying the effectiveness measure

Mg = compose(Ms,10,M10,1) =
{(c1, c2,agg9Sim(simy, simz))|c1 € S,co € T,b € IO :
3(81, b, siml) c MS,IO A H(b, Ca, Simg) S MIO,T}

The similarity values of input correspondences are aggregated (aggSim) into new
similarity values, e.g., by computing their maximum or average.

3.2 Effectiveness of Routes

The result of a mapping composition heavily depends on which intermediate
ontologies are used and how the mappings to these intermediates look like. First,
compose can at best create correspondences between concepts of S/T that are
covered by the input mappings to an IO. The more concepts are covered by
an input mapping the more likely it is that they can be interlinked to concepts
in the other ontology. Thus, an intermediate for which mappings only cover a
small portion of S/T are less effective compared to those covering larger portions.
Second, there should be a high overlap of mapped objects in IO, i.e., many 10O
concepts should be in both range(Ms ;o) and domain(M;o r). This is because
new correspondences can only be created if there are intermediate concepts for
the composition. By contrast, a small overlap will only permit the creation of
few correspondences, i.e., small and likely incomplete mappings. Based on these
observations we define a measure to rate the effectiveness of a route between
sources S and T via an intermediate 10:

2 - |range(Ms 10) N domain(Mio,r)|
IS+ T

The measure is largely based on the size of the overlap of concepts in the
intermediate ontology, i.e., the larger the overlap the better the effectiveness.
Second, we relate this overlap to the sizes of the ontologies to be matched S and
T. Only mappings with many correspondences can produce a high overlap and
a good coverage of concepts in S and T Fig. [2] shows two examples for applying
the measure. The left example results in a good effectiveness of (ﬁzO.?’é)
because the overlap in the intermediate ontology covers a large part of S and T.

By contrast, in the right example there is only one overlapping concept in the

eff(S,I0,T) =



Algorithm 1: topKByComplement
Input: set of intermediates all;o, input ontologies S and T, number of
intermediates to consider k
Output: top intermediates topK
topI O < getMostEffectiveIntermediate(all;o);
topK .add (toplO), allro.remove (toplO);
covqy 4 domain(Ms topro) U range(Miopro,T);
while |topK| < k do
complmaz < 0; topIO < null;
foreach IO € all;o do
complio + (domain(Ms,;0) U range(Mio,1)) \ covau;
if |complio| > |complmas| then
complmaez < complro;
L topl O+ 10;
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11 COVqy < COVq 1 U complimaz;
12 | topK.add(toplO); allro.remove (toplO);

13 return topK;

intermediate ontology resulting in a poor effectiveness of 42_%4:0.25. The compose
operator would produce the following mappings (without similarity values): (a)
Msr = {(A,A"),(B,B'),(C,C")} and (b) Mgr = {(B,B’)}. This shows that
the better rated intermediate ontology is able to produce more correspondences

and thus a more complete mapping.

3.3 Ranking and Selection of Routes

Mapping composition using only one route may lead to insufficient (incomplete)
match results. Composing mappings for several routes via different intermediates
and combining their results is likely to improve the mapping to be determined.
This is because other intermediate sources may provide additional correspon-
dences between the input ontologies. The question thus arises which of the avail-
able routes should be selected for mapping composition. In the following, we
describe two selection strategies that we will also evaluate later.

The first strategy topKByFEffectiveness simply uses a ranking based on the
effectiveness measure described in Section [3:2] Hence, we perform composition
only on the k most effective routes and combine their results.

The second strategy topKByComplement also selects the most effective route
but selects the remaining routes based on the number of complementary corre-
spondences they can provide. The strategy determines how much additional gains
can be achieved by considering further routes. For instance, if one has to match
two anatomy ontologies, an ontology about the skeletal system would be com-
plementary to one about the nervous system or blood circuit. Hence, it makes
sense to consider intermediate ontologies that contain additional knowledge that
others do not provide.



