Inform. Systems Vol. 11, No. 4, pp. 275-286, 1986
Printed in Great Britain

0306-4379/86 $3.00 + 0.00
Pergamon Journals Lid

PRIMARY COPY SYNCHRONIZATION FOR
DB-SHARING

ERHARD RaHM
University of Kaiserslautern, Fachbereich Informatik, Postfach 3049, 6750 Kaiserslautern, West Germany

(Received 26 September 1985, in revised form 2 April 1986)

Abstract—In a database sharing (DB-Sharing) system multiple loosely or closely coupled processors share
access 10 a single set of databases. Such systems promise better availability and linear growth of
transaction throughput at equivalent response time compared to single processor database systems. The
efficiency of a DB-Sharing system heavily depends on the synchronization technique used for maintaining
consistency of the shared data. A promising algorithm is the primary copy approach which will be
presented in this paper. We describe the actions of the lock manager in a basic and in a more advanced
version. Furthermore, it is shown how the lock managers can be enabled to deal with the so-called buffer
invalidation problem that results from the existence of a database buffer in each processor.

1. INTRODUCTION TO DB-SHARING

Many applications in online transaction processing as
in banking, inventory control or flight reservation
have a continually increasing need for high perform-
ance database management systems (DBMS). Such
systems must chiefly fulfill the following demands:

—High transaction rates. Whereas current DBMS
at best achieve about 200 (short) transactions per
second (tps) of the DEBIT-CREDIT-type[1], high-
volume applications require 1000 tps in the near
future[2]. For 1000 tps a processor capacity upwards
of 100 MIPS is needed, with more complex trans-
actions such a processing capacity is necessary for far
less tps.

—High availability. A typical requirement is an
outage of five minutes per year only[2]. To provide
sufficient fault tolerance each major hardware and
software component should at least be duplicated[3],
especially multiple processors are required. Further-
more, component failures should be transparent to
the users, modifications in the software/hardware
configuration must be performed online and the
common database has to be a consistent and up-to-
date reflection of the state of the business at any time.

—Extendability. The transaction system should
allow to increase transaction throughput linearly by
adding new processors. However, to keep the system
acceptable for onling-processing, response times must
not increase significantly compared to single pro-
cessor systems.

—Manageability and maintainability. The system
must provide a high level interface to the end user and
the programmer; in particular they should be relieved
from the existence of muitiple processors (single
system image). Ease of installation, ease of main-
tenance and ease of modification are also very im-
portant because manageability and maintainability
have direct influence to reliability. Recent in-

275

vestigations revealed that most system [ailures are
caused by users and operators[4].

These requirements cannot be met appropriately
by tightly coupled systems where all processors share
a common memory and where only one copy of
operating system (OS) and DBMS exists. Reliability
and extendability are not sufficient since the common
memory is a prime cause for system crashes and
contention. Hence, the number of tightly coupled
processors is typically low (four or less). In a loosely
coupled system each processor has its own memory
and a separate copy of OS and DBMS, and inter-
processor communication is via messages only. Such
systems offer the best framework for building a highly
available system since they provide natural bound-
aries between the processors against unwanted
interference[3]. Furthermore, they allow incremental
expansion. However, loosely coupled multiprocessors
may have performance problems since commu-
nication with messages is expensive in current OS,
even if a high-speed communication system is used
(see below). To make communication more efficient,
one could use a common memory partition. Those
closely coupled systems are considered in [3] and [6];
here, we discuss loosely coupled systems, which
provide better availability and extendability.

A further aspect of classifying DBMS running on
multiple processors is how the disks are connected to
processors. There are two cases to distinguish:

—In DB-Distribution systems each processor owns
some fraction of the disk devices and the database
stored on them. Accesses to ‘non-local’ data require
communication with the processor owning the corre-
sponding database partition. This approach is used
among others by the TANDEM NonStop system and
many distributed database systems such as R*.

—In DB-Sharing systems each processor has direct
access to the entire database. This implies that all

276

centralized database

59

I terminal multiplexcr I

(=N (2N

Fig. 1. Structure of a loosely coupled DB-Sharing system.

processors must be physically close (e.g. in one room)
and permits a high-speed communication system
(1-100 MB/sec). Examples of DB-Sharing systems
are the Data Sharing facility of IMS/VS[7] and the
AMOEBA project[8].

