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Abstract

The flexibility of Knowledge Graphs to represent heterogeneous entities and relations of many types is challenging for con-
ventional data integration frameworks. In order to address this challenge the use of Knowledge Graph Embeddings (KGEs)
to encode entities from different data sources into a common lower-dimensional embedding space has been a highly active
research field. It was recently discovered however that KGEs suffer from the so-called hubness phenomenon. If a dataset
suffers from hubness some entities become hubs, that dominate the nearest neighbor search results of the other entities. Since
nearest neighbor search is an integral step in the entity alignment procedure when using KGEs, hubness is detrimental to the
alignment quality. We investigate a variety of hubness reduction techniques and (approximate) nearest neighbor libraries to
show we can perform hubness-reduced nearest neighbor search at practically no cost w.r.t speed, while reaping a significant
improvement in quality. We ensure the statistical significance of our results with a Bayesian analysis. For practical use and

future research we provide the open-source python library kiez at https://github.com/dobraczka/kiez.

Keywords Hubness reduction - Nearest neighbor search - Knowledge graph embedding - Entity alignment

Introduction

Knowledge graphs (KGs) have seen a surge in popularity as
a flexible and intuitive way to store relational information.
In order to perform complex tasks such as question answer-
ing [1] and recommendation [2] the integration of multiple
KGs is crucial. Conventional data integration frameworks
however struggle with the heterogeneity of KGs. Knowledge
Graph Embeddings (KGE) have been found to provide a way
to deal with this problem by encoding entities from different
data sources into a common lower-dimensional embedding
space. If done properly this technique reconstructs semantic
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and relational information and similar entities end up close
in the embedding space [3].

While a plethora of models have been devised to obtain
KGEs, their refinement in the final alignment step of the data
integration pipeline has seen little attention. Sun et al. [3]
have discoverd, that KGEs as many other high-dimensional
data structures suffer from hubness. This phenomenon refers
to the fact that some entities in the dataset become dan-
gerously popular by dominating the nearest neighbor slots
of the other entities. Hubness has been shown to plague a
variety of tasks such as recommender systems [4], speech
recognition [5], image classification [6] and many more. For
our data integration setting hubness leads to a decrease in
alignment quality.

In order to investigate the effects of hubness on entity
alignment we will use 15 different Knowledge Graph
Embedding approaches on 16 alignment tasks containing
samples of KGs with varying properties. This provides us
with 240 KGE:s as input for our study.

In our evaluation we compare six different hubness reduc-
tion techniques and eight different (approximate) nearest
neighbor (ANN) algorithm implementations w.r.t. their
accuracy and execution time. This paper extends our previ-
ous work [7] in a variety of ways:
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e The related work section and discussion have been
extended.

e  We enhanced our experiment section with another ANN
library and investigate how the use of GPUs factors into
our assessment.

e While we previously used a frequentist approach [8] to
check the statistical significance of our claims, we now
use a more modern Bayesian testing regime [9]. This
enables us to directly reevaluate our previous results and
leads us to new conclusions in some cases.

Overall our work provides the following contributions:

e We provide an extensive evaluation of hubness reduction
techniques for entity alignment with Knowledge Graph
Embeddings.

e Qur results suggest that using the Faiss [10] ANN library
we can perform hubness reduction at practically no cost
with large and small datasets, while reaping the accuracy
benefits of reduced hubness.

e Hubness-reduced nearest neighbor search for entity
alignment is made practically available in our open-
source library at https://github.com/dobraczka/kiez and
the configurations of our experiments are available in a
separate benchmark repository https://github.com/dobra
czka/kiez-benchmarking.

We begin with an overview of related work, followed by
an outline of hubness reduction for entity alignment in
section “Hubness Reduction for Entity Alignment”. Sub-
sequently, we present our extensive evaluation in sec-
tion “Evaluation” and we close with a conclusion.

Preliminaries and Related Work

In this section we present the central concepts related to
our work. We start by giving a brief outline to the notion of
Knowledge Graphs, followed by an overview of Knowledge
Graph Embedding approaches. Afterwards we present the
hubness problem and ways to mitigate it, followed by a syn-
opsis of entity alignment techniques for Knowledge Graph
alignment.

Knowledge Graphs

Knowledge Graphs (KG) are now a widely used data struc-
ture, which is able to represent relations between entities
intuitively. Especially the ability to postpone the definition
arigid schema enables a more flexible extension of data than
e.g. a relational database management system. Nowadays
KGs serve as backbone for a variety of tasks. For example
in the use-case of semantic search, the semantically rich
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Fig.1 Sample of DBpedia showing information about the movie
“Parasite”

structure of KGs helps identify a user’s information need.
Moreover, the nowadays common use of knowledge cards
as search engine result, which displays the most important
information about an entity (e.g. birth date, net worth, etc.
of a person) relies heavily on the aggregated information
contained in the KG [11].

In Fig. 1 we see an example snippet of the DBpedia KG
containing information about a motion picture. We see that
knowledge graphs enable us to store a variety of data and
relations between data points. For our purposes a KG is a
tuple K£G = (€, P, L, T), where £ is the set of entities, P the
set of properties, L the set of literals and 7 the set of triples.
KGs consist of triples (h,r,t) € T, with h € £, r € P and
te{& L)

Looking at our example graph a triple contained there
is for example (dbr:Parasite (2019 film),
rdf:type, dbo:Film). For athorough introduction
into the subject of knowledge graphs we refer the reader
to [12].

