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System developments and research on parallel query processing have concentrated either on 
"Shared Everything" or "Shared Nothing" architectures so far. While there are several com· 
mercia! DBMS based on the ''Shared Disk" alternative, this architecture has received very 
little attention with respect to parallel query processing. T his paper is intended as a first step 
to close this gap. A detailed comparison between Shared Disk and Shared Nothing reveals 
many potential benefitS for Shared Disk with respect to parallel query processing. In partic­
ular, Shared Disk supportS more flexible control over the communication overhead for intra­
transaction parallelism, and a higher potential for dynamic load balancing and efficient pro­
cessing of mixed OLTP/ query workloads. We also outline necessary extensions for trans­
action management (concurrency/coherency control, logging/recovery) to support intra­
transaction parallelism in the Shared Disk environment. 

1 Introduction 

Parallel database systems are the key to high perfonnance tranSaction and database process­
ing [DG92. Va93a). These systems utilize the capacity of multiple locally coupled process­
ing nodes. Typically, fast and inexpensive microprocessors are used as processors to achieve 
high cost-effectiveness compared to mainframe-based configurations. Parallel database sys­
tems aim at providing both high throughput for on-line transaction processing (OLTP) as 
well as shon response times for complex ad-hoc queries. Efficient query processing increas­
ingly gains importance due to the wide-spread use of powerful query languages and user 
tools. Next-generation database applications for engineering, VLSI design or multi-media 
support will lead to substantially increased query complexity. Since these complex queries 
typically access large amountS of data or/and perform extensive computations, in general the 
response time goal can only be achieved by employing parallel query processing strategies 
[Pi90). Funhermore, performance should scale with the number of nodes: adding processing 
nodes ideally improves thwughput for OL TP or response· times for complex queries linearly. 
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Parallel database systems are typically based on one of three general architectures termed 
"Shared Everything" (or "Shared Memory"), database sharing ("Shared Disk") and data· 
base panitioning ("Shared Nothing") [St86, Bh88, DG92]. Shared Everything (SE) re­
fers to the use of multiprocessors for database processing. In this case, we have a tightly 
coupled system where all processors share a common main memory as well as peripneral 
devices (terminals, disks). The shared memory suppons efficient cooperation and synchro· 
nization between processors. Furthermore, load balancing is comparatively easy to achieve 
by providing common job queues in shared memory. These advantages are especially valu­
able for parallel processing leading to increased communication and load balancing require­
ments to start/terminate and coordinate multiple subtransactions per transaction. 
Multiprocessors are already utilized by several commercial DBMS for parallelizing certain 
operations (e.g., index constructionimaintenance or sorting) [Ha90, Da92]. Furthermore, 
several research prototypes use theSE approach for a more general form of intra-transaction 
parallelism, e.g., XPRS [SKP088) and Volcano [Gr90]. 

However, SE has significant limitations with respect to meeting high performance and avail· 
ability requirements. In panicular, the shared memory can become a performance bottleneck 
thereby limiting the scalability of the architecture. Consequently, the number of processors 
is quite low in current SE systems(:> 30). In addition, there are significant availability prob­
lems since the shared memory reduces failure isolation between processors, and since there 
is only a single copy of system software. like the operating system or the DBMS (Ki84]. 
These problems can be overcome by Shared Nothing (SN) and Shared Disk (SD) ~y;:crns 
which are rypically based on a loose coupling of processors. In loosely coupled systems, 
each processor is autonomous, i.e., it runs a separate copy of the operating system, the 
DBMS and other software, and there is no shared memory [Ki84). Inter-processor commu­
nication takes place by means of message passing. Loose coupling can be used for intercon­
necting uniprocessors or multiprocessors. We use the term processing node (or node) to 
refer to either a uniprocessor or a multiprocessor as part of a loosely coupled system. 

SN and SD differ in the way the external storage devices (usually disks) are allocated to the 
processing nodes. In SN systems [St86, OV91, DG92], external storage devices and thus the 
data are partitioned among all nodes. A node can directly access only data of the local data­
base partition; if remote data needs to be accessed a distributed transaction execution be· 
comes necessary. For this purpose, the DBMS has to support constniction of distributed 
query execution plans as well as a distributed c.omrnit protocol. In SD systems [Ra86, 
Yu87, MN91], on the other hand, each node can directly access all disks holding the 
common database. As a result, no distributed transaction execution is necessary as for 
SN. Inter-node communication is required for concurrency control in order to synchronize 
the nodes' accesses to the shared database. Furthermore, coherency control is needed since 
database pages are buffered in the main memory of every node. These page copies remain 
cached beyond the end of the accessing transaction making the pages susceptible to invali­
dation by other nodes. 

For both system architectures, SN and SD, there are several commercially available DBMS 
or research prototypes. Currently however, intra-transaction parallelism is only suppuneG 
by SN systems1, e.g., in products like Tandem NonStop SQL [Ta89] and Teradata's 



DBC/1012 [Ne86] and prototypes such as Arbre [LY89), Bubba [Bo90], EDS [Sk92], Gam­
ma [De90], and Prisma [Ap92]. With the exception of Tandem, these systems represent 
back-end systems (database machines) dedicated to database processini. According to 
[DG92], the commercial SN systems are very successful and have demonstrated both linear 
throughput scaleup and response time speedup in cenain benchmarks [Ta88, EGKS90]. The 
SD approach is supported by several products including IBM's IMS, DEC's Rdb and CO­
DASYL DBMSs, and Oracle's Parallel Servey3. Oracle's SD system has reached the highest 
transaction rates in the 1PC-A and TPC-B benchmarks [Gr91]. In 1991, more than 1000 
rpsB were already achieved on a nCUBE-2 system with 64 nodes [Or91]. Recently, more 
than 1 KtpsA was achieved on a Sequent configuration of 2 nodes with 23 processors each. 
In addition to nCUBE and Sequent, other microprocessor-based "cluster'' architectures also 
suppon the shared-disk paradigm (Pyramid, Encore, etc.). 

Despite the significance of SD for high performance database processing, this approach has 
found almost no attention in the research literature with respect to inn-a-transaction parallel­
ism. Fortunately, many of the techniques developed for parallel query processing in SN or 
SE systems can be utilized for SD as well. However, as we will see the fact that each node 
can directly access all data gives SD a considerably higher flexibility for parallel query pro­
cessing compared to SN. 

