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1.0. Introduction 
 

On the following pages, I will explain the paper “ImageNet Classification with Deep 

Convolutional Neural Networks” (Alex Krizhevsky and Sutskever 2012) and its broader 

context. I will explain certain principles of Neural Networks, then go in depths concerning 

Convolutional Neural Networks and the advantages and significance of the network presented 

in the above-mentioned paper. 

 

1.1. Present significance 
 

Today, Neural Networks and specifically Deep Neural Networks have become a center of 

attention in the TECH-Community. Yet, the theory of neural networks has begun in the early 

1960s but didn’t reach an applicable stage until recently. How did this change take place? 

 

Over the past few decades, there were multiple parallel improvements in areas which have 

positively impacted the practicality of neural networks in general, but two main factors 

predominately made neural networks a practical solution to many problems that have been 

unsolved until recently.  

 

Firstly, the massive advancements regarding the performance and reduced pricing of general 

processing units (= GPUs) has made it financially feasible, and time-wise doable to train neural 

networks in a reasonable amount of time. GPUs showed significant advantages to CPUs by 

having the capability to write and read directly from each other without accessing the hosts 

machine memory and therefore are way quicker in parallel processing tasks such as training 

neural networks. 

 

Secondly, the amount, accessibility and variety of data-sets necessary for training neural 

network has widened and spread over community-based websites such as www.kaggle.com or 

LabelMe (N. Pinto 2008). Training a machine learning algorithm often requires thousands of 

individual data-points depending on the complexity and accuracy required to make a 

prediction. Neural networks require an even bigger amount of available data. Computer Vision, 

which is addressing a significantly more complex problem, requires an even broader number 

and variety of imagery to train a network with. 

 

1.2. Motivation of Computer Vision 
 

So why research a computers ability to see what is happening on an image? One general aim 

of technology is to deliver a certain service to their users in an automatic fashion without or 

minimal work from another person. Yet, a lot of tasks in today’s world require for humans 

simple, but until recently, for machines impossible tasks. Such include identifying another 

person, categorizing objects or detecting anomaly in sight. 

 

Simple forms of computer vision are already deployed in quality control of for example 

agricultural products, in which categorization takes place on conveyor belts. Yet these solutions 

mainly worked statistically, where manual human quality control often had to be done after 

and the system worked for only a very narrow complexity of problems. These areas have seen 

significant improvement. 
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Person identification has always been a big interest in computer vision as its use-cases include 

security, advertisement and retail. One of the first successful mass-deployment software 

working on the bases of computer vision became Instagram with their face-detection and their 

overlay functionality. Taking over an extent of social media and demonstrating that the degree 

of sophistication of computer vision reached a level on which reliable software can be built, 

made a broader audience aware of this technology and its future potential. Google (Alexander 

Toshev 2009) (Ivan Bogun 2015), Adobe (Xu 2017) (Yi 2017) and Facebook (Tsung-Yi Lin 

2017) have invested heavily into research concerning computer vision.   

 

Computer vision also is being incorporated into systems to progress faster in scientific 

discoveries such as fluid-dynamics (Lubor Ladicky 2016) or even early cancer detection 

(Álvarez Menéndez 2010) by using check-up X-Ray- or MRT-imagery. 

 

Additionally, computer vision will be a main part of technologies which are on the brink of 

mass-deployment such as Tesla’s self-driving cars (Lex Fridman 2017), which will require a 

very significant ability and accuracy at detecting and classifying objects, and Amazon’s Go 

Stores (Kayla Backes 2017) are mainly based on object detection and facial recognition. 

 

The potential for scientific discovery, business and the understanding of vision based 

“intelligence” seem to be deeply connected to the progress of computer vision. 

 

2.0. Computer Vision 
 

In this section, we will explore the bases of neural networks, the competition, the specific neural 

network presented in this paper (Alex Krizhevsky and Sutskever 2012), the current state and 

the potential future of computer vision. 

 

2.1. Neural Networks 
 

Neural networks have only recently become state of the art for computer vision in classification 

tasks (see 2.2.2). The base structure of a neural network is a neuron. It consists of incoming 

connections, outgoing connections (except for the last layer) and an activation function. The 

activation function describes what to output based on the input.  

 

 
Figure 1) A basic neural network consists of an input layer, a hidden layer and an output layer. Input is being 

passed onto the hidden layer in which an output is computed based on the input value, the connection weight and 

the activation function. 
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A basic neural network consists of an input layer, a hidden layer and an output layer (which 

can also just be a single neuron. On each connection there is a weight placed, which represents 

the importance of the certain connection for the decision-making process. A decision made by 

the network can be of Boolean nature or also a classification task (see below). The last layer of 

such a network is directly connected to the possible “solutions”. In classification tasks the last 

layer is a special layer called softmax. 