Knowledge Graph Embedding

Methods of machine learning belong to the standard reper-
toire of any data analytics endeavour nowadays. However
many machine learning algorithms rely on input in the form
of dense numerical vectors, which is in stark contrast to the
conventional representation of knowledge graphs. To make
KGs usable for machine learning tasks Knowledge Graph
Embedding approaches are used to encode KG entities (and
sometimes relationships) into a lower-dimensional space.
While there are different paradigms of algorithms most
embedding approaches score the plausibility of a given tri-
ple (h, r, ), i.e. how likely is this statement to be true. The
goal of the algorithm is then to compute the embeddings in
such a way that positive examples (triples contained in the
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graph) are scored high, while negative examples are scored
low. Negative examples are typically created by corrupting
a given triple by replacing either h resp. r with (', r, 1) ¢ T
resp. (h,r,t') € T. This way of self-supervised learn-
ing is highly convenient since there is no need for human
labeling [12].

In the following we give a brief overview over different
paradigms of embedding approaches. For a more detailed
overview we direct the reader to [13, 14].

Translational

An intuitive way to make sure a model learns the plausibility
of a triple is the translational approach. Algorithms that fall
into this category encode relations as translations from head
entity embedding to the embedding of the tail entity. This
technique was popularized with TransE [15]. Suppose for a
triple (A, r, t), the embedding vectors of A,r and ¢ are h, r and
t respectively, TransE utilizes the distance between h + r and
t to model the embeddings. The central idea of this approach
was quickly picked up to address shortcomings of TransE,
namely the problem modeling 1 — n or n — n relations. For
example TransH [16] encodes relations in their own hyper-
plane, and TransR [17] even uses relation-specific spaces.
While these and other generalizations of TransE enhanced
the capabilities of translational models, Kazeemi and
Poole [18] showed that these translational models put severe
constraints on the types of relations that can be learned (at
least, when these models operate solely in euclidean spaces).
These fundamental limitations are adressed for example by
HyperKG [19], which operates in the hyperbolic space.

Tensor-Factorization

Another paradigm of embedding approaches relies on
decomposing tensors (also known as tensor-factorization).
A tensor is a generalization of matrices towards arbitrary
dimensions. A conventional matrix is therefore a 2-order
tensor [12]. Decomposing a tensor means finding lower
order tensors from which the original tensor can be (approxi-
mately) reconstructed. The lower order tensors of the
decomposition capture latent factors of the original tensor.
For example RESCAL [20] models KGs as a 3-order binary
tensor G € R™"™" where n and m respectively denote the
number of entities and relations. Each relation is represented
as a matrix W, € R™". The weights w;, ; in the matrix cap-
ture the interaction between the i-th latent factor of h and
Jj-th latent factor of t. We can then score the plausibility of
atriple (h, r, t) by

f(h,r,H) =h"W.t. (1)

Again the goal is to maximize the plausibility of positive
examples and minimize the plausibility of negative exam-
ples. A plethora of methods belong to this paradigm. RES-
CAL’s representation of relations as matrices is rather costly,
so for example HolE [21] models both entities and relations
as vectors. Furthermore it uses a circular correlation opera-
tor, which combines the outer product of two vectors by
taking the sums along their diagonals. This circular correla-
tion compresses pairwise interactions, which makes HolE
more light-weight than RESCAL [14]. Another approach
called TuckER [22] utilizes Tucker Decomposition [23],
which decomposes the given tensor into a sequence of three
matrices A, B and C and a smaller “core” tensor 7 . More
precisely, given the knowledge graph as 3-order tensor G this
decomposition approximates G~ 7® A ® B ® C, where
® denotes the outer product. A and C represent the entity
embeddings and C contains the relation embeddings.

Neural

The previously discussed approaches consist of either linear
or bilinear (e.g., matrix multiplication) operations to com-
pute plausibility scores. In order to incorporate non-linear
scoring functions approaches rely on neural networks [12].
For example the usage of a 2-dimensional convolutional ker-
nel has been proposed by ConvE [24]. First a matrix is gen-
erated by reshaping and concatenating h and r. This matrix
is then used as input for the convolutional layer, where dif-
ferent filters of the same shape return a feature map tensor.
After vectorization this feature map tensor is then linearly
projected into a k-dimensional space. Finally, the plausibil-
ity scores are obtained by calculating the dot product of this
projected vector and t.

Path-Based

Oftentimes interesting information can be found in a KG,
when looking not only at triples, but at longer paths. For
example if a person is born in a certain city and the KG
contains information about which country this city is located
in we can infer the nationality of a person. PTransE [25]
generalizes TransE by incorporating path-based informa-
tion in the embedding process. So while TransE uses triples
in the form of (&, r, t) to optimize the objective function
h + r = t, PTransE uses paths like (&, r;, e), (e, r,, ) to opti-
mize h + (r;or,) = t, with o being an operator that joins the
relations r; and r, into a unified relational path represen-
tation. Inspired by neural language models RDF2Vec [26]
models paths in the knowledge graphs as sequences of
entities which is akin to sentences in the language model
setting. The embeddings are then trained similarly to the
word2vec [27] neural language model.