Since SN is currently the major approach for parallel query processing, we discuss the SD 
approach by comparing it with SN. For this purpose, we first compare some general features 
of both architectures with respect to database processing (section 2). This discussion recon­
siders some of the arguments that have been made to promote SN as "the" approach for par­
allel query processing. This is particularly scrange since the SD approach was excluded from 
consideration without even looking at its potential v:ith respect to intra-transaction parallel­
ism (e.g., in [DG92]). In section 3, we extend our comparison by focussing on parallel query 
processing for both architectures. The comparison is not intended to show that SD is "better" 
than SN, but to illustrate that there are major advantages for SD which make this approach 
an interesting target area for further research on parallel query processing. In particular, ma­
jor problems of the SN approach with respect to intra-transaction parallelism (e.g., physical 
database design, support for mixed workloads) are likely to be easier solved for SD. In sec­
tion 4, we discuss extensions for transaction management that are to be supported by SD sys­
tems for incra-cransaction parallelism. 

1. Oracle is currenUy working on intra-query parallelism for its SD system (Li93). 

2. The back-end approach makes it easier to utilize microprocessors for database processing and 
may suppon a more efficient communication than general-purpose systems. Furthermore. the 
back-end systems may be connected to a variety of front-end systems like workstations or main· 
frame hosts. On the other hand, a high communication overhead is introduced if front-end appli­
cations have to send every database operation to the back-end for processing or if large result sets 
need to be rerumed by the back-end. For OL TP applications. transaction programs may be kept 
in the back-end system (as "stored procedure") to reduce the communication requirements. 

3. In (DG92). the Oracle approach has wrongly been classified as a Shared Nothing system. 
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2 SN vs. SO revisited 

Several papers have compared SD and SN (and SE) with each-other [Tr83, S h86, St86, 
Bh88. Pi90, DG92, Va93a, Ra93b]. partially coming to different assessments. One advan­
tage of SN is that interconnecting a large num~v>.r ·of nodes is less expensive than for SD 
since every disk needs only be connected to one node. However, the cost of interconnecting 
nodes and disks is also comparatively low in SD architectures such as Kcube. These archi­
tecrures are based on microprocessors and do not directly a ttach a disk drive to all nodes. but 
achieve the same connectivity by an interconnection network (e.g., bybercube) where I/0 
requests and pages may be transferred through intermediate nodes. Such a message-based 
I/0 interface between processing nodes and I/0 nodes (disk controllers) is also used in the 
DEC VaxC!usters [KLS86). This approach does not imply any inherent limit on the number 
of processing nodes. For instance, the new nCUBE-3 system has an architectural maximum 
of 65 336 processors [Gi93] . 

Another advantage of SN is its broad applicability to different environments. In particular. 
the nodes of a SN system may be locally or geographically distributed, and the DBMS in­
stances may be identical or not (heterogeneous and federated database systems are based on 
SN). On the other hand, SD assumes a homogenous architecrure and typically requires close 
proximity of processing nodes and storage devices due to the attachment of the disk drives 
to all nodes. However. these are no significant disadvantages with respect to parallel data­
base processing. High performance, high availability and scalability require a close cooper­
ation between all nodes/DBMS which car.not be provided by heterogeneous/federated 
database systems. Similarly, locally distributed systems provide high communication band· 
width and low latencies and are therefore preferable to geographically distributed systems 
for high performance database processing. Funhermore, dynamic load balancing is easier 
achieved in a locally distributed system since global state information (e.g., on CPU utiliza­
tion) can be maintained with smaller cost and higher accuracy. 

A major problem of SN is finding a "good'" fragmentation and allocation of the database. 
The database allocations tend to be static due to the high overhead for physically redistrib· 
uting large amounts of data. It has a profound impact on performance since it largely deter­
mines where database operations have to be processed thus affecting both communication 
overhead and node utilization. Since different transaction and query types have different 
data distribution requirements, the database allocation must inevitably constitute a compro­
mise for an expected workload profile. The chosen allocation may however easily lead to 
suboptimal performance and load imbalances due to short-term workload fluctuations or 
o ther deviations in the actual from the expected workload proflle. Variations in the number 
of nodes (node failure, addition of new node) require a reallocation of the database. SD 
avoids these problems since there is no need to physically partition the database among 
nodes. In particular, this promises a higher potential for load balancing since each node can 
process any database operation. We will further discuss the role of the database allocation 
in the next section. 

In [DG92), it is argued that coherency control may limit the scalability of SD compared to 
SN. In view of the scalability problems of tightly coupled systems caused by cache coher-



ency protocols. this is conceivable. However, for workloads for which SN systems could 
demonstrate scalability so far, namely read-dominated workloads or perfectly "partition­
able" loads like debit-credit, SD has no problems with coherency control. It is fair to say that 
SN systems depend even more than SD on the panirionability of the workload and database 
due to the large performance impact of the database allocation for SN [YD91]. SD can uti­
lize the panitionability of a workload to limit the number of buffer invalidations by employ­
ing an "affinity-based" workload allocation which assigns transactions referencing/updating 
the same database portions to the same node [Ra92b]. Tnis is a dynamic form of workload/ 
data allocation which can more easily be adapted than the database allocation for SN. SD 
allows a more efficient coherency control than in other environments since transactions con­
stitute comparatively large execution units reducing the frequency of invalidations and data 
transfers between nodes. Furthermore, coherency control can closely be integrated with con­
currency control limiting the number of extra messages to a large extent; soroe coherency 
control protocols do not require any additional messages [Ra91c]. 

In [DG92] it is also argued that SN would scale better than SD because interference is min­
imized. In particular, SN would only move small "questions·· and (flltered) answers through 
the network, while SD would require moving large quantities of data. TI1is argument appar­
ently assumes conventional (non-parallel) database processing because efficient intra-query 
parallelism for SN requires redistribution of large amounts of data berween nodes (see sec­
tion 3). Furthermore, SN is highly susceptible to processor interference since questions on a 
particular database object can only be processed by the owning node, even if it is already 
overutilized. The performance results published for SN so far were typically based on many 
best-case conditions regarding workload profile, database allocation and load balancing. In 
particular, almost all performance studies on the use of inn-a-transaction parallelism as­
sumed single-user mode implying minimial processor interference. Under more realistic 
conditions (multi-user mode, mixed workloads), SN was shown to exhibit much poorer per­
formance [MR92]. 

