Parallel Query Processing in
Shared Disk Database Systems

Erhard Rahm

University of Kaiserslautern, Germany
E-Mail: rahm@ informatik.uni-ki.de

Abstract

System developments and research on parallel query processing have concentrated either on
"Shared Everything" or "Shared Nothing" architectures so far. While there are several com-
mercial DEMS based on the "Shared Disk" alternative, this architecture has received very
little attention with respect to parallel query processing. This paper is intended as a first step
to close this gap. A detailed comparison between Shared Disk and Shared Nothing reveals
many potential benefits for Shared Disk with respect to parallel query processing. In partic-
ular, Shared Disk supports more flexible control over the communication overhead for intra-
ransaction parallelism, and a higher potential for dynamic load balancing and efficient pro-
cessing of mixed OLTP/ query workloads. We also outline necessary extensions for trans-
action management (concurrency/coherency control, logging/recovery) to support intra-
transaction parallelism in the Shared Disk environment.

1 Introduction

Parallel database systems are the key to high performance transaction and database process-
ing (G392, Va93a]. These systems utilize the capacity of muldple locally coupled process-
ing nodes. Typically, fast and inexpensive microprocessors are used as processors to achieve
high cost-effectiveness compared to mainframe-based configurations. Parallel database sys-
tems aim at providing both high throughput for on-line transaction processing (OLTP) as
well as short response times for complex ad-hoc queries. Efficient query processing increas-
ingly gains importance due to the wide-spread use of powerful query languages and user
tools. Next-generation database applications for engineering, VLSI design or multi-media
support will lead to substantially increased query complexity. Since these complex queries
typically access large amounts of data or/and perform extensive computations, in general the
response time goal can only be achieved by employing parallel query processing strategies
[Pi190]. Furthermore, performance should scale with the number of nodes: adding processing
nodes ideally improves thronghput for OLTP or response times for complex queries linearly.



g1-2

Parallel database systems are typically based on one of three general architecrures termed
"Shared Everything" (or "Shared Memory"), database sharing ("Shared Disk") and data-
base partitioning ("Shared Nothing") [St86, Bh&8, DG92]. Shared Everything (SE) re-
fers to the use of multiprocessors for database processing. In this case, we have a dghtly
coupled system where all processors share a common main memory as well as peripnerai
devices (terminals, disks). The shared memory supports efficient cooperation and synchro-
nization between processors. Furthermore, load balancing is comparatively easy to achieve
by providing common job queues in shared memory. These advantages are especially valu-
able for parallel processing leading to increased communication and load balancing require-
ments o Sstart/terminate and coordinate muldple subtransactions per transacton.
Multiprocessors are already utilized by several commercial DBMS for parallelizing certain
operations (e.g., index constructon/maintenance or sorting) [Ha90, Da%92]. Furthermore,
several research prototypes use the SE approach for a more general form of intra-transaction
parallelism, g.g., XFPRS [SKPOR8] and Volcano [Grod].

However, SE has significant limitations with respect to meetng high performance and avail-
ability requirements. In particular, the shared memory can become a performance bottleneck
thereby limiring the scalability of the architecture. Consequently, the number of processors
is quite low in current SE systems (< 30). In addition, there are significant availability prob-
lems since the shared memory reduces failure isolation between processors, and since there
is only a single copy of system software like the operating system or the DBMS [Ki84].
These problems can be overcome by Shared Nothing (SN) and Shared Disk (SD) systems
which are typically based on a loose coupling of processors. In loosely coupled systems,
each processor is autonomous, ie., it ins a separate copy of the operating system, the
DBMS and other software, and there is no shared memory [Ki84]. Inter-processor commu-
nication takes place by means of message passing. Loose coupling can be used for intercon-
necting uniprocessors or multiprocessors. We use the term processing node (or node) to
refer to either a uniprocessor or a multiprocessor as part of a loosely coupled system.

SN and SD differ in the way the external storage devices (usually disks) are allocared to the
processing nodes. In SN systems [St86, OV91, DG92], external storage devices and thus the
data are partiioned among all nodes. A node can directly access only data of the locai data-
base partition; if remote data needs to be accessed a dismibuted mansaction execution be-
comes necessary. For this purpose, the DBMS has to support construction of distributed
query execution plans as well as a distributed commit protocol. In 5D systems [Ra86,
Yul7, MN91], on the other hand, each node can directly access all disks holding the
common database. As a result, no distributed transaction execution is necessary as for
SN. Inter-node communication is required for concurrency control in order to synchronize
the nodes’ accesses to the shared database. Furthermore, coherency control is needed since
database pages are buffered in the main memory of every node. These page copies remain
cached beyond the end of the accessing transaction making the pages susceptible to invali-
dation by other nodes.