SN Computer Science
A SPRINGER NATURE journal



501 Page 4 of 19

SN Computer Science (2022) 3:501

Fig.2 Visualization of hub-
ness and hubness reduction on
SimplE embeddings of the D-W
15K (V1) dataset. Left column
shows visualization without
hubness reduction, right column
after NICDM hubness reduc-
tion. The value of k is 10
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(a) Entity embeddings of the ten entities with the highest k-occurrence and their
neighbors. Color and size show amount of k-occurrence. The larger and darker a
node is the more it is considered a hub. For visualization we reduced the embedding
dimensions from 100 to 50 via PCA and finally to 2 dimensions with t-SNE.
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(b) Number of nodes with specific k-occurrence values across the entire dataset.
Beware of the logscale on the y-axis.

Hubness

High-dimensional spaces present a variety of challenges
commonly referred to under the umbrella of the curse of
dimensionality. For example distances (or measures) tend
to concentrate in higher dimensions. In fact, with dimen-
sionality approaching infinity distances between pairs of
objects become effectively useless by being indistinguish-
able [28]. This distance concentration can be explained by
the fact that with increasing dimensions the volume of a unit
hypercube grows faster than the volume of a unit hyperball.
Consequently, numerous distance metrics (such as e.g. the
euclidean distance) lose their relative contrast, i.e. given a
query point the distance between the nearest and farthest
neighbor decreases almost entirely [29]. This is worrisome,
since neighborhood-based approaches rely fundamentally
on distances.

Closely related, it has been shown that high-dimensional
spaces suffer from a phenomenon known as hubness [30].
While first noticed in the field of music recommenda-
tion [31] this issue has been found harmful w.r.t result qual-
ity in a variety of tasks ranging from graph analysis [32],
over clustering of single-cell transcriptomic data [33] to
outlier detection [34]. In order to understand what hubness
means, k-occurrence must first be introduced:
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Definition 1 (k-occurrence) Given a non-empty dataset
D C R™ with n objects in an m-dimensional space. We can
count how often an object x € D occurs in the k-nearest
neighbors of all other objects D\x. This count is referred to
as k-occurrence OF(x) [7].

If the distribution of the k-occurence is skewed to the
right, this means there exist some hubs, that occur more
frequently as nearest neighbors of other points than the rest
of the dataset entries [35].

Figure 2 shows how hubness means a skewed k-occur-
rence distribution. In the top we see that hubs (the darker,
bigger points) have a much higher k-occurrence than their
neighbors and how hubness reduction changes that. The bot-
tom graphic shows the entire k-occurrence distribution. Most
nodes show up rarely as nearest neighbors if at all, while a
handful of nodes are nearest neighbors to more than 300
other entities. Hubness reduction techniques can mitigate
this somewhat. Most notably, the 2 nodes with the high-
est k-occurrence (> 300) lose their prominence. More spe-
cifically, the entity that previously showed up as k-nearest
neighbor (kNN) of 327 entities, now only shows up as kNN
of 164 entities. Since the underlying task of this dataset
is entity alignment, the practical implications of hubness
reduction here are a diminished probability of wrongfully
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aligning entities with hub entities. We will take a closer
look on hubness reduction techniques in section “Hubness
Reduction”.

Initial research indicated that hubness was simply an
intrinsic property of high-dimensional data [36]. However,
a later study suspects that density gradients are the culprit of
the hubness phenomenon [37]. In this case, density gradients
refer to spatial variations in density over an empirical data
distribution [38].

Hubness Reduction

Reduction of hubness has been a lively field of research since
discovery of the hubness phenomenon. The objects closer
to the mean of a data distribution have a higher probability
to become hubs. This fact is denoted as spatial centrality of
hubs [36]. One method of hubness reduction therefore aims
to reduce the spatial centrality by subtracting the centroid
of the data [39]. Hara et al. [40] argue that variants of these
centering approaches mainly work by flattening the density
gradient.

Another paradigm of hubness reduction approaches tries
to repair asymmetric nearest neighbor relations. The nearest
neighbor relation between two points x and y is symmetric
if x is the nearest neighbor of y and vice versa. Because
hubs are disproportionally more often nearest neighbors of
other points than the other way round, a dataset that suf-
fers from hubness has an asymmetry in nearest neighbor
relations [38]. Some hubness reduction methods therefore
transform primary distances (such as e.g. euclidean distance)
to secondary distances, where these asymmetric relations are
alleviated. Methods such as local scaling [41] and the (non-
iterative) contextual dissimilarity measure [42] were later
discoverd to actually reduce hubness. Mutual proximity [43]
was specifically developed to reduce hubness. For a more
comprehensive overview of hubness reduction techniques
we refer to [35, 38]. In Section “Hubness Reduction” we will
present a more detailed view of the mentioned approaches
with regards to entity alignment.

Entity Alignment

Matching entities from different data sources has been a
research effort spanning decades, ironically under a variety
of terms such as record linkage, data deduplication or entity
resolution [44]. While historically research in this field was
centered around matching records in tables, soon enough
incorporating relational information was found to be ben-
eficial for the alignment process [45]. For example [46] use
Personalized PageRank to attain a nodes importance and
propagate similarities in a graph of potential matches.

The flexibility of knowledge graphs poses a challenge
to the matching process, which approaches that are build

DBpedia Wikidata
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" i .Gtri "Parasite""xsd:String
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Fig.3 Two snippets from DBpedia and Wikidata containing informa-
tion about the film “Parasite”. The dark dotted lines connect entities
from each source which should be matched

for table-based matching cannot handle easily. Take a look
at Figure 3, where the previously introduced snippet from
DBpedia is juxtaposed with a snippet from Wikidata. We see
that the heterogeneity of the data sources poses a variety of
obstacles in the matching process. From different naming
conventions for the same relations (e.g dbo:director
and wdt : P57), to distinct representation of data (e.g. the
birth dates).