3 SN vs. SO for parallel query processing 

The comparisons of the different architectures made so far in the literature did not consider 
intra-transaction parallelism in most cases. Even in papers coping with parallel database pro­
cessing [Pi90, DG92], no special attention was paid to parallel query processing for SD. In 
this section, we will show that SD offers significant advantages for parallel query processing 
compared to SN. The comparison considers differences and commonalities with respect to 
database allocation and the processing of scan and join operations. Furthermore, we discuss 
processing of mixed OLTP/query workloads. At first however, we introduce some terminol­
ogy on parallel transaction processing. 

3.1 Parallel transaction processing ter minology 

As indicated in Fig. 1, there are different forms of parallel transaction processing to consid­
er. First of all, one can distinguish between inter- and intra-transaction parallelism. lnrer­
trallSacrion parallelism refers to the concurrent execution of multiple independent transac-
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lions on the same database. This kind of parallelism is already present in centralized DBMS 
(multi-user mode), e.g., in order to overlap I/0 delays to achieve acceptable system through­
put. Of course, inter-transaction parallelism must also be supponed in parallel database sys­
tems (in corr<bination with intra-transaction parallelism). Otherwise, the throughput 
requireme~,;~ for OL TP could not be met and a very poor cost-effectiveness would be ob­
tained (the processing capacity cannot effectively be utilized in single-user mode). 

To improve the response time of complex transactions, intra-tnlllsaction parallelism is need­
ed either in the form of inter-query or intra-query parallelism. I mer-query (operation) par­
allelism refers to the concurrent execution of different database operations (e.g., SQL 
statements) of the same transaction. The degree of parallelism obtainable by inter-query par­
allelism is limited, however, by the number of database operations per transaction as well as 
by precedence constraints between these operations. Currently, commercial DBMS do not 
suppon this kind of parallelism because the programmer would have to specify the query 
dependencies using adequate language features. 

inter-uansaction 

inter-query (operation) 

inter-operator 

~ 
data 

parallelism 
pipeline 

parallelism 

intra-transaction 

intra-query (operation) 

intra-operatOr 

~ 
data 

parallelism 
pipeline 
parallelism 

Fig. 1 : Classification of parallel transaction processing forms 

lmra-query parallelism aims at parallelizing individual database operations. This type of 
parallelism has been made possible by relational DBMS with their set-oriented operations. 
It is achieved transparently for database users and application programmers by the DBMS's 
query optimizer. For every query, the query optimizer generates a parallel execution plan 
specifying the base operators (scan, join, etc.) to be used for processing the query. Parallel· 
ism may be employed between different operators (inter-operator parallelism) or within op· 
erators (intra-operator parallelism). Similar to inter-query parallelism, the achievable degree 
of parallelism with inter-operator parallelism is limited by the number of operators and pre· 
cedence constraints between operators in the execution plan. Most parallel database sysrems 
currently suppon intra-transaction parallelism only in the form of intra-operator parallelism. 



Research papers have studied inter-operator parallelism primarily for optimizing multi-way 
join operations (SD90, LST91, CYW92]. 

As indicated in Fig. 1. inter- and intra-operator parallelism may use either data or pipeline 
parallelism. DOJa parallelism is Oased on a partitioning of the dara so that different operators 
or suboperators can concurrendy process disjoint data partitions. For instance, scan opera­
tors on different relations can be executed in parallel (inter-operator parallelism); a scan on 
a single relation can be parallelized by partitioning the relation and the scan operator (intra­
operator parallelism). Pipeline parallelism uses an overlapped (pipelined) execution of dif­
ferent operators or suboperators to reduce processing time. 1n this case. the results of one 
(sub)operator are incrementally sent to the next (sub)operator in the execution plan (data­
flow principle). Compared to data parallelism the benefits of pipeline parallelism are limited 
since relational pipelines are rarely long (S 10 operators) [DG92). Furthermore. there may 
be large differences in the execution cost of different operators. In addition, some operators 
cannot be used for pipelining as they do not provide their output until they have processed 
all input data (e.g., son or duplicate elimination). Also. the communication cost for pipelin­
ing can be substantial since many small messages may have to be exchanged between two 
operators instead of transferring the result in a single message. For these reasons, we mainly 
focus on data parallelism in this paper. There are no significant differences between SN and 
SO with respect to pipeline parallelism which primarily works on derived data that candy­
namically be redistributed among nodes for both architecrures. 

Data parallelism requires both UO parallelism and processing parallelism. 110 parallelism 
means that !he data to be processed by a database operation is declustered across multiple 
disks so that I/0 time is not limited by the low bandwidth of a single disk. Processing par­
allelism requires that the input data of a database operation can be processed by multiple 
CPUs to avoid that execution time is limited by the capacity of a single processor. For SN 
and SD. the database allocation to disk direcdy determines the maximal degree of J/0 par­
allelism per relation. Since the data allocation on disk is expensive to change. the (maximal) 
degree of J/0 parallelism is a rather static parameter. For SN, the degree of processing par­
allelism is also largely dependent on the static data allocation to disk since each disk is ex­
clusively assigned to one processing node. As we will see below, this resultS in a reduced 
flexibility for dynamically varying the degree of processing parallelism compared to SO 
where each node can access any disk. 

3.2 Database allocation 

Shared Nothing 

Declustering in SN systems is typically based on a horizontal fragmentation and allocation 
of relations. Fragmentation may be defined by a simple round robin scheme or, more com­
monly, by hash or range partitioning on apanirioning tUUibute [0092]. Data allocation in­
corporates determination of the degree of declustering 0 and mapping of the fragmentS to 
D disks (processing nodes). Indices (B+ trees, in general) are also partitioned with the rela­
tion so that at each of the D nod~ there is a (sub-)index for the local tuples. 
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Determination of an appropriate database allocation means finding a compromise with re­
spect to contradicting subgoals: suppon for a high degree of intra-transaction parallelism. 
low communication overhead. and effective load balancing. For tnstance, a high degree of 
declustering supportS intra-transaction parallelism and load balancing, but at the expense of 
a Jrigh communication overhead for starting and terminating suboper ... tions. A small degree 
of declustering, on the other hand, reduces communication overhead and may be sufficient 
to meet the response rime requirements on small relations or for selective queries (e.g., index 
scan). Funhermore, it supports effective imer-r:ransaction parallelism (high OLTP through­
put). 
Similar trade-offs are posed by the various fragmentation alternatives (DG92]. Round robin 
is the simplest approach and promises an optimal load balancing since each fragment con­
tains the same number of tuples. However, it requires a high communication overhead be­
cause queries cannot be li:nited to a subset of the partitions since database allocation is not 
based on attribut values. Range partitioning permitS exact-match and range queries on the 
partitioning attribute to be localized to the nodes holding relevant data thereby reducing 
communication overhead. With hash partitioning only exact-match queries (but not range 
queries) on the partitioning attribute can be restricted to the minimal number of nodes. For 
range queries, hash partitioning may achieve bener load balancing than range partitioning 
since it randomizes logically related data across multiple nodes rather than cluster it [DG92]. 
Heuristics for calculating a database allocation for a known workload profile are proposed 
in (CABK88. GD90]. 