A detailed comparison between DB-Distribution
and DB-Sharing can be found in [5] and [9]. Here, we
concentrate ourselves on loosely coupled DB-Sharing
systems as depicted in Fig. 1, The shown terminal
multiplexor distributes each transaction entered on a
terminal to one of the processors. A transaction can
be completely executed within one processor since
each processor has direct access to each data item of
the centralized database. This capability avoids the
necessity of a distributed 2-phase-commit protocol as
required in DB-Distribution systems.

A main advantage of a DB-Sharing system is
flexibility. Since each processor can access the entire
database, transaction work may be dynamically dis-
tributed among the processors according to current
needs and system availability. Additional processors
can be added without changing the transaction pro-
grams or the database schema. Likewise, the failure
of a processor does not prevent the surviving pro-
cessors from accessing the disks or the terminals.
Transactions in progress at & failed processor can be
rolled back and redistributed automatically among
the available processors.

To take advantage of the DB-Sharing architecture,
new problems must be solved at first for the func-
tional components depicted in Fig. 2:

—The synchronization component coordinates ac-
cess to the centralized database. Since there is no
common memory, synchronization requires message
exchange among the processors which is much more
time consuming than lock request handling in a
centralized DBMS (e.g. a few hundred instructions
for each lock grant or release). If the transactions
synchronously wait for the response of a synchron-
ization message, the waiting times directly influence
the response time. Furthermore, it is necessary to

ERHARD RAHM

P P2
synchronizatis
camponent

buffer

local control

jownal
load
control
recovery
camponent.
P3 P4

glabal
journal

o

Fig. 2. Functional components of a DB-Sharing system.

bundle messages for transmission since sending and
receiving messages are expensive operations at least
in conventiona! mainframe OS. This delay of message
collection also increases the transaction’s response
time just as the overhead for process or task switches
due to synchronous transaction waits. To maintain
throughput under these conditions, the level of multi-
programming in each processor has to be increased
what, in turn, enlarges the conflict probability and OS
overhead for scheduling, paging, etc. Therefore, high
performance and acceptable response times are only
reachable if the synchronization algorithm minimizes
the average number of synchronous messages per
transaction.

~—Buffer control is needed to manage the problem
of buffer invalidarion that results from the existence of
a local database buffer at each processor. An update
only modifies the processor’s local copy of a database
object; copies in the buffers of other processors are
getting obsolete. Access to invalidated objects has to
be avoided and a method tc propagate the new
contents of modified objects to other processors must
be supplied. If an update transaction writes the
modified objects to the database before or during
commitment (FORCE-strategy{10]) the latest version
of an object can always be read from disk. Using a
NOFORCE-strategy, modified objects may be ex-
changed directly via the inter-processor connections
or also across the shared disks. In closely coupled
DB-Sharing systems a common memory partition
can also be used to exchange modified data[6).

—Load control has to find an effective distribution
of the current workload against the set of available
processors (transaction routing). No processor must
be overloaded and the routing should support syn-
chronization with minimal communication cost. To
fulfill these tasks load control must react dynamically

Primary copy synchronization for DB-Sharing

to changes in the workioad or within the system
configuration {e.g. crash or reintegration of a pro-
cessor). Transaction routing is usually done by ana-
lyzing the transaction type and possibly the input
data. At least for short transactions this information
is sufficiently precise to give a prediction of the
presumable reference behavior of a transaction. More
details about this subject can be found in [11, 12].

—The recovery component is responsible for
system-wide logging and recovery. In addition to the
local journals of each processor, there exists a global
journal (e.g. for media failure) that can be construc-
ted by merging the local log data. The recovery
component has to ensure that, after a processor
crash, the surviving CPUs recover and reintegrate
the failed processor in order to continue transaction
processing. Uncommitted transactions of the crashed
processor are rolled back and restarted at another
processor in order to preserve failure transparency to
the user.

In this work we present solutions to the syn-
chronization problem and to the buffer invalidation
problem. Sections 2 and 3 describe how syn-
chronization is petformed with the primary copy
algorithm in a basic and in an optimized version,
respectively. After that several techniques to cope
with buffer invalidation are given, ali applicable in
combination with primary copy locking. Syn-
chronization protocols for DB-Sharing including op-
timistic methods are also considered in [13-16].