A way to manage the heterogeneity of Knowledge Graphs
is through the use of Knowledge Graph Embeddings. Gener-
ally entity alignment through Knowledge Graph Embeddings
can be divided into two major categories: Approaches that
utilize the information contained in literals (e.g. the target
of the rdfs: title property) and those, that rely solely
on the graph structure. While structure-only approaches ini-
tialize the entity embeddings randomly and usually have to
translate the embeddings of these two different graphs into
the same embedding space, approaches that utilize literal
information commonly utilize pre-trained word embeddings
to initialize the entity embeddings already in the same space.
For the latter, the training process is then concerned with
fine-tuning the initial embeddings via the structural informa-
tion (and in some cases also via the attribute information).
Both paradigms generally rely on seed alignment, which
consists of already known matches, as training data. Finally,
nearest neighbor search is used in almost all approaches to
align entities from the different KGs based on how close
these entities are in the embedding space.

AttrE [47] uses predicate alignment via string-similarity
to create a common schema for the two given knowledge
graphs. To incorporate literal information this approach
uses a compositional function to aggregate the character
embeddings of a given literal. Pre-trained word embeddings
are not used in this approach. MultiKE [48] uses different
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Fig.4 Overview of our
framework. Graphic previously
published in [7]

Source KGE

S

%ﬂ

Target KGE

views of the entities to capture different aspects of informa-
tion, including specific “name” properties (like values of
rdfs:title), attributes and relational information. The
literal embeddings are initialized with pre-trained word
embeddings. AttrE and MultiKE both rely on a translational
approach to incorporate structural information.

An approach that does not rely on literal information
is RSN4EA [49]. This algorithm relies on sampling paths
via biased random walks and utilizes a so-called recurrent
skipping network(RSN) [50], a refinement of recurrent
neural networks (RNN) for the alignment task. Because
RNNs cannot distinguish relations and entities given as a
path sequence, the RSN is more fitting for entity alignment
since this network is able to “skip” directly from an entity
to another entity.

A more thorough overview over KGE-based entity align-
ment is found in [3]. This benchmarking study also first
mentioned that alignment results can be improved via hub-
ness reduction. However no systematic investigation of dif-
ferent hubness reduction techniques was carried out.

Hubness Reduction for Entity Alignment

In this section we formally define the task of entity align-
ment, present methods to measure hubness and introduce our
framework for hubness reduced entity alignment. Finally we
showcase the hubness reduction methods utilized for entity
alignment and introduce various (approximate) nearest
neighbor approaches that we employ.

Entity Alignment

As already introduced in section “Knowledge Graphs” a
KG is a tuple KG = (&, P, L,7), with the tuple elements
denoting the sets of entities, properties, literals and triples
respectively. Entity alignment now seeks to determine the
mapping M = {(e,e,) € £, X &, e, = e,}, with=denoting
the equivalence relation. £, and &, are the entity sets of the
respective KGs.
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Hubness

Hubness can be measured in different ways. As already dis-
cussed in section “Hubness” skewness in k-occurence OF can
be used to determine the degree of hubness [36].

¢ = E[(0" — up)’1/ o, 2)

With the commonly used notation of E denoting the expected
value, y the mean and o the standard deviation. Feldbauer
et al. [35] criticize k-skewness as difficult to understand and
instead adapted the income inequality measure known as
Robin Hood index to calculate k-occurence inequality

k _ l ZXED |0k(x) - ”O"I _ ZXED IOk(x) - k|

=3 X cp O () — k 2k(n—1)

3

with D being a dataset of size n. This measure is easily
interpretable, since it answers the question: “What share
of 'nearest neighbor slots’ must be redistributed to achieve
k-occurence equality among all objects?” [35].

Hubness Reduction

In order to align two KGs we need to find the most similar
entities between the KGs.

Given the embeddings K, KK, of the two KGs we intend
to align, we utilize a distance d, ,, with x € K  and y € K,.
The k points closest to x will be referred to as x’s k-nearest
neighbors.

The implementation of our open-source framework is
inspired by [51] and has been adapted to the task of hub-
ness-reduced nearest neighbor search for entity alignment.
An overview of the workflow of our framework, which we
named kiez is shown in Fig. 4.

We start by retrieving a number of kNN candidates
from the two given KGEs using a primary distance (e.g.
euclidean). Note that the kNN candidates for all x € K,
as well as y € K, are retrieved. Due to asymmetric nearest
neighbor relations introduced by hubness x might be a kNN
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candidate of y but not the other way round. However the
distance between such two points x and y is the same no mat-
ter whether x is a kNN candidate of y or vice versa. These
primary distances can now be utilized to perform hubness
reduction and attain secondary distances. The final kNN are
obtained by using these secondary distances. To offset the
higher cost w.r.t speed introduced by hubness reduction we
offer a variety of approximate nearest neighbor libraries.
In section “Evaluation” we will see, that this gives a speed
advantage on larger datasets, while still benefiting from the
accuracy increase of hubness reduction. More information
about the ANN approaches is given in section “(Approxi-
mate) Nearest Neighbor Search”.

We selected the best performing hubness reduction tech-
niques reported in [38] to implement in kiez and will pre-
sent them in detail now.