Shared DISk 

For SD, only a database allocation to clisk needs to be determined as already for centralized 
DBMS. The declustering ofrelations across multiple clisks can be defmed similarly as for 
SN, i.e., either based on round robin, hash or range partitioning. The round robin approach 
may even be implemented outside the DBMS, e.g., by the operating system's file manager 
or, in the case of clisk arrays [PGK88), by the clisk subsystem4. In this case, the DBMS op­
timizer would still have to lmow the degree of declustering to allocate resources (CPUs, 
memory) for parallel query processing. Kote that cenr:ralized DBMS and SN systems typi­
cally are unable to utilize the I/0 bandwidth provided by dis.lc: arrays. This is because disk 
arrays can deliver JJO bandwidths in excess of 100 MB/s, while it is estimated that a single 
CPU can process relational data merely at a rate of merely 0.1 MB/s per MIPS [GHW90). 
For SD the CPU bottleneck is avoided if multiple processing nodes share a disk array and if 
the clisk array is able to split the output of a single read request among multiple nodes (mem­
ories). Hence, SD is better positioned than SN or SE to utilize disk arrays for parallel query 
processing. Of course, SD can also use conventional disk farms instead of disk arrays. 

However, hash and range partitioning offer similar advantages over round robin than for SN. 
In particular, processing may be limited to a subset of the disks thereby reducing the work 
for a relation scan. Furthermore, disk contention is reduced thus cutting I/0 delays for con­
current transactions (better JJO rates). Note however, that the degree of declustering does not 

4. File blocks rather than records would !hen constitute the units of declustering. 



directiy influence the conununication overhead as for SN, since the degree of processing 
parallelism can be chosen independently for SD (see below). As a result, the "optimal" de­
gree of declustering for a given relation and workload profile may be different for SD than 
for SN. The use of disk arrays is more complicated in the case of a DBMS-controlled data 
allocation based on attribute values, in particular if the disk array should still provide high 
fault tolerance by automatically maintaining pariry information or data copies. This requires 
a suitable coordination between DBMS, ftle system and disk array controller and constirutes 
a general (open) problem of disk arrays to be used for database processing. 

SD does not require creation and maintenance of multiple independent indices (trees) for 
one logical index of a declustered relation. Still, a physical declustering of large indices 
should be possible for load balancing reasons. Such a declustering could be achieved trans­
parently for the DBMS, e.g., by the file system. Funhernnore, in contrast to SN there may be 
a different degree of declustering for relations and indices, and indices may be allocated to 
a disjoint set of disks. To reduce disk contention between different nodes of a SD system, 
frequently accessed indices (as well as relations) may be allocated to disks with a shared disk 
cache or to shared non-volatile semiconductor memory such as solid-state disk or extended 
memory [Ra9lb, Ra92a, Ra93a]. 

SN proposals for data replication such as imerleaved declustering or chained dcclustering 
have been shown to be applicable for media recovery in disk arrays as well [CK89, GLM92]. 
Similarly, these schemes can be applied to the SD environment. Furthermore, proposals for 
finding a data allocation for disk arrays [WZS91] can be adapted for SD. 

While we focus on relational databases in thi s paper, it is to be noted that database partition­
ing will become more diffic ult for next-generation applications. For instance, large multi­
media objects can be stored in a single tuple ("long field") so that they would be assigned to 
a single node in SN systems. Hence, parallelism cannot be utilized for SN to process such 
large objects. For SD, on the other hand, the object could physically be declustered across 
multiple disks so that at least I/0 parallelism could be utilized to reduce 1/0 time. Similarly, 
complex objects for engineering or office automation applications are typically large and 
consist of many inter-connected and heterogeneous tuples. Partitioning these objects among 
multiple nodes is very difficult and would introduce a high communication overhead for ob­
ject processing. Even partitioning at the object level is difficult due to subobjects that are 
shared by multiple complex objects. Hence, SD is better able to support intra-transaction 
para!JeHsm on complex-object and object-oriented databases [HSS89]. 

3.3Scan 

Scan is the simplest and most common relational operator. It produces a row-and-column 
subset of a relation by applying a selection predicate and filtering away attributes notre­
quested by the query. If predicate evaluation cannot be supponed by an index .• a complete 
re/arion scan is necessary where each tuple of the relation must be read and processed. An 
index scan accesses tuples via an index and restricts processing to a subset of the tuples; in 
the extreme case, no ruple or only one tuple needs to be accessed (e.g., exact-match query 
on unique attribute). 
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Shared Notrrtng 

For SN, paralleliting a scan operation is srnright-forward and d~tennined by the database 
allocation. As discussed above, exact-match queries on the partitioning attribute are not par­
allelized for hash partitioning or range partitioning, in general, but are sent to the node where 
the corresponding ruple(s) can be found. Similarly, range queries on the partitioning at­
tribute are localized to a subset of nodes for range partitioning. However, all other scan que­
ries must be processed by all nodes holding fragments of the respective relation. Each node 
performs the scan on ita local partition and sends back the result tuples to the query's home 
node. i.e. the node where the query has been initiated. At this node, a final sorting or dupli­
cate elimination may be performed before the result is returned to the application/user. 

The description shows that for all scan operations the degree of processing parallelism is 
statically determined by the database allocation. ln particular. the degree of processing par­
allelism corresponds to the degree of declustering except for certain queries on the partition­
ing attribute. This approach has the obvious disadvantage that it does not allow dynamic 
load balancing. i.e., varying the number o f processing nodes and selecting the scan nodes 
according to the current system state. Furthennore, for selective queries supported by an in­
dex it is generally inefficient to involve all D nodes holding a fragment of the relation due 
to an unfavorable ratio between communication overhead and useful work per node. The lat­
ter disadvantage can be reduced by a multidimensional range partitioning approach [GD90, 
GDQ92). ln this case, fragmentation is defmed on multiple partitioning attributes so that 
queries on each of these att.l"~burez ean be limited to a subset of the fragments/nodes (Fig. 2). 
While this approach can reduce communication overhead for certain queries compared to 
one-dimensional range partitioning, the degree of processing parallelism and thus the com­
munication overhead are still statically determined by the database allocation. 