For both system architectures, SN and SD, there are several commercially available DEMS
or research prototypes. Currently however, intra-transaction parallelism is only supporisd
by SN system,sl, e.g., in products like Tandem NonStop SQL [Tag9] and Teradata’s



DEC/1012 [Nel6] and prototypes such as Arbre [LY89], Bubba [Bo90], EDS [Sk92], Gam-
ma [De90], and Prisma [Ap92]. With the excepdon of Tandem, these systems represent
back-end systems (database machines) dedicated to database p}DCE:SSingZ. According to
[DG92], the commercial SN systems are very successful and have demonsmated both linear
throughput scaieup and response time speedup in certain benchmarks [Ta88, EGKS90]. The
SD approach is supported by several products including IBM’s IMS, DEC's Rdb and CO-
DASYL DBMSs, and Oracle’s Parallel Server. Oracle’s SD system has reached the highest
transactdon rates in the TPC-A and TPC-B benchmarks {Gr91]. In 1991, more than 1000
tpsB were already achieved on a nCUBE-2 system with 64 nodes [Or91]. Recently, more
than 1 KtpsA was achieved on a Sequent configuraton of 2 nodes with 23 processors each.
In addition to nCUBE and Sequent, other microprocessor-based “cluster” architectures also
support the shared-disk paradigm (Pyramid, Encore, etc.).

Despite the significance of SD for high performance database processing, this approach has
found almost no attention in the research literature with respect to intra-transaction parallel-
ism. Fortunately, many of the technigues developed for parailel query processing in SN or
SE systerns can be utilized for SD as well. However, as we will see the fact that each node
can directly access all data gives 8D a considerably higher flexibility for paraliel query pro-
cessing compared to SN,

Since SN is currently the major approach for parallel query processing, we discuss the SD
approach by comparing it with SN. For this purpose, we first compare some general features
of both architectures with respect to database processing (section 2). This discussion recon-
siders some of the arguments that have been made to promote SN as "the” approach for par-
allel query processing. This is particularly strange since the SD approach was excluded from
consideration without even looking at its potental with respect to intra-transaction parallel-
ism (e.g., in [DG92]). In section 3, we extend our comparison by focussing on parallel query
processing for both architectures. The comparison is not intended to show that SD is "better”
than SIN, but to illustrate that there are major advantages for SD which make this approach
an interesting target area for further research on parallel query processing. In partcular, ma-
jor problems of the SN approach with respect to intra-transaction parallelism (e.g., physical
database design, support for mixed workloads) are likely to be easier solved for 5D. In sec-
tion 4, we discuss extensions for ransaction management that are to be supported by SD sys-

tems for inwra-transacton parallelism,

1. Oracle is currently working on intra-guery parallelism for its 3D system [Li%3].

2, The back-end approach makes it easier to wiilize microprocessors for databass processing and
may support a more afficient communication than geperal-purpose systems. Furthemmore, the
back-end systems may be connected to a variety of front-cnd systems like workstations or main-
frame hosts. On the other hand, a high communicaton overhead is inroduced if front-end appli-
cations have 1o send every database operation 1o the back-end for processing or if large result se1s
need o be reterned by the back-end. For OLTE spplications, mansaction programs may be kept
in the back-end system (25 "stored procedure™) to reduce the communication requirements,

In [DGS2], the Oracle approach has wrengly been classified as a Shared Nothing system.

[}

a41-3



41-4

2 SN vs. SD revisited

Several papers have compared SD and SN (and SE) with each-other [Tr83, Sh86, 5186,
Bh88, Pi90, DG92, Va93a, Ra93b]. partially coming to different assessments. One advan-
tage of SN is that interconnecting a large number of nodes is less expensive than for SD
since every disk needs only be connected to one node. However, the cost of interconnecting
nodes and disks is also comparatively low in SD architectures such as Ncube. These archi-
tectures are based on microprocessors and do not directy attach a disk drive to all nodes, but
achieve the same connectivity by an interconnecton network (e.g., hybercube) where /O
requests and pages may be transferred through intermediate nodes. Such a message-based
I/O interface between processing nodes and [/O nodes (disk controllers) is also used in the
DEC VaxClusters [KLS86]. This approach does not imply any inherent limit on the number
of processing nodes. For instance, the new nCUBE-3 system has an architectural maximuom
of 65 336 processors [Gi93].

Another advantage of SN is its broad applicability to different environments. In particular,
the nodes of a SN system may be locally or geographically distributed, and the DBMS in-
stances may be identical or not (heterogeneous and federated database systems are based on
SN). On the other hand, SD assumes a homogenous architecture and typically requires close
proximity of processing nodes and storage devices due to the attachment of the disk drives
to all nodes. However, these are no significant disadvantages with respect to parallel data-
base processing. High performance, high availability and scalability require a close cooper-
ation between all nodes/DBMS which cannot be provided by heterogeneous/federated
database systems. Similarly, locally disaibuted systems provide high communication band-
width and low latencies and are therefore preferable to geographically distributed systems
for high performance database processing. Furthermore, dynamic load balancing is easier
achieved in a locally distributed system since global state information (e.g., on CPU utiliza-
tion) can be maintained with smaller cost and higher accuracy.