First introduced in [41] Local Scaling was later dis-
covered to reduce hubness [43]. Given a distance dx,y this
approach calculates the pairwise secondary distance

d2
LS(d,,)=1—exp <— = ) 4)

0,0,
with o, (or resp. o) being the distance between x (resp. y)
and their kth-nearest neighbor

A closely related technique is the non-iterative contex-
tual dissimilarity measure (NICDM) [42] which similarly
to Local Scaling was discovered by Schnitzer et. al. [43] to
reduce hubness:

_ dpy
NICDM(dxy) = —, (5)

where p, is the mean distance to the k-nearest neighbors of
x and analogously for y and p,

Cross-domain similarity local scaling (CSLS) [52] was
introduced to reduce hubness in word embeddings. As the
previous approaches it relies on scaling locally:

CSLS(dX,y) =2- dx,y — My — Hy (6)

with yu, being the mean distance from x to its k-nearest
neighbors. Sun et al. [3] showed that this measure also suc-
cessfully reduces hubness in knowledge graph embeddings.

While the previously presented approaches rely on local
distances Mutual Proximity (MP) [43] counts the distances
of all entities whose distances to both x and y are larger
thand, :

|{j : de > dx,y} N {J : dyJ > dy,x}l

n—2 @

MP,, . d,,) =

The presented version in Eq. 7 was adapted by [38] to nor-
malize the range to [0, 1].

Since counting all these distances is computationally
expensive, we can use an approximation:

MPGuss(dyy) = SF(d,.,, iy, 67) - SF(d,,, Ay, 67). (8)

where the estimated sample mean /i, and variance &, of the
distances of all other objects to x is used. Furthermore, SF
is the complement to the cumulative density function atd, ,.
Finally, we implemented DSL [40], which relies on flat-
tening the density gradient, by estimating the local centroids
¢ (x) = % Zx, SKNNG) x', with kNN(x) being the set of k-nearest
neighbors of x. This leads to the following formula:

DSL(x,y) = |lx = ylI3 = llx = ;@5 — lx = ccI5-  (9)

(Approximate) Nearest Neighbor Search

Nearest neighbor (NN) search is a fundamental task in many
areas of computer science. This is also true for the area of
entity alignment, when utilizing knowledge graph embed-
dings. For higher dimensional datasets efficient exact near-
est neighbor algorithms tend to suffer under the curse of
dimensionality. The reason for this is again, the distance
concentration mentioned in “Hubness”. Many exact NN
algorithms rely on the triangle inequality to avoid making
unnecessary comparisons, however with rising dimensional-
ity distances between points become indistinguishable and
all points have to be compared against all other points in the
worst case [53].

Approximate nearest neighbor (ANN) algorithms have
therefore been a highly active research field. While these
approaches may miss some nearest neighbors they increase
the speed of retrieval by creating efficient indexing structures
of the search space to avoid comparing all data points with
each other. These algorithms can be roughly divided into
three categories: tree-based, graph-based and hashing-based.

Tree-based algorithms rely on splitting the dataset and
storing these subsets in nodes of a tree. The children of a
node split the dataset again and so on until the respective
subset that belongs to a node is small enough to be stored
there. This node becomes a leaf of the tree. When querying,
the tree is traversed to find the closest points to the query.

Graph-based algorithms build a k-NN graph, where ver-
tices are data points and edges associate true nearest neigh-
bors. Similar to tree-based methods, given a query point
this graph is traversed in greedy fashion to find the nearest
neighbors.

Finally, hashing-based algorithms utilize hashing func-
tions to encode data points as hash values. For example
locality-sensitive hashing [54] creates multiple hash-codes
for each entry by applying hash functions which are ran-
domly chosen from the same function family. The NN
of a query point are then determined by inspecting hash

SN Computer Science
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Table 1 Statistics of datasets 15K 100K
171 |P| I£]| |71 |P| [£]

D-W \"2! D 90399 589 28237 628901 905 133931
w 180992 818 118515 939568 1135 542921
\' D 125361 341 25690 977153 645 137483
w 259051 578 146977 1466422 999 682367
D-Y \"2! D 82384 421 25297 654603 665 101386
Y 143752 62 105710 1050305 69 497633

V2 D 117665 161 22561 951332 506 97433
Y 177121 40 104546 1620426 66 578596
EN-DE \'2! DE 184195 324 35630 922447 447 199527
EN 110079 500 28973 759025 831 147142
V2 DE 253947 211 33185 1285853 358 200356
EN 144378 339 23831 1053340 648 139867
EN-FR \'2! EN 104498 574 30281 693855 865 145103
FR 95265 613 28760 599010 818 157791
V2 EN 148714 381 22761 1046052 742 145382
FR 136226 386 21645 904159 754 157564

collisions. A general benchmark and overview of ANN algo- Evaluation

rithms can be found in [55].

For use in kiez, we needed libraries that provide a
python implementation/wrapper. We therefore choose the
following libraries similar to [35]:

e scikit-learn' offers the exact methods Ball Tree [56] and
KD-Tree [57] (short for k-dimensional tree). Additionally
a brute-force variant simply computes pairwise distances
and returns the exact nearest neighbors.

e NMSLIB? implements a variety of algorithms for nearest
neighbor search. In our benchmark we use their imple-
mentation of Hierarchical Navigable Small World Graphs
(HNSW) [58]. This is a popular ANN algorithm that
relies on hierarchical proximity graphs.

e NGT? offers methods to utilize kNN graphs for approxi-
mate nearest neighbor search [59].

e Annoy’ provides a tree-based approach, subsequently
splitting the space with random hyperplanes until a cer-
tain depth is reached.

e Faiss’ makes available a vast variety of algorithms of all
three ANN categories. For our evaluation this library is
especially interesting since it provides implementations
that are capable of utilizing GPUs [10].

https://github.com/scikit-learn/scikit-learn.
2 https://github.com/nmslib/nmslib.
3 https://github.com/yahoojapan/NGT.
https://github.com/spotify/annoy.
https://github.com/facebookresearch/faiss.