The primary copy algorithm to be described may
not be confused with similar algorithms used in
distributed database systems with replication{17]. In
the latter schemes each data item has a primary copy
controlled by one of the processors. Besides of syn-
chronization, the primary copy processor is also
responsible for updating all copies of the data item.
With DB-Sharing, however, no replicated data must
be controlled in this way (although another kind of
replication is treated by the buffer control).

2. PRIMARY COPY SYNCHRONIZATION

As pointed out in the previous section, the major
goal of a synchronization protocol in a DB-Sharing
system must be the minimization of synchronous
messages between the processors. This means that
synchronization requests should be treated locally as
much as possible.

An obvious protocol is the use of a central lock
manager (CLM) for global synchronization. In such
a scheme, the CLM resides at one processor and
maintains a global lock table to answer lock requests
from other CPUs. In the simplest form, each lock
request 18 sent to the central lock manager for
immediate processing. Since this straightforward
strategy is certainly too expensive, the communi-
cation overhead has to be decreased e.g. by applying
hierarchical locks. In such a scheme, the central lock

277

P1 Pz
LLT LLT
l 1 oLT2

message
subsystem
P3 T T P4

LLT LT

GLT4

Fig. 3. Primary Copy Locking (N = 4).

manager shares the work with local lock managers
located at each processor. Hence, a lock request can
be handled locally if the local lock manager holds a
(hierarchical) lock for the requested object. Local
lock management is always possible if ‘sole interest’
exists for an object, that is only local transactions are
interested in accessing the object. The usefulness of
the concept of sole interest heavily depends on the
locality of reference, which should be preserved by
the load balancing algorithm as far as possible.
However, in general, sole interest can be maintained
only if a relatively small number of transactions
references the object. Moreover, sole interest may be
destroyed by a single stray reference from any other
processor. Another shortcoming of this approach
results from the CLM being a single point of failure.

A much more promising algorithm is primary copy
locking (PCL), which is an extension of the CLM
scheme in order to reduce the amount of lock request
messages. Instead of having one CLM, the syn-
chronization responsibility is now distributed among
all processors. Therefore, the database is logically
partitioned into N disjoint parts and each of the N
processors performs the global synchronization for
one partition. A processor is said to have the primary
copy authority (PCA) for its partition. As Fig. 3
shows, each lock manager has a global lock table
(GLT) to control the objects of its partition. As
opposed to the GLT, a local lock table (LLT) keeps
information about granted or requested locks for
local transactions only.

Primary copy locking has the obvious advantage
that lock requests from processor P within the par-
tition centrolled by P can be managed locally, regard-
less of external contention. Lock requests for
a partition of another processor are sent to the
authorized processor.

To take full advantage of the primary copy ap-
proach, transactions should not be routed to pro-
cessors at random. Rather, the load control should
attune the partitioning of the data and the assignment
of the load such that the total number of “long” lock
requests is minimal. Furthermore, the distribution of
the PCAs and the routing strategy can be dynamic-
ally modified if & processor fails or is added, or if the
transaction load profile changes significantly. Thus,
the primary copy scheme allows a tight and effective

278

ERHARD RAHM

BLOCK-1ID: .
GRANTED-LOCKE-LIST:
LOCAL-WAIT-LIST:

BLOCK-TID: ...
INTERESTED:
MGDE 3

Structure of TA-ENTRY:
PNR: ... -
TA-ID: ... -——

LOCK-MODE: (5, X);

Structure of a block entry in the local lock table (LLT):

list of TA-ENTRY;
list of TA-ENTRY;

Structure of a block entry in the

array (1:N) of bit;
array (1:N) of (O,
GLOBAL-WAIT-LIST: list of TA-ENTRY;

Identification of the processor
-- only reguired
Identification of
-- within processor
—- mode of requested

glokbal 1lock tabkle (GLT):

== N processors
S, X);

for GLOBAL-WAIT-LIST
the transaction
PNR

lock

Fig. 4. Structure of the block entries.

cooperation with the load control permitting flexible
adaptation to changing working conditions. These
properties should result in much less messages for
synchronization than using a central lock manager.

Algorithms for determining the PCA distribution
as well as a strategy for transaction routing are
presented in [12]. The essential input parameters of
these algorithms are an appropriate description of the
load profile and the number of processors.