A major problem of SN is finding a "good" fragmentation and allocation of the database.
The database allocations tend to be static due to the high overhead for physically rediswrib-
uting large amounts of data. It has a profound impact on performance since it largely deter-
mines where database operations have to be processed thus affecting both communication
overhead and node udlizaton. Since different transaction and query tvpes have different
data distribution requirements, the database allocation must inevitably constitute a compro-
mise for an expected workload profile. The chosen allocation may however easily lead to
suboptmal performance and load imbalances due to short-term workload fluctuations or
other deviations in the actual from the expected workload profile. Variations in the number
of nodes (node failure, addition of new node) require a reallocation of the database. SD
avoids these problems since there is no need to physically partition the database among
nodes. In panicular, this promises a higher potential for load balancing since each node can
process any database operation. We will further discuss the role of the database allocation
in the next section.

In [DG92], it is argued that coherency control may limit the scalability of SD compared 10
SN. In view of the scalability problems of tightly coupled systems caused by cache coher-



ency protocols, this is conceivable, However, for workloads for which SN systems could
demonstrate scalability so far, namely read-dominated workloads or perfectly "partition-
able" loads like debit-credit, SD has no problems with coherency control. It is fair to say that
SN systems depend even more than SD on the partitionability of the workload and database
due to the large performance impact of the database allocation for SN [YD%1]. SD can uti-
lize the partitionability of 2 workload to limit the number of buffer invalidations by employ-
ing an "atfinity-based" workload allocation which assigns transactions referencing/updating
the same database portions to the same node [Ra%2b]. This is a dvnamic form of workload/
data allocation which can more easily be adapted than the database allocation for SN, SD
allows a more efficient coherency control than in other environments since ransactions con-
stiture comparatively large execution units reducing the frequency of invalidations and data
mransfers between nodes. Furthermore, coherency contol can closely be integrated with con-
currency control limiting the number of exmra messages to a large extent; some coherency
control protocols do not require any additional messages [Ra%1c].

In [DG92] it is also argued that SN would scale better than SD because interference is min-
imized. In particular, 5N would only move small "questons” and (filtered) answers through
the network, while SD would require moving large guantities of data. This argument appar-
ently assurnes conventional (non-parallel) database processing because efficient intra-query
parallelism for SN requires redistribution of large amounts of data between nodes (see sec-
tion 3). Furthermore, 5N is highly susceptible to processor interference since guestions on a
particular database object can only be processed by the owning node, even if it is already
overutlized. The performance results published for SN so far were typically based on many
best-case conditions regarding workload profile, database allocation and load balancing. In
particular, almost all performance studies on the use of intra-transaction parallelism as-
sumed single-user mode implying minimial processor interference. Under more realistic
conditions (multi-user mode, mixed workloads), SN was shown to exhibit much poorer per-
formance [MR92],

3 SN vs. SD for parallel query processing

The comparisons of the different architectures made so far in the literature did not consider
intra-transaction parallelism in most cases. Even in papers coping with parallel database pro-
cessing [Pi90, DG92], no special attention was paid to parallel query processing for SD. In
this section, we will show that SD offers significant advantages for parallel query processing
compared to SM. The comparison considers differences and commonalities with respect to
database allocation and the processing of scan and join operations. Furthermore, we discuss
processing of mixed OLTP/query workloads. At first however, we introduce some terminol-
ogy on parallel wansacton processing.

3.1 Parallel transaction processing terminclogy

Asindicated in Fig. 1, there are different forms of parallel mansaction processing to consid-
er. First of all, one can distinguish between inter- and intra-ransaction parallelism. Tnter-
transaction parallelism refers 1o the concurrent execution of multple independent transac-

81-5



11-6

tions on the same database. This kind of parallelism is already present in centralized DBMS
(multi-user mode), ¢.g., in order to overlap I/O delays to achieve acceptable system through-
put. Of course, inter-ransaction parallelism must also be supported in parallel database sys-
tems (in coiabinatdon with intra-rransacdon parallelism). Otherwise, the throughput
requireme:is for OLTP could not be met and a very poor cost-effectiveness would be ob-
tained (the processing capacity cannor effectvely be utilized in single-user mode).

To improve the response time of complex transactions, intra-ransaction parallelism is need-
ed either in the form of inter-query or intra-query parallelism. /nter-query (operation) par-
allelism refers 1o the concurrent execution of different darabase operations (e.g., SQL
statements) of the same mansaction. The degres of parallelism obtainable by inter-query par-
allelism is limited, however, by the number of database operations per transaction as well as
by precedence constraints berween these operations. Currently, commercial DBEMS do not
support this kind of parallelism because the programmer would have to specify the query
dependencies using adequate language features.

e

inter-rransaction intra-ransaction

'

inter-query (operation)

intra-guery (operation)
inter-operator intra-operator
data data
parallelism parallahsm parallelism pa.raﬂchsm

Fig. 1: Classiiication of parallel transaction processing forms

Intra-query parallelism aims at parallelizing individual database operations. This type of
parallelism has been made possible by relational DBMS with their set-oriented operations.
It is achieved mransparently for database users and application programmers by the DBEMS’s
query opamizer. For every query, the query optimizer generates 2 parallel execution plan
specifying the base operators (scan, join, etc.) to be used for processing the query. Parallel-
ism may be employed between different operators (inter-operator parallelism) or within op-
erators (intra-operator parallelism). Similar to inter-query parallelism, the achievable degree
of parallelism with inter-operator parallelism is limited by the number of operators and pre-
cedence consiraints between operators in the execution plan, Most parallel database systems
currently support intra-ransaction parallelism only in the form of intra-operator parallelism.