A-E 

F-J 
Name K-0 

P-S 
T-Z 

<20K 

1 

6 
11 

16 

21 

<30K 

2 
7 

12 

17 
22 

Salary 

<45K <70K ~70K 

3 4 5 

8 9 10 

13 14 15 

18 19 20 
23 24 25 

A tWO·dimensional range panitioning on the name and salary attributes is used for the em­
ployee relation. This allows exact-match and range queries on each of the two anributes 
be limited 10 5 nodes if each fragment is assigned to a different oo<le. A one-dimensional 
range partitioning could restrict queries on one of the two attributes to 1 node. but would 
involve all 25 nodes for queries on the other (resulting in an average of 13 nodes per qw..ry 
if both query typeS occur with the same frequency). Shared Disk permitS both query types 
10 be processed by a single processor thus incurring minimal communication overhead. 

Fig . 2: Example of mul!i dimensional range partitioning 



Shared Disk 

In SO systems each node has access to the entire database on di$. Hence, scan operations 
on a relation can be pexfonned by any number of nodes. For example , index scans on any 
attribute may be performed by a s ingle processor thereby mittimizing communication over· 
head. This would especially be appropriate for exact-match and selective range queries, and 
suppons bigh OL TP throughput. For relation scans, on the other hand, a high degree of pro­
cessing parallelism can be employed to utilize inua-query parallelism to reduce response 
time and to acbieve load balancing. Not only the degree of processing parallelism can be 
chosen based on a q uery's resource requirements, but also which processors should perform 
the scan operations. Funhennore, both scheduling decisions can be drawn according to the 
current system state. For instance, a scan may be allocated to a set of processors with low 
CPU utilization in order to avoid inte rference with concurrent transactions on other nodes. 
Furthermore, even multiple (independent) scans on the same relation may concurrently be 
executed on different nodes, e.g., if they access disjoint ponions of the relation so that disk 
contention can be avoided. The latter feature is helpful for inter-transaction as well as inter­
operator parallelism. 
The ability to dynamically determine the degree of scan parallelism and the scan processors 
represents a key advantage of SO compared to SN. It is critical for a successful use of intra­
transaction parallelism in multi-user mode where the current load situation is constantly 
changing. This is because the optimal degree of intra-que.-y parallelism (yielding the best re­
sponse rime) strongly depends on the system state and is generally the lower the bigher the 
system is utilized [MR93]. 

For SN, the chosen degree of declustering has a dominant effect on scan pexformance since 
it determines the degree of processing parallelism in many cases. For SO. on the other hand, 
disk declustering is only needed for I/0 parallelism, in particular to provide sufficient I/0 
bandwidth for parallel processing. The degree of declustering merely determines the maxi­
mal degree of processing parallelism for SO. if no more than one node is aocessing a disk 
for a given query to limit disk contentions. Since the degree of declustering has no direct 
impact o n communication overhead for SD, it may be chosen higher than for SN to improve 
load balancing and to further extend flexibility with respect to choosing the appropriate de­
gree of scan parallelism. 

The result of a scan operation may be too large to be kept in main memory at the query's 
home node so that it must be Stored in a temporary file on disk. In the case of SN, a high 
overhead is necessary to send the local scan results to the query's home node, to write out 
the data to disk and to read it in later to perform some postprocessing and return it to the 
application. SD can avoid the communication overhead for the data transfers since each scan 
processor can directly write its local scan result to a temporary file on the shared disks (or 
in shared semiconductor memory). After the temporary file is written, the query's home 
node is informed that the file can be read from external storage. To simplify the implemen-

S. For multiprocessor nodes with P processors per node-, the maximal degree of processing parallel­
ism would be P·D (D" degree of declustering). 
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Shared Disk 

In SO systems each node has access to the entire database on di$. Hence, scan operations 
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For SN, the chosen degree of declustering has a dominant effect on scan pexformance since 
it determines the degree of processing parallelism in many cases. For SO. on the other hand, 
disk declustering is only needed for I/0 parallelism, in particular to provide sufficient I/0 
bandwidth for parallel processing. The degree of declustering merely determines the maxi­
mal degree of processing parallelism for SO. if no more than one node is aocessing a disk 
for a given query to limit disk contentions. Since the degree of declustering has no direct 
impact o n communication overhead for SD, it may be chosen higher than for SN to improve 
load balancing and to further extend flexibility with respect to choosing the appropriate de­
gree of scan parallelism. 

The result of a scan operation may be too large to be kept in main memory at the query's 
home node so that it must be Stored in a temporary file on disk. In the case of SN, a high 
overhead is necessary to send the local scan results to the query's home node, to write out 
the data to disk and to read it in later to perform some postprocessing and return it to the 
application. SD can avoid the communication overhead for the data transfers since each scan 
processor can directly write its local scan result to a temporary file on the shared disks (or 
in shared semiconductor memory). After the temporary file is written, the query's home 
node is informed that the file can be read from external storage. To simplify the implemen-

S. For multiprocessor nodes with P processors per node-, the maximal degree of processing parallel­
ism would be P·D (D" degree of declustering). 
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disk contention problems could also be reduced by exchanging the data across shared semi­
conductor memory supporting both fast access times and high 110 rates. 
If the size of the scan output allows a join processing in main memory, the data should also be 
exchanged across the communication system for SO. This is because such a data transfer is 
substantially taster than across disk. Furthermore, pipeline parallelism for local join processing 
can be utilized (e.g., H hash join is used as me local join method). 

Index-supported join queries that only require access to few tuples can be limited to one (or a 
few) node(s) for SO, while a high communication overhead may be necessary for SN. For in­
stance, join queries for an employee relation fragmented as in Fig. 2 would require processing 
of all fragments for SN H the join attribute were, say, serial number or department number. 

a) SN 

b)SD 

join 
processors 

processors 

The scan output on each fragment o f relations RandS is split among the three join pro­
cessors. For SN. the scan output is tranferred to the join processors over the network. 
The join processors have to store their input fragments in temporary files on disk if 
they cannot be kept in memory. For SD, the scan output may be exchanged across the 
shared disks thereby avoiding the communication overhead for data transfers. 