SN Computer Science
A SPRINGER NATURE journal

We begin the evaluation section by giving an overview of
our experimental setup, presenting the used datasets and
embedding approaches as well as configurations. Subse-
quently we will show our results in detail.

Evaluation Setup

We use 16 alignment tasks for our evaluation consisting
of samples from DBpedia (D), Wikidata (W) and Yago
(Y), which were introduced in [3]. These knowledge graph
chunks contain a plethora of different relationships and
entity types. Furthermore, they cover a cross-lingual set-
ting in some cases (EN-DE & EN-FR). Depending on the
number of entities per source there are two differently sized
tasks (15 and 100 K). We show more information about the
datasets in Table 1. The tasks consist of finding a 1-1 align-
ment between the sources, since the number of entities per
KG sample is equal to the size of the gold standard mapping
M. Differences in results between our evaluation and the
outcomes of [3] are explained by the fact, that we use an
updated version of the datasets.® We however used the same
hyperparameter settings to create the KGEs as said study.
The knowledge graph embeddings were created by using
a wide range of approaches implemented in the framework
OpenEA.” A summary of the 15 embedding approaches we
used is shown in 2. Given these 15 embedding approaches

5 https://github.com/nju-websoft/OpenEA#dataset-overview.
7 https://github.com/nju-websoft/OpenEA.


https://github.com/scikit-learn/scikit-learn
https://github.com/nmslib/nmslib
https://github.com/yahoojapan/NGT
https://github.com/spotify/annoy
https://github.com/facebookresearch/faiss
https://github.com/nju-websoft/OpenEA#dataset-overview
https://github.com/nju-websoft/OpenEA
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Table 2 Embedding approaches used in the evaluation

Approach Method Literal info.
AttrE [47] Translational Yes
BootEA [60] Translational -
ConvE [24] Neural -
GCNAlign [61] Neural Yes
HolE [21] Factorization -
IMUSE [62] Translational Yes
IPTransE [63] Path -
JAPE [64] Translational Yes
MultiKE [48] Translational Yes
ProjE [65] Neural -
RSN4EA [49] Path -
RotatE [66] Factorization -
SimplE [67] Factorization -
TransD [68] Translational -
TransH [16] Translational -

and 16 alignment tasks we obtained 240 KGE pairs for our
study.

The exact nearest neighbor algorithms we used were on
one hand scikit-learn’s implementations of BallTree and
KD-Tree, as well as their brute-force variant which simply
computes pairwise distances and then returns the nearest
neighbors. On the other hand we used Faiss’s brute-force
variant (specifically IndexFlatL2). We also used Faiss’s
approximate nearest neighbor approaches. For choosing the
most fitting we utilized the autofaiss® library which
automatically selects a fitting indexing approach, based on
the Faiss guidelines and tunes it with the provided data. In
our case this resulted in the use of HNSW as algorithm in
all cases. Furthermore we used Annoy, NGT and NMSLIB’s
HNSW implementation. For these algorithms we found, that
their default settings gave the best results, with the excep-
tions of NMSLIB, where the hyperparameters M = 96 and
efConstruction =500 gave the best results. M controls
the probability of adding a given point to a specific layer of
the graph and efConstruction controls the recall. More
details about our setup can be found in our benchmarking
repository https://github.com/dobraczka/kiez-benchmarking.

The setting of our evaluation consists of doing a full
alignment between the data sources, which means finding
the k-NN of all source entities in the target entity embed-
dings. We set k = 50 and to obtain the primary distances we
allowed 100 kNN candidates. For all algorithms the primary
distance was euclidean, except for NMSLIB, where cosine
was used.

8 https://github.com/criteo/autofaiss.

We used a single machine running CentOS 7 with 4 AMD
EPYC 7551P 32-Core CPUs for all experiments. For the
small dataset experiments we allowed 10 GB of RAM. The
experiments with the large datasets were provided 30 GB of
RAM. Since Faiss is able to utilize a GPU we used a Nvidia
RTX2080Ti 11 GB for the small datasets and a Nvidia Tesla
V100 32 GB for the large datasets. Bear in mind, that we
also included settings were Faiss didn’t use a GPU.

We use hits@k to evaluate retrieval quality:

[{z : y € KNN(x) A (x,y) € M}|

hits@k(kNN) = M| ) (10)

with kNN being the calculated nearest neighbors and kNN(x)
returning the k nearest neighbors of x. This metric simply
counts the proportion of true matches ¢ in the k nearest
neighbors. We choose hits @k, since it is the most common
metric for entity alignment tasks and is especially useful
to judge the quality of neighbor-based tasks. While hits@k
has it’s weaknesses, when used for evaluating the quality
of the knowledge graph embeddings themselves [69], it is
well-suited for our case, since any result where the correct
entity is at rank k£ + 11is in fact as bad, as a result where it is
at k +n >> k. Either way this correct entity would be lost
in a kNN setting. In our case we present hits @50, since we
wanted the 50 nearest neighbors.
For our evaluation we intend to answer four questions:

(Qq): Does hubness reduction improve the alignment
accuracy?