Research papers have studied inter-operator parallelism primarily for optimizing multi-way
join operations [SD90, LST91, CYW92].

As indicated in Fig. 1, inter- and intra-operator parallelism may use either data or pipeline
parallelism. Data parallelismis based on a parttioning of the dara so that different operators
or suboperators can concurrently process disjoint data partitions. For instance, scan opera-
tors on different relations can be executed in parallel (inter-operator parallelism); a scan on
a single relation can be parallelized by partitioning the relation and the scan operator (intra-
operator parallelism). Pipeline parallelism uses an overlapped (pipelined) execution of dif-
ferent operators or suboperators to reduce processing time. In this case, the results of one
(sub)operator are incrementally sent to the next (sub)operator in the execution plan (data-
flow principle). Compared to data parallelism the benefits of pipeline parallelism are hmited
since relational pipelines are rarely long (< 10 operators) [DG92]. Furthermore, there may
be large differences in the execution cost of different operators. In addition, some operators
cannot be used for pipelining as they do not provide their output until they have processed
all input data (e.g., sort or duplicate eliminaton). Also, the communication cost for pipelin-
ing can be substantial since many small messages may have to be exchanged berween two
operators instead of wansferring the result in a single message. For these reasons, we mainly
focus on data parallelism in this paper. There are no significant differences berween SN and
SD with respect to pipeline parallelism which primarily works on derived data thar can dy-
namically be redistributed among nodes for both architectures.

Data parallelism requires both IfO parallelism and processing parallelism. //O parallelism
means that the data to be processed by a database operation is declustered across muitiple
disks so that I/O time is not limited by the low bandwidth of a single disk. Processing par-
allelism requires that the input data of a database operation can be processed by multiple
CPUs to avoid that execution time is limited by the capacity of a single processor, For SN
and SD, the database allocation to disk directly determines the maximal degree of I/O par-
allelism per relation. Since the data allocation on disk is expensive to change, the (maximal)
degree of I/O parallelism is a rather static parameter. For SN, the degree of processing par-
allelism is also largely dependent on the staric data allocation to disk since each disk is ex-
clusively assigned to one processing node. As we will see below, this results in a reduced
flexibility for dynamically varying the degree of processing parallelism compared 1o SD
where each node can access any disk.

3.2 Database allocation

Shared Nothing

Declustering in SN systems is typically based on a horizontal fragmentation and allocation
of relations. Fragmentation may be defined by a simple round robin scheme or, more com-
monly, by hash or range panitioning on a parririoning airibute [DG92). Data allocation in-
corporates determination of the degree of declustering D and mapping of the fragments to
D disks (processing nodes). Indices (B+ trees, in general) are also partitioned with the rela-
tion so that at each of the D nodes there is a (sub-)index for the local uples.

41-7



41-8

Determination of an appropriate database allocation means finding a compromise with re-
spect to contradicting subgoals: support for 2 high degree of intra-transaction parallelism,
low communication overhead, and effective load balancing. For instance, a high degree of
declustering supports intra-transaction parallelism and load balancing, bur at the expense of
a high communication overhead for starting and terminating suboperutions. A small degree
of declustering, on the other hand, reduces communication overhead and may be sufficient
to meet the response ume requirements on small relations or for selective queries (e.g., index
scan). Furthermore, it supports effective inter-transacton parallelism (high OLTP through-
put).

Similar trade-offs are posed by the various fragmentation alternatives [DG92]. Round robin
is the simplest approach and promises an optimal load balancing since each fragment con-
tains the same number of mples. However, it requires a high communication overhead be-
cause queries cannot be limited to a subset of the partitions since database allocation is not
based on attribut values. Range partitioning permits exact-match and range queries on the
parttioning attribute to be localized to the nodes holding relevant data thereby reducing
communication overhead. With hash partitioning only exact-match queries (but not range
queries) on the partitioning atribute can be reswricted to the minimal number of nodes. For
range queries, hash partidoning may achieve better load balancing than range partitioning
since it randomizes logically related data across multipie nodes rather than cluster it [DG92].
Heuristics for calculating a database allocation for a known workload profile are proposed
in [CABKES, GD%0].