Fig. 3: Dynamic data redistribution between scan and join processors 

41-13 



41-14 

A general SN approach to process 9-joins (non-equi joins) between two relations is to dy­
namically replicate the smaller relation at all nodes holding a fragment of the larger reiation 
and to perform the 9-joins at the latter nodes [OV91]. This approach causes an enormous 
communication overhead and does not s.cale well ~in"e the communication overhead in­
creases quadratically with the number of nodes (h01uiug fragments of the two relations). SO 
avoids the communication overhead for data redistribution altogether since each node can 
directly read all fragments from disk. Furthermore, the number of join processors is not pre­
determined by the degree of declustering but can dynamically be selected. A high degree of 
declustering with respect to the disk allocation is favorable to reduce disk contention for SO. 
Disk contention is also reduced by the use of large main memory caches and disk caches. 

3..5 Mixed workloads 

Parallel database systems must be able to suppon both high throughput for OL 'IP as well as 
shon response times for data-intensive queries of different types. This is difficult to achieve 
since both workload classes pose partially contradicting requirements. Some of the prob­
lems with respect to supporting mixed workloads already occur in centralized (or SE) 
DBMS. For instance, CPU and memory requirements for query processing may cause in­
creased CPU waits and I/0 delays for OL TP. Furthermore, data contention can be signifi­
cant if queries request long read locks on large amounts of data. The latter problem may be 
resolved by using a multiversion concurrency C<'::::-c! scheme which guarantees that read­
only transactions do not cause or suffer from any lock conflicts [HP87, BC92, MPL92l- Re­
source contention may be controlled by the use of priorities for different transaction types, 
e.g., for buffer management [JCL90, Brl>2] and CPU scheduling7. 

In parallel database systems, there are two additional areas where performance problems for 
tnixed workloads may occur: communication overhead and load balancing. Intra-query par­
allelism inevitably causes increased communication overhead (compared to a sequential ex­
ecution on one node), leading to higher resource utilization and contention and therefore 
lower throughput. To limit the communication overhead and resource contention and to ef­
fectively utilize the available processing capacity, dynamic load balancing is particularly 
important for mixed workloads. As the preceding discussions have already shown, SO offers 
advantages over SN in both areas: 

SN cannot efficiently support both workload types. but requires definhion of a (static) database 
a llocation for an ·average" transaction profile (GD90). This inevitably leads to sub-optimal per­
formance for both workload types and does not support dynamic load balancing. In particular, 
ad-hoc queries have to be restricted to I ewer nodes than desirable to limit the communication 
overhead so that response times may not sufficiently be reduced. On the other hand . OL TP 
tra.nsactions cannot be confined to a single node in many cases thereby causing extra com­
rrunlcation overhead and lowering throughput In both cases, the sub-optimal performance 
rrust be accepted even if only one of the two worldoad types is temporarily active. 

7. Much research is still needed for supporting a comprehensive priority-based load control for da­
tabase applications. In particular, dlfferent subsystt:;,s like the DBMS. TP-monitor and the oper­
ating system must closely coordinate their scheduling d<:<:'sions, e.g., to avoid anomalies such as 
lhc priority-inversion problem !En91]. 



In SO systems. dectustering of data across mu~iple disks does not increase the communica· 
tion overhead for OL TP. In general, OL TP transactions are COrT;Jietely executed on one node 
to avoid the communication overhead for intra-transaction paralleHsm and distributed comrnif>. 
The degree of processing parallelism and thus the communication overhead lor ad-hoc que­
ries can be adapted to the current load situation. Furthermore. resource cornernion for CPU 
and memory between OL TP transactions and complex queries may largely be avoided by as· 
signing these workload types to disjoint se1s of processors which is not possible tor SN, in gen· 
eral. 

4 SO Transaction Management for Parallel Query Processing 

Without intra-transaction parallelism. there is no need for disttibuiCd transactions for SD. 
Each node can perform all database operations since the entire database is directly accessi· 
ble. In particular, all modifications by a transaction are performed at one node and logged in 
this node's local log file. Hence, no distributed commit protocol is necessary as for SN to 
guarantee the ACID properties [HR83]. As mentioned in the introduction, communication 
is still necessary for global concurrency and coherency control. Furthermore, the local log 
fLies have to be merged into a global log to suppon media and crash recovery (Ra9la]. 

However, intra-transaction parallelism resultS in a decomposition of transactions and que· 
ries into multiple subtransactions running on different nodes. To guarantee the transaction 
(ACID) properties in this case, appropriate extensions with respect to transaction manage· 
ment are necessary for SD. While SK teclmiques for distributed transaction management 
(e.g., distributed commit protocols) can be used, there are additional problems for SD that 
require a more complex solution. These problems occur mainly if intra-transaction parallel· 
ism for update transaction is to be supported, and will be discussed first. To limit the imple­
mentation complexity, it seems desirable tO resttict intra-transaction parallelism to read-only 
transactions (at least in a ftrst step). This case is discussed in subsection 4.2. 

4.1 Problems with parallel update transactions 

In SN systems, the separation of global transactions into subtransactions is detennined by 
the database allocation. This approach typically ensures that each subtransaction operates on 
data owned by the respective node. Concurrency control is a local function since each node 
can process all lock requestS on its data. For SD, on the other hand. it cannot generally be 
excluded that subtransactions of a given transaction reference and modify the same database 
objects (e.g., index pages) at difierent nodes. Hence, there is a need for concurrency control 
between parallel subtransactions. Furthermore, coherency contrOl is also required between 
parallel subtransactions to avoid access to obsolete data and to propagate updated database 
objects between subtransactions (Fig. 4). 

8. Compared to a clustered data allocation where each relation is stored on a minimal number of 
disks. the number of disk I/Os for OLTP may be increased, howe,·er. if round robin or hash pat· 
Litioning is used for declustering which disaibute logically consecutive records to different disks. 
More disk I/Os could fur.hes increase disk contention between OLTP ttaru~actions. However, 
these problems can be avoided by a range partitioning which preserves clustering properties to a 
large extent (GHW90]. 
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Subtransactions of transaction T 1 are running in parallel at processing nodes 
PI , P2 and P3. Subtransaction T12 at P2 has modified page Bin main memory; 
the copies of Bat P3 and on disk are obsolete. When subtransactions T 11 and 
T 13 want to read page B, a synchronization with T 12 is necessary as well as a 
propagation of the new page version from P2 to Pl and P3. 