Algorithm 2: topKComposeMatch

Input: set of possible intermediates all;o, input ontologies S and T', selection
strategy selectionStrategy, merge strategy mergeStrategy, number of
intermediates to consider k

Output: mapping between S and T Mg,

alljo < computeEffectiveness(allio,S,T);

topK < getTopRoutes (all;o,selectionStrategy,k);

mapList < empty;

foreach /0 € topK do

Ms, 10 <—getMapping(S,10);
Mo, +getMapping(10O,T);
mapList.add (compose (Ms,10,Mo0,1));

b =L B NV VR

®

return merge (mapList, mergeStrategy);

Alg. [1) shows the implementation of this strategy. It first selects the most ef-
fective intermediate based on our effectiveness measure (lines 1-3). It then iter-
atively (while loop) adds the intermediate possessing the maximum complement
(complinas) compared to the already covered objects (covgy) in S and T (lines
5-12). Particularly, we compare the covered concepts of the current intermediate
with the covered concept set (covgy;) from already selected intermediates. In each
round we select the intermediate which brings us the maximum complement.

3.4 Overall Composition Algorithm

We use the algorithm topKComposeMatch (see Alg. [2)) to perform the composi-
tion for the k selected intermediates and to combine the composition results to
obtain the overall mapping between two input ontologies.

We first apply our effectiveness measure on each route (line 1). Based on
the given selection strategy (topKByEffectiveness, topKByComplement) we filter
the top k promising intermediates (line 2). We then iteratively compose the
mappings between S and T along each selected intermediate (lines 4-7). The
generated mappings are temporarily stored in a mapList and are finally merged
according to a specified merge strategy, such as union or intersection.

4 Evaluation

We evaluate our approach by composing mappings between anatomy ontolo-
gies. In particular, we focus on generating mappings between the Adult Mouse
Anatomy (MA) and the anatomy part of NCI Thesaurus (NCIT) which is a chal-
lenging task in the yearly OAEI [21] match contest. This has the advantage that
we can use the publicly available OAEI gold standard (perfect mapping) to assess
the quality of computed mappings (using precision, recall and F-measure) and to
compare the achieved results with the published results of other approaches. Fur-
thermore, we can reuse a lot of already existing mappings, in particular mappings



provided by BioPortal [28] and mappings that we previously generated using our
GOMMA ontology management infrastructure [16].

We first describe our experimental setup in more detail (Sec. . We then
correlate the effectiveness measure with the achieved match results by composing
the mappings according to different intermediate ontologies (Sec. . Finally,
we adopt our selection strategies and present results of performing composition-
based matching via the most promising intermediate ontologies (Sec. .

4.1 Experimental Setup

The experiment focuses on generating mappings between the ontologies MA
(2,737 concepts) and NCIT anatomy part (3,298 concepts) as available in June
2011. We use 28 input mappings interrelating MA/NCIT via 11 different in-
termediate ontologies. The input mappings are separated in two different sets.
The first mapping set (referred to as Mapping set 1) is taken from the commu-
nity platform BioPortal [28] and comprises 20 mappings from MA or NCIT to
10 ontologies including BRENDA Tissue Ontology (BTO), Cell Line Ontology
(CL), Foundational Model of Anatomy (FMA), Galen (Galen), Logical Observa-
tion Identifiers Names and Codes (LOINC), Medical Subject Headings (MeSH),
RadLex, Uber Anatomy Ontology (Uber), Teleost Anatomy (TAO), and Ze-
braFish Anatomy (ZF). These mappings have been created with the LOOM
match approach [11]. LOOM takes all names and synonyms of the ontology con-
cepts as input and returns concept pairs as matching when one of their name or
synonym differ in at most one character. We use the mappings as provided by
the BioPortal web pagdﬂ

The second set of mappings (called Mapping set 2) consists of eight mappings
interrelating MA and NCIT with four intermediate ontologies including Unified
Medical Language System (UMLS), Uber, FMA, and Radlex. These mappings
have been automatically created by a GOMMA match process. It uses a high
trigram string similarity between concept name and synonyms to generate cor-
respondences between concepts. Moreover, post-processing steps are applied to
select only the best correspondence(s) per concept (MaxDelta selection (see [7]))
and removal of crossing correspondences [15].