Shared Disk

For SD, only a database allocation to disk needs to be determined as already for centralized
DBMS. The declustering of relations across multiple disks can be defined similarly as for
SN, i.e., either based on round robin, hash or range partitioning. The round robin approach
may even be implemented outside the DBMS, e.g., by the operating system’s file manager
or, in the case of disk arrays [PGEK88], by the disk suhsystem“. In this case, the DBEMS op-
umizer would still have to know the degree of declustering to allocate resources (CPUs,
memory) for parallel query processing. Note that centralized DBMS and SN systems typi-
cally are unable to utlize the /O bandwidth provided by disk arrays. This is because disk
arrays can deliver [/O bandwidths in excess of 100 MB/s, while it is estimared that a single
CPU can process relational data merely at a rate of merely 0.1 MB/s per MIPS [GHW90].
For SD the CPU bottleneck is avoided if multple processing nodes share a disk array and if
the disk array is able to split the output of a single read request among multiple nodes (mem-
ories). Hence, SD is beter positioned than SN or SE to utilize disk arrays for parallel query
processing. Of course, SD can also use conventional disk farms instead of disk arrays.

However, hash and range partitioning offer similar advantages over round robin than for SN.
In particular, processing may be limited to a subset of the disks thereby reducing the work
for a relation scan. Furthermore, disk contendon is reduced thus cutting I/0 delays for con-
current transactions (better /O rates). Note however, that the degree of declusiering does not

4. File blocks rather than records would then consomie the units of declustering,



directly influence the communication overhead as for 5N, since the degree of processing
parallelism can be chosen independently for SD (see below). As a resuly, the "optimal” de-
gree of declustering for a given relation and workload profile may be different for SD than
for SN. The use of disk arrays is more complicated in the case of a DEMS-controlled data
allocation based on attribute values, in particular if the disk array should stll provide high
fault tolerance by automatically maintaining parity information or data copies. This requires
a suitable coordination between DBMS, file system and disk array controller and constdtutes
a general {open) problem of disk arrays to be used for database processing.

SD does not require creation and maintenance of multiple independant indices (trees) for
one logical index of a declustered relation. Still, a physical declustering of large indices
should be possible for load balancing reasons. Such a declustering could be achieved trans-
parently for the DBMS, e.g., by the file system. Furthermore, in contrast to SN there may be
a different degree of declustering for relations and indices, and indices may be allocated to
a disjoint set of disks. To reduce disk contention between different nodes of a 5D system,
frequently accessed indices (as well as relations) may be allocated to disks with a shared disk
cache or to shared non-volatile semiconductor memory such as solid-state disk or extended
memory [Ra91b, Fa%2a, Ra93a]l.

SN proposais for data replication such as intarleaved declustering or chained declustering
have been shown to be applicable for media recovery in disk arrays as well [CK89, GLM?92].
Similarly, these schemes can be applied to the 5D environment. Furthermore, proposals for
finding a data allocation for disk arrays [WZ521] can be adapted for SD.

While we focus on relational databases in this paper, it is to be noted that database partiion-
ing will become more difficult for next-generation applications. For instance, large mulu-
media objects can be stored in a single tuple ("long field") so that they would be assigned to
a single node in SN systems. Hence, parallelism cannot be utilized for SN to process such
large objects. For SD, on the other hand, the object could physically be declustered across
multiple disks so that at least I/O parallelism could be utilized to reduce I/O tdme. Similarly,
complex objects for engineering or office automaton applications are typically large and
consist of many inter-connected and heterogeneous tuples. Partitioning these objects among
multiple nodes is very difficult and would introduce a high communication overhead for ob-
ject processing. Even partitioning at the object level 1s difficult due 1o subobjects that are
shared by multiple complex objects. Hence, SD is better able to support intra-transaction
parallelism on complex-object and object-oriented databases [HS589].

3.3 Scan

Sean is the simplest and most common relational operator. It produces a row-and-column
subset of a relation by applying a selecton predicate and filtering away armibutes not re-
quested by the query. If predicate evaluation cannot be supported by an index, a complete
relation scan is necessary where each tuple of the relation must be read and processed. An
index scan accesses tuples via an index and restricts processing to a subset of the tuples; in
the extreme case. no tuple or only one tuple needs to be accessed (e.g., exact-martch query
on unique atmibute).

419



a41-10

Shared Nothing

For SN, parallelizing a scan operation is straight-forward and determined by the database
allocaton. As discussed above, exact-match queries on the partiioning atrribute are not par-
allelized for hash pariooning or range partitioning, in general, but are sent to the node where
the corresponding tuple(s) can be found. Similarly, range queries on the parutoning at-
tribute are localized to a subset of nodes for range partitioning, However, all other scan que-
ries must be processed by all nodes holding fragments of the respective reladon. Each node
performs the scan on its local partition and sends back the result tuples to the query’s home
node, i.e. the node where the query has been initiated. At this node, a final sorting or dupli-
cate elimination may be performed before the resuit is returned to the application/user.