Fig. 4: Concurrency/coherency control problem between subtransactions 

The new reQuirements can be met by supporting a nested transaction model[Mol!5, HRl!7 J 
and by extending the SO concurrency/coherency control schemes for sequential transactions 
accordingly. SUJCe the applications should remain unchanged compared to sequential trans­

action processing (unless inter-query parallelism is to be supponed), nested transactions are 
only used intemally by the DBMS to strucrure queries into a hierarchy of subtransactions or 
subqueries. Subtransactions can be executed concurrently at different nodes. Funhermore, 
subtransactions may be rolled back without impact on other subtrar~sacrions, i.e., the scope 
of undo recovery can be substantially limited compared to flat transactions. Isolation be­
tween subtransactions is achieved by a suitable locking protocol defining the rules for lock 
processing within a cransacrion hierarchy. Such a protocol supporting parallel subtransac­
rions, upward and downward inheritance of locl<s as well as multiple lock granularities has 
been proposed in [HR87] and can be extended to the SD environment. One difference fo~ 
so results from the fact that lock requests may have to be sent to a global lock manager thus 
incwring communication overhead and delays9. Furthermore, coherency concrol must be in­
corporated into the concwrency conO'Ol scheme. Fonunately, this can be accomplished in a 
similar way than for sequential trarlsactions, e.g .. by a so-called on-request invalidation pro­
rocol that uses extended global lock information to detect obsolete page copies and to record 

9. In lock pro10eols for SD there is typically a global lock manager per da~abasc object [Ra9lc).ln­
stead of using a centr.ll lock manaier. !he responsibility for global lock processing may be spread 
over all nodes (by partitioning the lock space) to balance !he concurrency conli'OI overhead. Such 
an approach also saves the communication overh~ for lock requests on .. local" objects. i.e., for 
whir.~ the node processing the respective (sub)O"ansaction is responsible. There are several tech­
niques tc reduce the number of remote lock requests [Ra91 c) which C<lll also be utilized for nested 
transactions. 
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where a page was modified most recently [Ra9lc]. Such an approach detects obsolete page 
copies during lock processing so that excra messages for this purpose are avoided. 

Although a detailed description of the extended concurrency/coherency control protocol is 
beyond the scope of this paper, we c-dll illustrate some points by explaining how it would 
handle the situation shown in Fig. 4. Assume P2 is the global lock manager for page B so 
that the lock request by subtransaction T 12 can be processed without communication delay. 
When T 11 and T12 want to reference page B, they request a read lock at the global lock man­
ager in Pl which is not granted since T 12 holds a write lock. At the end of subtransaction 
T 1z, the write lock is released and inherited to the parent transaction Tt (as well as the new 
version of B). The global lock manager forB can now grant the read locks for subrransac­
tions T 11 and T 13 (downward inheritance). Furthermore, the global Jock manager detects 
that page B is also to be sent to nodes Pl and P3 (together with the message used for granting 
the Jock). This is because nodes Pl and P3 cannot hold the current version of B since it was 
modified most recently at P2. 

ln addition to the extensions needed for concurrency and coherency control, parallel update 
transactions in SD systems require major changes for logging and recovery. In particular, 
the updates of a single transaction may now be performed at multiple nodes so that a trans­
action's log data are spread over multiple local log files. While thls is also the case for SN, 
SN has the advantage that each local log ftle only contains log data of one database partition 
thereby supporting media recovery without the need for a global log file. Hence, parallel up­
date transactions for SD would require suppon of the logging and recovery protocols of both 
SN (distributed commit, distributed undo and redo recovery) and SD (construction of a glo­

bal log file). 
One possibility to avoid the complexity and overhead of supporting both recovery para­
digms is to log all updates of a nested transaction at the transaction's home node. This would 
require that during the commit of a subtransaction its log data are transferred to the home 
node where they are written to the local log file. Such an approach would result in a log sit­
uation as for SD without intra-transaction parallelism, so that the SN protocols could largely 
be avoided. However, such a scheme has its own problems. First, the transfers of the log data 
incur additional communication overhead and delays for subtransactions. Furthermore, the 
log data of subtransactions may have to be additionally kept in private log files to limit the 
number of log transfers and to suppon a local rollback of subtransactions. These private log 
files can introduce a substantial number of extra I/Os since some log information would have 
to be written several times. 

The use of a global log for media recovery can be avoided by duplicating the database con­
tents on disk (e.g., by using mirrored disks or implementing replication schemes such as in­
terleaved or chained declustering [CK89. HD90)) or by maintaining appropriate parity 
information as in the case of RAID-5 disk arrays [PGK88). These schemes suppon much 
faster media recovery than with a log-based approach, albeit at a considerable storage and 
update cost. In addition, despite the high degree of redundancy the probability of data loss 
(which occurs when multiple disks fail si:nultaneously) is not negligible for a high number 
of disks. Hence, a global log file may have to be supponed additionally to meet high avail-
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ability requirements. Funhennore, a global log may already be necessary for crash recovery 
depending on the update propagation strategy [Ra9la.!v!N91]. 

4.2 Parallelization of read-only transactions 

Solving the problems introduced by parall el update transactions incurs a high implementa­
tion complexity. Fortunately, most of the performance gains of intra-transaction parallelism 
can already be expected by merely parallelizing read-only transactions since complex trans­
actions/queries are mostly read-only. In this special case, update transactions are completely 
~xecute\1 at one node. For typical OL TP transactions, response time liiDits can be met with­
out intra-transaction parallelism. Funhermore, their sequential execution reduces communi­
cation overhead thereby supporting high transaction rates. 

By always executing updare transactions sequentially at one processing node, the problems 
mentioned above are avoided to a large extent. In particular, no changes are necessary with 
respect to logging and recovery compared to conventional SD systems. Furthermore, lock 
conflicts between concurrent subrransaction of the same transaction are avoided as well as 
the need for coherency control within transactions. 

However, we still need a nested transaction model to propagate Jocks within the transaction 
hierarchy (e.g., between main transaction and subrransactions). Furthermore. a hierarchical 
lock protocol w ith multiple lock granularities (e.g., relation, index, page, record) is to be 
supported to keep the concurrency control overhead for complex queries smalL Such a hier­
archical protocol also permits limiting the communication overhead for global lock requests. 
For instance, a relation scan Jocks the entire relation which may be performed with one glo­
bal lock request (several lock request messages are necessary if the lock responsibility for 
the relation is partitioned among multiple nodes). Subrransactions performing scan opera­
tions on different relation fragments in parallel do not have to request additional locks since 
the relation lock guarantees that there are no lock conflicts with concurrent update transac­
,tions. In terms of the nested transaction model, each subtransaction inherits a read Jock from 
its parent transaction (representing the entire relation scan) on the relation fragment it pro­
cesses. At the end of a subtransaction, the fragment lock is returned to the parent transaction 
which can fmally release the entire relation lock with a single message. 
For index scans, locking an entire relation is generally too restrictive with respect to concur­
rent update transactions so that page locking may be more appropriate. However, if there is 
no contention at the relation level when the index scan stans, a relation (and index) lock may 
be obtained at rrrst to limit the number of global lock requests. These locks can later be de­
escalated to page or record Jocks if concurrent transactions want to update the relation. Such 
a de-escalation protocol for SD has been proposed in [Jo91) and can also be used for parallel 
query processing. 

