

Secure Data Processing

Prof. Dr. E. Rahm und Mitarbeiter

Seminar, WS 2018/19

SECURE SQL?

UNIVERSITÄT LEIPZIG

GOAL: Developing algorithms that can answer queries over securely outsourced data without fetching all data

SELECT SUM(price) AS total
FROM orders
WHERE 10 <= price AND city = 'Vienna'
GROUP BY order_id
HAVING total > 20

comparison of entries for equality

keyword search: search for pattern
range query: comparison of numerical value
aggregation

© Amr El Abbadi

UNIVERSITÄT LEIPZIG

- Homomorphic encryption: allows some computations on ciphertext without decryting
 - partially homomorphic (e.g. additive / multiplicative)
 - fully homomorphic (quite ineffecient)
- Order-preserving encryption (Agrawal et al, Sigmod2004)
 - standard database indexes can be used
 - vulnerable to statistical attacks

6

UNIVERSITÄT LEIPZIG

Privacy

- right of individuals to determine by themselves when, how and to what extent information about them is communicated to others (Agrawal 2002)

Privacy threats

- extensive collection of personal/private information / surveillance
- Information dissemination: disclosure of sensitive/confidential information
- Invasions of privacy: intrusion attacks to obtain access to private information
- Information aggregation: combining data, e.g., to enhance personal profiles or identify persons (de-anonymization)

Challenge:

preserve privacy despite need to use person-related data for improved data analysis

4

UNIVERSITÄT LEIPZIG

- need for comprehensive privacy support ("privacy by design")
- privacy-preserving publishing of datasets
 - anonymization of datasets
- privacy-preserving data mining
 - analysis of anonymized data without re-identification
- privacy-preserving record linkage
 - object matching with encoded data to preserve privacy
 - prerequisite for privacy-preserving data mining

RE-IDENTIFICATION OF "ANONYMOUS DATA" (SWEENEY 2001)

UNIVERSITÄT LEIPZIG

- US voter registration data
 - 69% unique on postal code (ZIP) and birth date
 - 87% US-wide with sex, postal code and birth data

Ethnicity Visit date ZIP Date Diagnosi registered Procedure Party Medicati Total char Date last Medical Data

- solution approach: K-Anonymity
 - any combination of values appears at least k times
 - generalize values, e.g., on ZIP or birth date

DIFFERENTIAL PRIVACY

UNIVERSITÄT LEIPZIG

- statistical approach to derive accurate analysis results despite systematic changes to data/query answers, e.g. randomized response
- Example: randomize Yes/No answer (e.g. "Have you ever used illegal drugs?")
 - throw coin if head: answer correctly,
 if tail: thow coin again and answer correctly if head
- most approaches assume trusted central party
 - has access to raw data and performs data perturbation for query answers
- Local differential privacy: eliminate trusted party
 - Google Rappor prototype for browser accesses
 - Apple smartphones (since IOS 10)

11

PRIVACY-PRESERVING DATA MINING

UNIVERSITÄT LEIPZIG

- physically integrated data (e.g. data warehouse) about persons entails greatest privacy risks
- data mining over distributed data can better protect personal data by limiting data exchange, e.g., using SMC (secure multiparty computation) methods

SECURE MULTI-PARTY COMPUTATION (SMC)

UNIVERSITÄT LEIPZIG

- compute a function across several parties, such as no party learns the information from the other parties, but all receive the final results
- example 1: millionaire problem
 - two millionaires, Alice and Bob, are interested in knowing which of them is richer but without revealing their actual wealth.
- example 2: secure summation

ScaDS TRESDEN LEIPZIG

UNIVERSITÄT LEIPZIG

Bitcoin & Blockchain

14

SEMINAR GOALS

UNIVERSITÄT LEIPZIG

- Learn to know about a new topic of scientific and practical importance
 - can be basis for bachelor/master thesis
- student tasks
 - study scientific literature to prepare presentation and written summary on 1 topic
 - presentation
 - discussion
 - summarizing article
- mentoring co-worker provide help and feedback

UNIVERSITÄT LEIPZIG

- Master Informatik
 - part of module "Modern database technologies"
 - seminar module
- Bachelor Informatik
 - seminar module

SEMINAR DETAILS

UNIVERSITÄT LEIPZIG

- presentation with discussion (45 minutes)
 - slides should be in English
 - talk in German or English
 - discuss slides with mentor beforehand
- article/report (ca. 15 pages)
 - discuss/iterate with mentor
 - final deadline March 31, 2019
- active participation in all presentations
 - module workload: 30 h presence, 120 h self study
- successful seminar requires both: talk/discussion + report

SEMINAR (3)

UNIVERSITÄT LEIPZIG

- Topic assignment
 - meet mentor within two weeks, i.e., until Nov. 9th, 2018
 - otherwise seminar registration will become void
 - voluntary leave also until Nov. 9th, 2018
- Presentation dates
 - fridays, Ritterstr, starting Jan. 11th 2019
 - max. 4 presentations starting at 1:30 pm

Themen	Betreuer	#Themen	Termin	Studenten
Introduction • intro security/encryption • public key & one-way encryption	Kricke Christen	2	17.1.	Fuske Wegter
Secure knowledge bases searchable encryption /secure indexes privacy-preserving fuzzy search privpres. search of chemical compounds encryption on labeled graphs encrypted dbs / Cipherbase	Sehili/F S/Franke Franke Wilke Sehili	5		Külyhlehz Mösler
Privacy-preserving data mining methods, metrics, applications RAPPOR (randomized aggregation) calibrating noise in private data analysis LinkMirage: prpres. an. of social relations cryptonets: neural networks on encr. data Differential privacy for SQL privacy-preserving deep learning	Christen Christen Christen Rost Rostami Zschache Zschache	7	18.1	Meihecke Ullistand Kobold Wein 1 vrce Sager
Intrusion detection Host Intrusion Detection Systems HIDS: sequence / argument analysis secure data processing in the cloud & SGX SgxPectre attacks via speculative execution	Grimmer/K G/Kricke Gomez Nentwig	4	1-2.	Kreußel Extertin Nirsberger B: Huen
Blockchain Introduction cryptocurrencies/blockchain Scalability of blockchains using blockchains for smart contracts risks of blockchain technology	Peukert Saeedi Alkhouri Wilke	4	8.2.	Mushiol Kritas Hu