The descripton shows that for all scan operations the degree of processing parallelism is
statically determined by the database allocatdon. In particular, the degree of processing par-
allelism corresponds to the degree of declustering except for certain queries on the partition-
ing attribute. This approach has the obvious disadvantage that it does not allow dynamic
load balancing, i.e., varying the number of processing nodes and selecting the scan nodes
according to the current system state. Furthermore, for selective queries supported by an in-
dex it is generally inefficient to involve all D nodes holding a fragment of the relation due
to an unfavorable ratio between communication overhead and useful work per node. The lat-
ter disadvantage can be reduced by a multidimensional range partitioning approach [GD90,
GD(Q92]. In this case, fragmentation is defined on multiple partidoning attributes so that
queries on each of these atrributez can be limited to a subset of the fragments/nodes (Fig. 2).
While this approach can reduce communication overhead for certain queries compared to
one-dimensional range partiioning, the degree of processing parallelism and thus the com-
munication overhead are still statically determined by the database allocation.

Salary
<20K <3K <45K <70K 270K

A-E 1 2 3 4 5
F-J 6 7 g 9 10
Name .0 11 12 13 14 15
p-9 16 17 18 19 20
T2 21 22 23 24 25

A two-dimensional range partitioning on the name and salary attributes is used for the em-
ployee relation. This allows exact-match and range gueries on each of the two atributes
be limited to 5 nodes if each fragment is assigned to a different node. A one-dimensional
range partitioning could restrict queries on one of the two attributes to 1 node, but would
involve all 25 nodes for queries on the other (resulting in an average of 13 nodes per qusry
if both query types occur with the same frequency). Shared Disk permits both query types
to be processed by a single processor thus incurming minimal communication overhead.

Fig. 2: Example of multi dimensional range partitioning



Shared Disk

In 5D systems each node has access to the entire database on disk. Hence, scan operations
on a relation can be performed by any number of nodes. For example, index scans on any
attribute may be performed by a single processor thereby minimizing communication over-
head. This would especially be appropriate for exact-maich and selectve range queries, and
supports high OLTP throughput. For relation scans, on the other hand, a high degree of pro-
cessing parallelism can be employed to utilize intra-query parailelism to reduce response
time and to achieve load balancing. Not only the degree of processing parallelism can be
chosen based on a query’s resource requirements, but also which processors should perform
the scan operations. Furthermore, both scheduling decisions can be drawn according to the
current system state. For instance, a scan may be allocated to a set of processors with low
CPU udlization in order o avoid interference with concurrent transactions on other nodes.
Furthermore, even multiple (independent) scans on the same relation may concurrently be
executed on different nodes, ¢.g., if they access disjoint portions of the relation so that disk
contendon can be avoided. The latter feature is helpful for inter-transacton as well as inter-
operator parallelism,

The ability to dynamically determine the degree of scan parallelism and the scan processors
represents a key advantage of SD compared to SN. It is critical for a successful use of intra-
ransaction parallelism in muld-user mode where the current load situation is constantly
changing. This is because the optimal degree of intra-query parallelism (yielding the best re-
sponse time) strongly depends on the system state and is generally the lower the higher the
system is utilized [MR93],

For SN, the chosen degree of declustering has a dominant effect on scan performance since
it determines the degree of processing parallelism in many cases. For SD, on the other hand,
disk declustering is only needed for I/O parallelism, in particular to provide sufficient 1/O
bandwidth for parallel processing. The degree of declustering merely determines the maxi-
mal degree of processing parallelism for SD, if no more than one node is accessing a disk
for a given query to limit disk contention®. Since the degree of declustering has no direct
impact on communication overhead for SD, it may be chosen higher than for SN to improve
load balancing and to further extend flexibility with respect to choosing the appropriate de-
gree of scan parallelism.

The result of a scan operation may be too large to be kept in main memory at the query’s
home node so that it must be stored in a temporary file on disk. In the case of SN, a high
overhead is necessary 10 send the local scan results to the query’s home node, to write out
the data to disk and to read it in later to perform some postprocessing and return it to the
application, SD can avoid the communication overhead for the data transfers since each scan
processor ¢an directly write its local scan result to a temporary file on the shared disks (or
in shared semiconductor memory). After the temporary file is written, the query’s home
node is informed that the file can be read from extemal storage. To simplify the implemen-

£, For multprocessor nodes with P processors per node, the maximal degree of processing parallel-
ism would be P+D (D = degres of declustering).

41-11



Shared Disk

In 5D systems each node has access to the entire database on disk. Hence, scan operations
on a relation can be performed by any number of nodes. For example, index scans on any
attribute may be performed by a single processor thereby minimizing communication over-
head. This would especially be appropriate for exact-maich and selectve range queries, and
supports high OLTP throughput. For relation scans, on the other hand, a high degree of pro-
cessing parallelism can be employed to utilize intra-query parailelism to reduce response
time and to achieve load balancing. Not only the degree of processing parallelism can be
chosen based on a query’s resource requirements, but also which processors should perform
the scan operations. Furthermore, both scheduling decisions can be drawn according to the
current system state. For instance, a scan may be allocated to a set of processors with low
CPU udlization in order o avoid interference with concurrent transactions on other nodes.
Furthermore, even multiple (independent) scans on the same relation may concurrently be
executed on different nodes, ¢.g., if they access disjoint portions of the relation so that disk
contendon can be avoided. The latter feature is helpful for inter-transacton as well as inter-
operator parallelism,