 

Supervised learning takes place in the network by receiving data in form of numerical features 

(for example pricing of a house, number of people, HUE values of an image) and the according 

label what is presented. As in the softmax the according label is given, the network begins to 

alter the weights slightly (in a step-size as big as the learning rate) in favor of receiving a high 

value in the softmax neuron with the given label. This redistributes the weights all the way 

back to the first layer. This process is called back-propagation in supervised learning.  

 

The data is then presented to the network and when all individual data points have been given, 

an epoch has passed. While this process takes place, a small batch of data points not yet 

presented are sampled to test the accuracy of the prediction the network as a measurement to 

see how the network progresses. This is important as training can take hundreds of hours or 

even weeks even with modern GPUs to be fully trained and early experimentation altering 

hyperparameters (= global variables such as the learning rate), the network depth (= how many 

layers), or network width (= how many neurons per layer) can take place to lead to better results 

early on. 

 

Ultimately, when the accuracy of prediction is high enough, a final bigger test-set is used to 

determine the overall accuracy of the network in making predictions. 

 

2.2. Large Scale Visual Recognition Challenge (ILSVRC)  
 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a yearly competition 

by ImageNet, in which each participant presents a predictor-machine that outputs an array of 

what is most likely seen in the presented pictures. The most likely predicted object and the first 

5 most likely predicted objects are then compared to the real label and for each wrong 

classification, the Top-1- and Top-5-Error-Rate are increased. The predictor with the lowest 

error-rate wins. 

 

2.2.1. Goal 
 

The specific goal of the ImageNet Classification Challenge is to establish under standardized 

conditions a benchmark to measure the progression of the scientific community regarding 

computer vision and specifically object detection. 

 

2.2.2. Challenge Progression 
 

The ILSVRC started 2010 and the winning team was a team using a support vector machine. 

The Top-5-Error Rate was at 28%, which means that at that time the best approach could only 

give a top-5 estimate of the correct label in 72% of the images. With such results, most similar 

complex problems concerning computer vision still seemed out of grasp of real world 

application such as identifying hundreds of street signs for self-driving cars with a high 

accuracy. Over the years the Top-5-Error-Rate steadily decreased with a significant drop in 
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2012. End of 2015 the error-rate dropped under the benchmark error-rate of 5%, which has 

been established by a small team of researchers as the error-rate for a human familiar with the 

dataset.   

 

 

 
Figure 2Error! Use the Home tab to apply 0 to the text that you want to appear here.) ILSVRC winning 

teams over the years. 2010 a support vector machine won. From 2012 onwards only CNNs won. 

 

 
Figure 3) ILSVRC winners Top-5-Error-Rate over the years. The error rate dropped significantly over the years 

and even fell end 2015 below humans Top-5-Error-Rate. 

 

2.2.2.1. Significance of 2012 

 

2012, the CNN based network SuperVision reduced the Top-5-Error-Rate significantly from 

26% to roughly 16%. Prior to this result, Support Vector Machines (=SVNs) have been the best 

at predicting labels for imagery and it was estimated that the improvement of SVNs would lead 

to the best predictors with slowly decreasing error-rates over the years as seen from 2010 to 

2011. Yet 2012, a totally different approach which was yet not in the focus of main-stream 

science, won the competition and increased the interest about this emerging technology, which 

at that time still held a lot of undiscovered potential, while also reducing the base line of 

improvement to 16% as the Top-5-Error-Rate. Therefore 2012 became a stepping stone for 

computer vision. 
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2.2.3. The Data 
 

The Data provided by ImageNet consist of 1000 categories with roughly 1000 images each. 

Additionally, to the 1.000.000 pictures provided, another 200.000 pictures were used as the 

validation set at the competition to calculate the error-rates. 

 

The categories were selected by scientist to show typical flaws of networks, by for example 

including very similar categories as Australian terrier and Yorkshire terrier or using close-up 

pictures and zoomed-in pictures for the same label.  

 

 
Figure 4) Left, 3 pictures of the flower toadflax are seen. The dataset includes these 3 pictures with the same level 

independently of their distance to the actual flower. The middle 2 pictures include a Yorkshire terrier, and the 2 

pictures to the right include Australian terriers. The network must be able to differentiate between both dog breeds. 

 

2.2.4. Issues 
 

There is certain controversy about certain labels, which even when asking humans did lead to 

issues in labeling the imagery. 