(Q,): Does hubness reduction offset loss in retrieval qual-
ity by ANN algorithms?

(Q3): Can hubness reduction be used with ANN algorithms
without loss of the speed advantage of ANNs?

(Q4): Does the answer to (Q3) change, when utilizing
GPUs?

Results

Hubness Reduction with Exact Nearest Neighbors

The absolute hits@k value is to some degree determined by
the quality of the given KGEs. Since our intention in (Q,)
is to measure improvements through hubness reduction, we
will measure the increase in hits@k compared to the base-
line of using no hubness reduction. In Fig. 5 we present
a boxplot representation of these improvements for exact
nearest neighbor search summarized across all embedding
approaches per alignment task.

SN Computer Science
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Fig.5 Improvement in hits@50 compared to no hubness reduction. Results are aggregated over different embedding approaches. Graphic was
originally published in [7]
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Any values above zero show an improvement. We can We can see a high variance in Fig. 5 showing that the
see that all hubness reduction methods have a tendency to ~ improvements vary across different embedding approaches.
improve the quality, albeit not to the same degree. For exam-  In Fig. 6 we therefore take a close look at some selected
ple both Mutual Proximity variants perform the worst. approaches.
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There is a large difference w.r.t hubness produced by
the different embedding approaches. For example BootEA
produces embeddings with relatively low hubness, even
without hubness reduction. SimplE on the other hand has
a Robin Hood index of almost 75% percent, which means
almost three quarters of the nearest neighbor slots need to be
redistributed in order to obtain k-occurence equality. While
BootEA’s hits@50 score is already very high and leaves lit-
tle room for improvement we can see that hubness reduction
improves accuracy in the other approaches noticeably.

In our previous study [7] we used the frequentist analy-
sis regime proposed in [8] to compare the performance of
approaches. While this is certainly more statistically sound,
than e.g. simply comparing medians of a performance met-
ric it comes with the pitfalls of frequentist null hypothesis
significance testing. This includes ignoring the magnitude
of effect sizes, no real possibility to determine uncertainty
and no hints about the probability of the null hypothesis. In
practice this often means that given enough data minor dif-
ferences can be considered significant. In this evaluation we
therefore use the Bayesian testing regime proposed in [9],
which comes with all benefits of Bayesian approaches.
Namely, being able to not only reject, but also verify a null
hypothesis, as well as being able to take actions that mini-
mize loss. In our case this means we use a Bayesian signed
rank test [70] to determine whether the difference among
two classifiers is significant. Furthermore we can define a
so-called region of practical equivalence (ROPE), where
approaches are considered equally good. The Python pack-
age Autorank [71] makes these best practices readily avail-
able and enables us to automatically set the ROPE in relation
to effect size.’ The proposed Bayesian analysis furthermore
provides us with the probability that one algorithms is better/
worse than the other as well as with the probability that they
are equal. We make a decision if one these probabilities is
> 95%, else we see the analysis as inconclusive.

In Fig. 7 we show a decision matrix visualizing which
hubness reduction methods outperform each other. We can
see that NICDM, CSLS and DSL significantly outperform
using no hubness reduction and the results for LS are incon-
clusive. Both Mutual Proximity approaches are practically
equivalent to using no hubness reduction. This is in contrast
to our previous study, where we determined NICDM to sig-
nificantly outperform all other approaches.

In summary, we can answer our research question (Q;)
positively: Yes the correct hubness reduction technique (i.e.
NICDM, CSLS and DSL) improves results significantly.

° More precisely it sets ROPE as half the size of a small effect fol-
lowing [72]. Since Autorank determined our data to be non-normal
this means ROPE is defined as 0.1*gamma, where gamma is Akin-
shin’s gamma [73].

better

worse
equal

inconclusive

Fig.7 Decision matrix comparing hubness reduction techniques
using Bayesian signed rank tests. Each cell shows the decision, when
comparing the row approach to the column approach. A decision is
reached if the posterior probability is > 95%

Hubness Reduction with Approximate Nearest Neighbors

In order to answer (Q,) we now take a look at approxi-
mate nearest neighbor algorithms. Again we compare the
improvement of hits@50 to the baseline, which is exact
NN search without hubness reduction. In Fig. 8 we pre-
sent a boxplot summarizing the results over all embedding
approaches.

When using ANN approaches we can see that hubness
reduction cannot in all cases offset the retrieval loss of the
approximation. This is especially prominent for Annoy,
which not only shows the highest variance but also the
worst results generally. Both HNSW implementations seem
to work the best with almost all results staying in the posi-
tive range. To make sound claims about which algorithms
outperform the baseline/and or other approaches we pre-
sent a decision matrix containing the results of the pairwise
Bayesian signed rank test in Fig. 9.

Since we already discovered in Section Hubness Reduc-
tion with Exact Nearest Neighbors that both Mutual Proxim-
ity variants are outperformed by the other hubness reduction
techniques we omit them from the decision matrix in order
to keep the graphic more concise.

We can see that Annoy is generally outperformed by all
other approaches and is in fact even worse than the baseline
(Exact None). Faiss is the only algorithm that outperforms
the baseline, but only with NICDM, CSLS or DSL as hub-
ness reduction technique. The results for NMSLIB’s HNSW
implementation is inconclusive for NICDM and DSL. Again,
this is in contrast to the findings of our previous study, where
we found that NMSLIB’s HNSW with NICDM/DSL was
significantly better than all other approaches. We suggest the
reason for this discrepancy is the fact that our new Bayes-
ian analysis can reason about practical equivalence of two
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Fig.8 Improvement in hits@50 compared to using no hubness reduction with an exact NN algorithm. Results are aggregated over different

embedding approaches

algorithms, while the previous frequentist approach could
only falsify the null hypothesis, that there is no difference
between the approaches. Which means minor difference can
be significant given enough data.