The ability to dynamically determine the degree of scan parallelism and the scan processors
represents a key advantage of SD compared to SN. It is critical for a successful use of intra-
ransaction parallelism in muld-user mode where the current load situation is constantly
changing. This is because the optimal degree of intra-query parallelism (yielding the best re-
sponse time) strongly depends on the system state and is generally the lower the higher the
system is utilized [MR93],

For SN, the chosen degree of declustering has a dominant effect on scan performance since
it determines the degree of processing parallelism in many cases. For SD, on the other hand,
disk declustering is only needed for I/O parallelism, in particular to provide sufficient 1/O
bandwidth for parallel processing. The degree of declustering merely determines the maxi-
mal degree of processing parallelism for SD, if no more than one node is accessing a disk
for a given query to limit disk contention®. Since the degree of declustering has no direct
impact on communication overhead for SD, it may be chosen higher than for SN to improve
load balancing and to further extend flexibility with respect to choosing the appropriate de-
gree of scan parallelism.

The result of a scan operation may be too large to be kept in main memory at the query’s
home node so that it must be stored in a temporary file on disk. In the case of SN, a high
overhead is necessary 10 send the local scan results to the query’s home node, to write out
the data to disk and to read it in later to perform some postprocessing and return it to the
application, SD can avoid the communication overhead for the data transfers since each scan
processor ¢an directly write its local scan result to a temporary file on the shared disks (or
in shared semiconductor memory). After the temporary file is written, the query’s home
node is informed that the file can be read from extemal storage. To simplify the implemen-

£, For multprocessor nodes with P processors per node, the maximal degree of processing parallel-
ism would be P+D (D = degres of declustering).

41-11



disk comtention problems could also be reduced by exchanging the data across shared semi-
conductor memeory supporting both fast access times and high YO rates.

If the size of the scan output allows a join processing in main mermory, the data should also be
exchanged across the communication system for SD. This is because such a data transfer is
substantially faster than across disk. Furthermere, pipeline parallelism for local join processing
can be utilized (2.g., if hash join is used as the local join meathod).

- Index-supported join queries that only require access to few tuples can be limited to ane {ar a
few) node(s) for SO, while a high communication averhead may be necessary for SM. For in-
stance, join gueries for an employee relation fragmentad as in Fig. 2 would require progessing
of all fragments for SN if the jein attribute were, say, serfal number or departmeant number.

a) SN

Join
processors

b) SD

Jjoin
PraCcEessars

The scan output on each fragment of relations R and 3 is split among the three join pro-
cessors. For SN, the scan output is ranferred to the join processors over the network,
The join processors have 1o store their inpur fragments in temporary files on disk if
they cannat be kept in memory. For SD, the scan output may be exchanged across the
shared disks thereby avoiding the communication overhead for data transfers.

Fig. 3: Dynamic data redistribution between scan and join processors

41-13



41-14

A general SN approach to process 6-joins (non-equi joins) between two relations is to dy-
namically replicate the smaller relation at all nodes holding a fragment of the larger reiation
and to perform the 6-joins at the latter nodes [OV91]. This approach causes an enormous
communication overhead and does not scale well since the communication overhead in-
creases quadratically with the number of nodes (howiiuyg ifragments of the two relations). 5D
avoids the communication overhead for data redismibuton altogether since each node can
directly read all fragments from disk, Furthermore, the number of join processors 15 not pre-
determined by the degree of declustering but ¢an dynamically be selected. A high degree of
declustering with respect to the disk allocation is favorable to reduce disk contention for SD.
Disk contention is also reduced by the use of large main memory caches and disk caches.

3.5 Mixed workloads

Parallel database systems must be able to support both high throughput for OLTP as well as
short response times for data-intensive queries of different types. This is difficult to achieve
since both workload classes pose partially contradicting requirements. Some of the prob-
lems with respect to supporting mixed workloads already occur in centralized {or SE)
DBMS. For instance, CPU and memory requirements for query processing may cause in-
creased CPU waits and I/O delays for OLTP. Furthermore, data contention can be signifi-
cant if queries request long read locks on large amounts of data. The lauer problem may be
resolved by using a multiversion concurrency conizt! scheme which guarantees that read-
only transactions do not cause or suffer from any lock conflicts [HP87, BC92, MPL92]. Re-
source contention may be controlled by the use of priorities for different wransactdon types,
e.g., for buffer management [JCLO0, Br92] and CPU schadu]ingT.