 

 
Figure 5) Here 3 pictures are given as input to the network and the probability of what is seen is hierarchically 

shown below. The label determined by humans are directly beneath the picture. On the left, a convertible is 

predicted but the human chosen label focused on the grille. The middle picture shows an agaric, a kind of 

mushroom, which is labeled by humans as mushroom. Here the network became overly specific in its prediction. 

The picture to the right has cherries and a Dalmatian in it. As most people focused on the cherries when labeling 

this picture, the predicted Dalmatian and the next 4 probabilities also ignoring the cherries, lead to an increase in 

the Top-1- and Top-5-Error. 

 

Issues surrounding such grey areas are being solved by the community after each competition, 

but some reside unresolved as certain grey areas are intentionally and necessarily implemented 

to determine the outer bounds of the networks. The tasks become slightly more complex over 

the years by diversifying imagery. There is also a debate going on about including abstract 

words such as “labor” or “beauty” into the dataset. 
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2.3. Convolutional Neural Networks (CNNs) 
 

CNNs are the focus of this paper and begin to increase in importance in computer vision. Here, 

we are going to look at what makes CNNs so special. 

 

2.3.1. Structure of CNNs 
 

The base structure of a CNN is pretty much the same to typical feed-forward networks but have 

differences normally in the first few layers right after the input neurons. Convolution describes 

the summarization of a highly complex web of connections fusing more and more together as 

the layers of the network progresses. The middle and end-part of these networks are often 

similarly or identically structured as other neural networks with a few fully connected layers 

towards the end and a softmax as the last layer. 

 

 
Figure 6) The architecture of a CNN. The neurons in the first layer get access to a small part of the input imagery. 

The layers then alternate between convolutional layers and pooling layers. The last few layers are fully connected, 

followed by softmax decision layer. 

 

In the first convolutional layer, each neuron is only connected to a part of the field which holds 

the input parameters. This results into a single neuron in the first layer to only “see” part of the 

entire picture, which forces it specifically in classification tasks to abstract as much information 

as possible from this input field. This has proven to lead to better results specifically dealing 

with pictures where generalization becomes a priority. Each input consists of 256x256 pixels 

(in this network but also used generally) which results into 65.536 individual monochromatic 

values multiplied by the 3 colors red, green and blue per picture. Now multiplying this number 

times 1000 categories with each about 1000 pictures, gives a total of 65.536.000.000 in which 

it must find individual patterns of information that lead a network to stimulate the correct 

category inside of the softmax layer (= decision layer). 

 

These networks need a lot of processing time in adjusting their weights with every new input 

picture provided. As smaller training time becomes significantly more important dealing with 

such large network, the activation function of these networks need to be easy to compute. 

Which is why, Rectified Linear Unit (= ReLU) has become the activation function of choice. 

It works very straight forward by outputting the highest positive value from the input or 0, 

whichever is a more positive number. 
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Between each convolutional layer, there are additional pooling layers, which summarize and 

filters the responses. Pooling has as an input a small region of the previous layer and is therefore 

like the convolutional layers, yet it reduces the total amount of passed on neurons. 

 

 
Figure 10) Left, the visualized output of the first layer of a convolutional neural network is shown. In the second 

layer (middle) the simple features are summed up and the network begins to generate more complex features such 

as ears, eyes and noses. In the third layer the features show the highest complexity which are shortly before the 

softmax layer, which is used to differentiate between faces. 

 

2.3.2. Advantages of CNNs 
 

Since CNNs have taken over as the predominantly winning model in the ILSRVC. Why is this 

the case? First, a pictures label is often unrelated to the exact positioning of the object of interest 

and in convolutional neural network the position becomes significantly less relevant as the first 

layers do not focus on position. Second, CNNs have the big advantage to generalize way better 

than fully connected networks early on which makes the first few layers of such networks often 

very similar to each other independently of what category it tries to classify. This has been 

figured out quite early on and taken advantage of in transfer learning. Transfer learning takes 

a fully trained network and only retrains the last few layers while leaving the weights in the 

frontal network unaltered. This becomes very handy for smaller projects in computer vision, 

with people not having the resources, time, experience with CNNs, or hardware to train 

classifiers to a high degree. Therefore, smaller groups can build CNNs based on already 

existing world-class networks such as Inception by Google (Google 2018). 

Figure 7) ReLU-activation function. On the x axis is 

the input value and on the y axis is the returned 

output value.  

Figure 8) Both lines show the decline in training 

error rate over epochs. The dotted line shows the 

network with tanh activation function. The solid line 

shows the network with ReLU activation function. 
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2.3.3. Disadvantages of CNNs 
 

So why aren’t CNNs good for everything? CNNs tend to generalize better but also require even 

bigger amounts of data. Linear regression requires the least amount of data to lead to quite well 

results for low complexity problems. Machine Learning approaches such as SVN require 

already a significant increase in data to function properly. Neural Networks require often by a 

tenfold higher amount of data and this number increases with CNNs, especially if they become 

deeper. With too little data CNNs lead to bad results. 