However, the answer to (Q,) stays the same as in our pre-
vious study: “While not all ANN algorithms can achieve the
same quality as the baseline, given the right algorithm and
hubness reduction technique we can not only match the per-
formance of exact NN algorithms, but we can significantly
outperform them” [7]. What changes is our recommendation
of ANN algorithm implementation: Faiss’s HNSW imple-
mentation in combination with either CSLS,NICDM or DSL
performs significantly better than the baseline.
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Execution Time

Our third question revolves around speed. Since there are
large differences in execution time between the large and
small datasets we show the graphs separately in Fig. 10.
The slowest approaches are the exact “effective” algo-
rithm variants (BallTree and KDTree). While they can give
performance increases for low-dimensional data, they are
unable to perform well for our use-case. We can also see
that in most cases hubness reduction comes with some cost
w.r.t speed. Especially the Mutual Proximity variants are
costly. On the small datasets Faiss is the fastest approach.
Faiss’s brute-force variant is in fact faster than it's HNSW
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implementation. Faiss’s speed becomes especially prominent
when looking at the large datasets, where it is an order of
magnitude faster than Scikit-learn’s brute force variant or
NMSLIB’s HNSW. While Annoy is also very fast we have
already established that it is not accurate enough for our use-
case. The answer to (Q3) depends on the dataset size. Using
Faiss even exact hubness reduction can be used on smaller
datasets with virtually no cost. For the 100K datasets Faiss’s
exact and approximate approaches tend perform very simi-
larly even when comparing fast hubness reduction methods
(e.g. NICDM or CSLS) with no hubness reduction. Bear in
mind, that the execution time of Faiss_ HNSW depicted here
includes the optimization search of autofaiss.

GPU Utilization

Finally, we investigate how the use of GPUs changes our
assessments. Since the only approach capable of utilizing a
GPU is Faiss we focus our comparisons on the different vari-
ants within this library. In Fig. 11 we again show the execu-
tion time in different graphs for the small and large datasets.

To give a more granular view we show the time it took for
each configuration to build the index and how long the query
time was. Indexing time not only includes the time of Faiss
to load the data or in case of HNSW build the graph, but
also includes time our library needs to gather information
that will be used for hubness reduction later. This is usually
the primary distances from target entities to source entities,
which will then be used, when we query the distances from
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source to target to reduce hubness. Because the hubness
reduction techniques perform different calculations in this
initial step the indexing times are different between them
even though the same (A)NN algorithm is used. For HNSW
most time is spent on building the index (except when using
the expensive MP emp hubness reduction). As said before
in Hubness Reduction with Approximate Nearest Neighbors
this time includes the index optimization search of auto-
faiss. Generally we can see that the use of GPU is espe-
cially beneficial for the brute-force variant. Both NICDM
and CSLS are not only the best hubness reduction techniques
w.r.t to hits@50 improvement but are also the two fastest
approaches (together with LS). For small datasets again the
exact variant is generally faster. For the large dataset HNSW
is faster, except when a GPU is available, then the exact vari-
ant is an order of magnitude faster.

More research is needed to establish a guideline w.r.t to
dataset size, when HNSW on the GPU is faster than the
brute variant. Our results indicate that 100.000 entities per
source might very well be the point where HNSW is the
more favorable choice.

Conclusion and Future Work

We investigated how hubness reduction techniques can
improve entity alignment results. Our evaluation was done
on a variety of real-world datasets with differing proper-
ties from knowledge graph embeddings were create with
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(b) 100K datasets

Fig. 10 Time in seconds for different (A)NN algorithms and hubness reduction methods. Results are averaged over datasets with black bar show-
ing variance
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Fig. 11 Time in seconds for different Faiss configurations and hubness reduction methods. Results are averaged over datasets with black bar
showing variance. We differentiate indexing time by darker color and query time by lighter color

a variety of approaches. Our results suggest that mitigat-
ing hubness significantly improves alignment results, with
practically no decline in retrieval speed of nearest neigh-
bors. This is also true, when utilizing approximate nearest

neighbor search for larger datasets. For example using the
Faiss library with the hubness reduction technique NICDM
we got a median improvement in hits@50 of 3.99% when
using the exact variant and 3.88% when using their HNSW
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implementation. On the small datasets we saw no speed
decrease for the exact algorithms, and on the large data-
sets we saw a negligible median decrease in speed of 14 s
compared to using no hubness reduction. This makes hub-
ness reduction a cheap way to get more accurate results.
When a GPU is available the exact Faiss variant is notice-
ably the fastest even on large datasets, where we can perform
hubness-reduced 50 nearest neighbor search in 8 seconds
on knowledge graph embedding pairs containing 100.000
entities each.

Since we saw a negative correlation'® between hubness
and hits@50 a worthwhile investigation might be how to
reduce hubness already while creating the embeddings.
While nearest neighbor search is a crucial part of the align-
ment process it is not the final step. The hubness-reduced
secondary distances can be used as input for clustering-
based [74] matchers to find the definitive matching pairs.
An investigation we leave for future work.
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