Such a hierachical lock protocol has to be extended to support coherency control. For in­
stance, if an on-request invalidation approach is used to limit the number of extra messages 
for coherency control, all coherency control information about a relation has to be returned 
to the respective transaction when a relation lock is granted. This infor,.tation is then prop­
agated to the individual subtransactions to eliminate all obsolete page v<;rsions of the rela­
tion that may still reside in main memory at the respective nodes. Furthermore, if the disk 



copy of updated pages of the relation is not yet updated, subcransactions may have to request 
the current page copies from the nodes where the most recent modification was performed. 

There are several alternatives for such an update propagation10: · 

At the beginning of a subtransaction n requests all updated pages from the nodes where the 
most recent modnication was pertormed (this information is recorded in the global lock table). 
This avoids later deactivations for page requests. but bears the risk that the requested pages 
may have to be buffered for a long time at the subtransaction's node. By the time such a page 
is to be processed. tt may have already been replaced so that rt must be read from disk. 

A subtransaction requests a modified page when it is actually to be processed. In this case. 
the page request results in a synchronous delay similar to a disk 110. Furthermore. the node 
where the page was modffied may have replaced (written out) the page in the meantime so 
that it has to be read from disk and the overhead for the page request was unnecessary. 
The number of these unnecessary page requests could be kept low by periodically broadcast­
ing which pages have been written out. 

A subtransaction requests at its beginning that all updated pages to be processed by it are writ­
ten out to the database on disk . In this case no page requests are necessary. but the current 
page versions can be read from disk. However, this approach causes a high number of disk 
accesses for wrrting out the modffied pages and read them in later. Typically, a disk 110 takes 
considerably longer than a direct page transfer between nodes. 

To limit data contention between read-only and update transactions, supporr of multi-ver­

sion concurrency control is also desirable for SD. Tne implementation of such an approach 

requires that read-<>nly transaction be provided with a consistent (but potentially outdated) 

version of the database. Tnis can also be supporred by recording in the global lock table 

where different versions of database objects can be obtained [Ra91c]. 

5 Conclusions 

We have investigated the potential of Shared Disk (SD) database systems for parallel query 

processing. A detailed comparison with Shared Nothing (SN) systems revealed a number of 
significant advantages for SD11: 

SD supports intra-transaction parallelism with less communication overhead than SN. For SN, 
the database allocation statically determines the degree of parallelism and thus the comrruni­
cation overhead for scan. the most important relational operator. Even selective index scans 
may Involve a high number of processing nodes for SN since only queries on one (or a few) 
anribute(s) can generally be restricted to a subset of the nodes holding fragments of the rela­
tion. SD allows a dynamic determination of the degree of scan parallelism so that selective 
queries can be processed with minimal communication overhead while large relation scans 
can be spread over many nodes to shorten response time. 

The communication overhead for parallel query processing is further reduced for SD by the 
possibility to exchange large intermediate results across shared storage devices rather than 
over the networll. 

10. We assume a NOFORCE strategy for writing modified pages to disk [HR83], since the FORCE 
alternative is typicaUy unacceptable for high performance unless non-volatile semiconductOr 
memory can be utilized [Ra92a]. 

ll. Given the problems of SN, other researches have also advocated for more flexible alternatives. 
V alduriez favours a "shared-something" approach, that is a SD system in which each node is itself 
a multiprocessor [Va93b]. 
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SD supports a higher potential for dynamic load balancing than SN, in particular w~h respect 
to scan operations. Not only the degree of intra-transaction parallelism can be determined dy­
namically for SD but also which nodes should pertorm a given operation since each node can 
directly access all disks. 

SD can more efficiently suppert mixed OL TP/query workloads than SN and thus the use of in: 
Ira-transaction parallelism in combination with inter-transaction parallelism. This is mainly be· 
cause of the aforementioned points. In particular, OL TP transactions can always be executed 
on a single node to lim~ communication overhead and support high transaction rates. For com· 
plex queries, the use of intra-transaction parallelism to reduce response time can be dynami· 
cally adjusted to the current load situation (degree of parallelism, selection of processing 
nodes). 
SD is better pos~ioned than SN to utilize disk arrays and to support parallel query processing 
for next-generation database applications (object-oriented DBMS} for which part~ioning the 
database among multiple nodes is very dijficun. 

Of course, these advantages come not for free but must be achieved by suitable implemen­
tation techniques. Forrunately, many of the concepts and algorithms for parallel query pro· 
cessing developed for Shared Everything (multiprocessors) and SN can be adapted to the SD 
environment. Still, substantially more work is needed in several areas to fully exploit the po­
tential of the SD architecrure for parallel query processing. In parricular, algorithms for 
transaction management (concurrency/coherency control, Jogging/recovery) have to be ex· 
tended as discussed in section 4 especially if parallel processing of update transactions is to 
be supported. The potential for dynamic load balancing must be utilized by query processing 
strategies that base their sch~<iuling decisions on information about the current system state. 
For this purpose, many strategies are conceivable and more work is needed to find out suit­
able heuristics that work well while incurring limited overhead. 

Furthermore, the alternatives for disk allocation of the database need to be studied in more 
detail. While we believe that the disk allocation problem is easier solved than the database 
allocation problem for SN, there are a number of subtle issues to be considered for parallel 
query processing. In particular, a low disk contention must be supported by the disk alloca­
tion, query processing and by other means (usc of disk caches, replication of data on disk 
and in main memory). In the case of disk arrays, the cooperation between disk contrOllers, 
file system, and DBMS with respect to parallel query processing and media recovery is an· 
other fruitful area for funher research (for both SD and SE). 

Finally, the performance advantages of SD outlined in this paper are mainly claims for the 
time being and must be validated by detailed performance studies. We have already con· 
ducted a number of simulation experiments on parallel query processing for SN with both 
synthetical and trace-driven workload models [MR92, MR93, RM93]. Currently, weareim· 
plementing a comprehensive simulation model for parallel query processing in SD systems 
to permit a performance comparison witn SN. 
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