 

2.4. Alex Krizhevsky et al’s Neural Network 
 

The network supervision had a complex creation process based on many experiments with 

CNNs. For a CNN a lot of data needs to be given as an input and the amount of individual data 

points increases with each additional category. Training the network therefore required an even 

larger amount then the 1 million provided images. This was partly done by data augmentation 

which lead to a standardized input and 2048 times more input images. The main hurdle of such 

complex networks becomes the generalization aspect. Each added category and image can lead 

to overfitting (= the network adapting so well that it only leads to increased accuracy in 

prediction of already seen data). The team came up with different techniques to increase the 

generalization skill (= high accuracy on prediction of yet unseen pictures) of the network. 

 

2.4.1. Data Augmentation 
 

The presented pictures of ImageNet are in all shapes and sizes, with individual resolutions and 

formats. First, the image was cut down to a squared frame from the center of the image. This 

image furthermore then was reduced in resolution to 256x256-pixel image for standardization 

purpose. To increase the total number of individual pictures, the picture was sub-sampled and 

224x224-pixel images cut from the 256x256 imagery, resulting in 1024 new pictures per 

original picture with a minor shapeshift which also helped to train the network more generally 

about the position of the object. These pictures were then reflected horizontally to double that 

amount leading to a total of 2048 new pictures generated from one original. Lastly, the mean 

RGB-value was calculated for each position and subtracted from each image to normalize the 

values (benefits networks learning). 

 

 

 
Fig 11) Left the original picture, reduced in resolution to a 256x256-pixel image and then sub-sampled into 1024 

new 224x224-pixel images. Left the subsampled image is additionally flipped to double the amount of data-points. 

Lastly, the mean RGB-value of all images is subtracted from the individual sub-sampled image. 
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2.4.2. General architecture 
 

The presented network from the paper (Alex Krizhevsky and Sutskever 2012) is a CNN with 

650.000 individual neurons, 7 layers + softmax, 60.000.0000 individual parameters and over 

630.000.000 connections. The first 5 layers are convolutional layers alternating with pooling 

layers with 2 final fully connected layers and a softmax layer for the final categorization task. 

 

 
Figure 12) This is the base structure of the CNN SuperVision which won 2012s ILSVRC. The network is split 

onto 2 GPUs which are only connected between the second and third layer and the 5th, 6th and 7th layer. The input 

image is reduced in quality and subsampled to a 224x224-pixel tensor with a stride of 11x11-pixel. Layers 1, 3, 4 

are convolutional layers. Layer 1, 2 and 5 are pooling layers. Layer 6 and 7 are fully connected layers followed 

by a softmax layer. 

 

2.4.3. Specialties 
 

The community working with CNNs ran into multiple issues regarding the too low volume of 

data available for real world applications and/or had issues in overfitting. With the 1 million 

provided pictures and the image augmentation the first issue became significantly smaller, but 

overfitting was still an issue which has been addressed with the following specialties. 

 

2.4.3.1. Split Network 

 

Through continuous experimentation with the size of the neural network (adding, removing 

layers; increasing width and depth) the team concluded that the networks performance would 

be better if it expanded outside of the memory range provided by a single GPU. Two GTX 580 

3GB GPUs were therefore used to train the network. Half of each layer was placed on each of 

the GPUs. Originally, the intent was to fully connect each layer with the next, so that the split 

would be only on the hardware part and not noticeable in the interaction of the network. But 

they discovered that separating individual parts of the network (especially in the middle layer), 

improved performance. Layer 3, 4 and 5 were therefore separated and half of each layer did 

not become influenced by the other half of the layer.  

 

Visualizing the fully trained network by inputting random scattered grey values and outputting 

the results after each individual layer shows the internal process of each layer. The network 

itself began to separate not only in hardware and structure but also began to separate in 

functionality into 2 separate parts. After training, one half of the layer 3 to 5 processed mostly 

color while the other half of layer 3 to 5 processed mainly saturation and angle. This functional 

split lead to an increase of accuracy and a reduction of overfitting. Later, the entire network 

was multiple times retrained and the split reoccurred over time. 
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Figure 13) Each individual square represents the output of the fifth pooling layer of the network when 4 neurons 

project onto a white canvas. The top 3 rows represent the first half of the fifth layer and the lower 3 rows show 

the output of the second half of the fifth layer. The top rows are dominated by black and white and general line 

direction while the bottom layers clearly focus on color variation. 