4.2 Route Effectiveness

We focus on routes involving a single intermediate ontology since there are many
such routes. Typically, routes with chains of two or more intermediate ontologies
may result in a reduced effectiveness. Table [I] shows selected statistics for the
considered routes over different intermediates indicated in the columns. The
routes are grouped by mapping set and ordered by the computed effectiveness
(last row) starting with the route having the highest effectiveness. The first two
rows characterize the input mappings for each route by showing the number
of correspondences they comprise. These numbers are very different in both

! BioPortal: http://bioportal.bioontology.org, http://rest.bioontology.org



Mapping set 1 Mapping set 2
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Table 1. Mappings between MA and NCIT included in the evaluation according to
the two used mapping sets

mapping sets ranging from approx. 1,900 (4,300) of the largest to about 200
(1,000) correspondences of the smallest mapping in Mapping set 1 (Mapping set
2). For the ontologies used in both mapping sets (Uber, FMA, and Radlex), the
mappings in Mapping set 2 are larger than in Mapping set 1.

The third row displays the sizes of the mapping overlap in the intermediate
ontology that is decisive for the effectiveness. In Mapping set 1, the route via
Uber has the largest overlap (1,048 objects) and the highest effectiveness value of
0.35. In Mapping set 2, the number of referenced concepts in the intermediates is
larger resulting in higher effectiveness values, but the relative order Uber, FMA,
and Radlex remains. However, the route via UMLS has the highest effectiveness
measure (0.67) and, is thus the most promising route for Mapping set 2.

4.3 Correlation of Routes Effectiveness and Composition Quality

Fig. [3| correlates the effectiveness (dashed line, z-axis on the right) for each route
with the match quality of the composed mapping in terms of precision, recall
and F-measure (bars, y-axis). The routes are decreasingly ordered by their effec-
tiveness from left to right and separated for both mapping sets. Overall, there
is an excellent correlation between the effectiveness values and achieved match
quality for both mapping sets. This means that the composed correspondences
are indeed valuable and contribute to the match result so that higher effective-
ness values translate into higher F-measure values. For instance, for Mapping
set 1 the route via Uber has the best effectiveness and the highest F-measure
of 0.76 whereas the route via TAO with the lowest effectiveness (0.05) results in
the worst F-measure of only 0.16. The same holds for Mapping set 2: the route
via UMLS (Radlex) with the highest (lowest) effectiveness generates a mapping
with the best (worst) F-measure of 0.87 (0.6). Therefore, using the effectiveness
metric is a valid and reliable means to select the intermediate ontology providing
the best match quality.
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Fig. 3. Match quality for mapping compositions of routes with a single intermediate
(sorted by effectiveness) for Mapping set 1 (a) and Mapping set 2 (b)

4.4 Top K Selection and Composition

In the next experiment, we evaluate whether the match quality (F-measure) can
be increased when using the proposed selection strategies topKByEffectiveness
and topKByComplement for selecting k routes and combining their composition
results. We set k to 3 and use union as merge operation in both selection strate-
gies. According to the effectiveness values for each route (see Table |1l and Algo-
rithm [1)) we select routes via Uber, FMA, and CL (UMLS, Uber, and FMA) in
Mapping set 1 (Mapping set 2) for the topKByE(ffectiveness strategy and routes
via Uber, FMA, and Galen (UMLS, Uber, and FMA) in Mapping set 1 (Mapping
set 2) for the topKByComplement strategy. For comparison, we consider several
additional selection strategies. They include the single route with the highest
F-measure in the mapping set (BestSingle) and the strategies resulting in the
worst (Min3), average (Avg3), and best (Max3) F-measure result for combin-
ing any three routes. Moreover, we computed the combination of all routes per
mapping set (All).