In parallel database systems, there are two additional areas where performance problems for
mixed workloads may occur: communication overhead and load balancing. Intra-query par-
allelism inevitably causes increased communication overhead (compared to a sequental ex-
ecution on one node), leading to higher resource utilization and contention and therefore
lower throughput. To limit the communication overhead and resource contention and to ef-
fectively utilize the available processing capacity, dynamic load balancing is particularly
important for mixed workloads. As the preceding discussions have already shown, SD offers
advantages over SN in both areas:
SN cannot efficiently support both workload types, but requires definition of a {static) database
allocation for an "average” transaction profile [GD30]. This inevitably leads 10 sub-optimal per-
formance for both workload types and does not support dynamic load balancing. In particular,
ad-hoc queries have to be restricted to fewer nodes than desirable to limit the communication
overhead so that response times may not sufficiently be reduced. On the other hand, OLTP
transactions cannot be confined 10 a single node in many cases thereby causing extra com-

munication overhead and lowering throughput. In both cases, the sub-optimal performance
must be accepted even if only one of the two workicad types is temporarily active.

7. Much research is siill needed for supporting a comprehensive priority-based load control for da-
tahase applications. In particular, different subsyste:us like the DBMS, TP-monitor and the oper-
ating system must closely coordinate their scheduling decisions, e.g., to avoid anomaties such as
the priority-inversion problem [En91],



- In SD systems, declustering of data across multiple disks does not increase the communica-
tion overhead for OLTP. In general, OLTP transactions are completely executed on on2 node
to avoid the communication overhead for intra-transaction parallelism and distributed commit®.
The degree of processing paralielism and thus the communication overhead for ad-hoc que-
ries can be adapted to the cumment load situation. Furthermore, resource conientian for CPU
and memory between CLTP transactions and complex queries may largely be avoided by as-
signing these workload types to disjoint sets of processors which is not possible for SN, in gen-
eral.

4 SD Transaction Management for Parallel Query Processing

Without intra-transaction parallelism, there is no need for distributed transactions for SD.
Each node can perform all darabase operations since the entire database is directly accessi-
ble. In partcular, all modifications by a ransaction are performed at one node and logged in
this node’s local log file. Hence, no distributed commit protocol is necessary as for SN to
guarantee the ACID properties {HR83]. As mentioned in the introeduction, communication
is still necessary for global concurrency and coherency contol. Furthermore, the local log
files have to be merged into a global log to support media and crash recovery [Ra%lal.

However, intra-transaction parallelism results in a decomposition of transactions and que-
ries into multiple subtransactions running on different nodes. To guarantee the transaction
(ACID) properties in this case. appropriate extensions with respect to transaction manage-
ment are necessary for SD. While SN techniques for dismibuted transaction management
(e.g., distributed commit protocols) can be used, there are additional problems for 5D that
require a more complex solution. These problems occur mainly if intra-transaction parallel-
ism for update ransaction is to be supported, and will be discussed first. To limr the imple-
mentation complexity, it seems desirable to restrict inma-transaction parallelism to read-only
transactions (at least in a first step). This case is discussed in subsection 4.2,

4.1 Problems with parallel update transactions

In SN systems, the separation of global transactions into subransactions is determined by
the database allocation. This approach typically ensures that each subtransaction operates on
data owned by the respective node. Concurrency conmol is a local function since each node
can process all lock requests on its data. For 5D, on the other hand, it cannot generally be
excluded that subtransactions of a given transaction reference and modify the same dambase
objects (e.g., index pages) at different nodes. Hence, there is a need for concurrency control
between parallel subtransactions. Furthermore, coherency control is also required between
parallel subtransactions to avoid access to obsolete data and to propagate updated database
objects between subtransactons (Fig. 4).

8. Compared 10 a clusiersd dam allocation where each relation is stored on 8 minimal number of
disks, the number of disk I/Os for OLTP may be increased, howewver, if round robin or hash par-
titioning is used for declustering which dismibue logically consecutive records to different digks.
More disk 1/0s could further increase disk contention between QOLTP transactons. However,
these problems can be avoided by a range panitioning which preserves clustering properties toa
large extent [GHW20],

41-15



41-16

Tl i
] T -
T;‘#— r‘T Tia
12
s (s

Subtransactions of transaction T, are running in parallel at processing nodes
P1, P2 and P3. Subtransaction Ty, at P2 has modified page B in main memory;
the copies of B at P3 and on disk are obsolete. When subtransactions Ty and
Tq3 want to read page B, a synchronization with T, is necessary as well as a
propagation of the new page version from P2 1o P1 and P3.

Fig. 4: Concurrency/coherency control problem between subtransactions

The new requirements can be met by supporting a nested transaction model [Mo85, HRE7]
and by extending the SD concurrency/coherency control schemes for sequential ransactions
accordingly. Smce the applications should remain unchanged compared to sequential trans-
action processing (unless inter-query parallelism is to be supported), nested transactions are
only used internaily by the DBMS to structure queries into a hierarchy of subtransactions or
subgueries. Subtransactions can be execured concurrently at different nodes. Furthermore,
subransactions may be rolled back without impact on other subtransactons, i.e., the scope
of undo recovery can be substantially limited compared to flat transactions. Isolation be-
tween subtransactions is achieved by a suitable locking protocol d