 

2.4.3.2. ReLU and pooling layers 

 

The choice of using a ReLU- function for neural networks seemed at that time controversial as 

there was little empirical evidence supporting that this truly lead to better results. But as ReLU 

showed that it leads to significantly reduced training time and time being a factor, it became 

the activation function of choice. As ReLU only works with positive values and basically 

ignores negative values and passes on each positive value, it basically just passes information 

and turning each negative value into a 0.  

 

 
Figure 14) On the left, the normalized brightness values are shown. Through the ReLU function, each negative 

value is turned into a 0. Then in pooling layer, 4 next to each other neurons are seen as input and their maximum 

value is passed on as new value. 

 

Yet through the addition of pooling layers, in which a stride (= squared convolution of the 

previous layer as input) was reduced to a smaller layer, had the effect of creating a neural 

network in which each neuron competed in each layer against its surrounding neurons to pass 

on the information into the next layer. This selection process passed on the strongest signals 

into the deeper layers of the network. Additionally, pooling reduced the overall information 

flow, reducing complexity and increasing the generalization capabilities of the network. 
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2.4.3.3. Local Response Normalization 

 

The local competitive character of the neurons was then globalized over each layer by 

implementing Local Response Normalization. The average input values were calculated for 

each layer and imbedded into the local response by increasing the output for above average 

firing neurons and decreasing the output for below average firing neurons. 

 

 
Fig 15) Formula for Local Response Normalization. k, n, α, β are hyperparameters set globally and set by 

experimentation with a validation set to k= 2, n= 5, α=0.0001 and β=0.75. b is the normalized response of the 

neuron and a is the unnormalized response value. x and y indicate the position of the neuron inside of the network 

and N is the total number of neurons inside of this layer. 

 

Local Response Normalization increased overall accuracy and increased generalization. 

 

2.4.3.4. Dropout 

 

Dropout is a technique in which before each epoch, a part of the network is shut down. At the 

beginning of each epoch, a random number generated determines if in this epoch this individual 

neuron will be responsive or not. On the first 2 layers of this network dropout was applied with 

a 50% chance of becoming unresponsive. So why render half of 2 layers of neurons non-

responsive? 

 

While networks are trained, often singular features in the picture begin to dominate as a signal 

and as in the pooling layers, non-dominant information becomes filtered out, second and third 

degrees important signals can be filtered out as well. To avoid this loss of eventually valuable 

information, the dominating factors which summarize themselves in features represented by 

neurons, are ignored. By doing this, the network will try to back-propagate without being able 

to focus the weight-alteration on a few singular neurons, but instead begin to even out the 

network, to generate more complex answers relying on a bigger multitude of individual features 

generated by the neurons. 

 
Fig 16) Each neurons chance to dropout (= becoming unresponsive) is initially set. The network further on in the 

training must find new ways to generate the answer requested by the back-propagation process. 
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Obstructing the single model, into basically a new model every new epoch, mathematically 

means to average the weights of all epochs/ new models into a new meta-model. 

 

As an effect, the network becomes better at generalizing, reduces co-adaption between neurons, 

initialization becomes less relevant to the network and it becomes more resilient to changes. 

Dropout is only applied in the training phase and removed during performance. 

 

2.4.4. Results 
 

The final training run took 7 days on 2 GPUs. 2012, the committed result achieved a Top-1 

Error-Rate of 26,7% and a Top-5-Error-Rate of 15,3%. By these measures, SuperVision won 

2012 the ILSVRC. 

 

Furthermore, the team went into specifics regarding the quality of their predictions. The 

activation of the softmax category to predict the image is an absolute value. By looking for 

images that have the next higher absolute score in the corresponding category, the most closely 

related image can be found. The distance between these 2 values is called Euclidean distance. 

 

 

 

 

 
Fig 17) The left picture is the picture with the highest score for the specific category. The pictures right of it are 

the most similar pictures or the pictures with the lowest Euclidean distance to the first picture. 

 

Euclidian Distance increases/ less similar 
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The similarity appears to be independent of shading, background, angle, entirety of the object 

or even specific motif (notice the pumpkins massive distance to each other). This indicates that 

the network slowly began to “understand” the important parts of the object, which give the 

object its name. 

3.0. Summary 
 

Summarizing, computer vision has already done a great leap 2012 into becoming a practical 

solution for a wide set of problems and progressed ever since to a degree of sophistication 

through new combination of techniques such as CNN with dropout, network splitting, 

intralayer competition and increased depth of the network. Computer vision and neural 

networks harbor immense potential in a multitude of services. 
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