Fig. d]shows the F-measure for all selection strategies and both mapping sets.
The results show that in both cases the topKByComplement strategy focusing
on complementary mappings produces the max. possible match quality, i.e., it
is able to identify the best and most effective composition routes. Interestingly,
doing a compose-based match on only three out of the 10/4 possible routes results
in better match quality than using all available routes since it apparently avoids
wrong correspondences introduced by weaker routes. For instance, in Mapping
set 1 F-measure is increased by 3% (74.2% — 77.4%) compared to the ’All’
strategy. For Mapping set 2, the F-measure is improved by 0.2% compared to
"All’. The resulting F-measure of 91.5% is comparable to the best result in the
OAEI 2011 contest (91.7% F-measure). While the OAEI contest poses certain
restrictions, the participating prototypes did also exploit background knowledge
for the Anatomy test case. Our topKByEffectiveness strategy shows marginally
worse results compared to topKByComplement (76.2% vs. 77.4% for Mapping
set 1), apparently since CL complements Uber and FMA less well than using
Galen as intermediate ontology.
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Fig. 4. Match results of combinations of multiple routes

5 Related Work

Ontology matching is the process of determining a set of semantic correspon-
dences (ontology mapping) between concepts of two ontologies. A manual match-
ing by domain experts is very time-consuming and for large ontologies almost
infeasible. Thus, many (semi-)automatic matching algorithms have been de-
veloped for ontology matching (see [922I23] for surveys). Common match ap-
proaches follow a direct matching by employing lexical and structural methods;
some approaches also consider the similarity of ontology instances. State-of-the
art match systems such as COMA++ [2], Falcon [I3] or SAMBO [I7] combine
multiple matchers within a match strategy to achieve better match quality. Re-
sults of matching biomedical ontologies showed that linguistic matching methods
based on the similarity of concept names and synonyms produce very good re-
sults [30UTT].

The composition of mappings has mainly been studied for schemas [8J10] and
in model management [4]. Only a few approaches consider mapping composition
for deriving new mappings in ontology matching. For instance, [29] utilizes FMA
as an intermediate to indirectly generate a mapping between MA and NCIT.
Similarly, the SAMBO system [17] utilizes background knowledge (e.g., UMLS)
to find additional correspondences in the match process. [25] presents an em-
pirical analysis of mapping composition available in BioPortal. In own related
work [I2], we already studied mapping composition. The primary focus of this
work was on match quality (F-measure) by a manual intermediate selection but
not on automatic strategies to select the best intermediates according to their
expected contribution to the overall match quality.

In contrast to these approaches this paper differs in the following points.
First, we apply mapping composition with multiple routes, while most match
approaches only consider one route or purely apply a direct match. Second, we
focus on finding the most valuable routes for mapping composition out of a pool
of possible routes in two different mapping sets. A ranking of routes w.r.t. their
effectiveness allows us to compose mappings for a reduced number of routes
saving time and possibly improving match quality as shown in the evaluation.

10



6 Conclusion and Future Work

We proposed a new approach to rank and select promising routes for composing
mappings between biomedical ontologies. The introduced effectiveness measure
can be easily computed and allows a reliable identification of the most promis-
ing intermediate ontologies for composition-based ontology matching. We further
proposed the selection of the k top routes and the combination of their composi-
tion results for improved match quality. Our evaluation for an OAEI match task
on large anatomy ontologies showed the effectiveness of the proposed approach.
In particular we found that the effectiveness metric for different routes corre-
lates excellently with their achievable F-measure quality. Furthermore, we found
that the topKByComplement ranking strategy is most effective that combines
the route with the best effectiveness with routes providing most complementary
correspondences. Our approach could effectively exploit existing mappings and
achieved an excellent 91.5% F-measure for the challenging OAEI anatomy task.
This shows that mapping composition is not only an efficient method to derive
new mappings but can also increase the match quality, e.g., by finding additional
correspondences compared to a direct match approach.

In future work we plan to apply and extend the approach for other domains,
ontologies and data sources, e.g., matching Linked Data sources. In particular,
we want to investigate inter-linking of instance objects and to consider further
correspondence types. We further like to study longer mapping chains consisting
of multiple intermediates.
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