In this and the next section we mainly describe the
data structures required for synchronization and the
actions of the lock managers to process a LOCK
operation issued by a transaction. The remaining
parts of the lock protocol (processing of an UN-
LOCK operation, structure and processing of the
required message types) cannot be explained in full
detail due to space limitations. Nevertheless, the
provided information should give a notion of their

processor P1

possible realization. Throughout this paper we as-
sume that synchronization is petformed on block
level (page level) and that two types of locks are
obtainable for a transaction: read or shared locks
(S-locks) and write or exclusive locks {(X-locks). The
compatibility of these locks is as usual.

Datg structures

Both types of lock tables (local and global lock
table) use a different format for their control blocks
or block entries required for synchronization. The
exact layouts of the block entries are given in Fig. 4.
It is assumed that a block entry for a certain block
may simultaneously reside in the global lock table of
a processor as well as in the local lock table of this
Processor.

The example situation of Fig. 5 shows the block
entries for a block Bl within the lock tables of two

processor P2

LLT2

Bi

.
—]

LOCAL-WAIT-LIST

LLT1
BT GRANTED-LOCKS-LIST
— | X
'__\—-.
LOCAL-WARIT-LIST
GLT1
B1
INT. = 11
MCODE = X0
.---Lﬁ{P2IT3 IX HP1|T2|S |
GLOBAL-WAIT-LIST

GLT2

Fig. 5. Block entries in the lock tables {example).

Primary copy synchronization for DB-Sharing

processors. We assume that processor Pl holds the
PCA for the partition to which Bl belongs. In the
block entries of the LLTs only local transactions are
kept, either in the list of the granted locks or in the
LOCAL-WAIT-LIST. In the GLT, transactions
waiting for a lock are stored within the GLOBAL-
WAIT-LIST where transactions of all processors can
wait.

In addition to the GLOBAL-WAIT-LIST, a block
entry in the GLT contains further information (as
seen in Fig. 4) in order to process lock requests. The
vector INTERESTED indicates the processors that
keep a block entry for the respective block in their
LLT. The vector MODE gives the mode of granted
Jocks for the interested processors. Vailue MODE
(P) =0 says that processor P is not interested in the
block or that there are only transactions waiting for
a lock on the block. Value MODE (P) = X indicates
that an X-lock has been granted to a transaction at
P, value S means that a S-lock was granted. In
Fig. 5, ‘INT.=11" is used as an abbreviation of
INTERESTED (1)=1 and INTERESTED (2) = 1.
This means that both processors are interested in the
block. Similarly, MODE = X0 stands for MODE
(1) =X and MODE (2) = 0. This says that an X-lock
was granted to a transaction at P1 and that no lock
for Bl is granted at P2.

Now we are in the position to explain lock request
handling using the data structures just introduced.
The sketched algorithm can be seen as a basic version
of primary copy locking. In Section 3 we discuss an
improved version.

Lock request handling

Assume transaction T at processor P has issued a
lock request for block B. The basic version of PCL
handles this lock request as follows:

If P is the processor owning the primary copy
authority for the requested block, it is checked
whether or not the GLT already contains a block
entry for B. If this block entry does not exist, the lock
can be granted since T is the only transaction that
wants to access B. In this case, block entries for B are
created within the GLT and within the LLT at P, the
vectors INTERESTED and MODE are initialized
properly, and T is inserted into the GRANTED-
LOCKS-LIST of the block entry in the local lock
table. If the GLT already holds a block entry for B,
the lock request of T can be satisfied if the GLOBAL-
WAIT-LIST is empty and if the required lock mode
is compatible with the granted locks (decidable by
using vector MODE). Otherwise, T has to wait for
the desired lock and is appended to the GLOBAL-
WAIT-LIST and to the LOGCAL-WAIT-LIST in the
LLT.

If P does not own the primary copy authority for
block B, the lock request cannot be treated locally.
So, T is entered in the LOCAL-WAIT-LIST in the
block entry of B in the LLT (the block entry may
have to be created at first) and a lock request message

279

is sent to the responsible processor, say P". P uses its
GLT for processing the lock request message as just
described for the local case. Only if the lock is
grantable a lock response message is sent. Otherwise,
T is appended to the GLOBAL-WAIT-LIST in the
GLT of P’. In that case, the lock manager of P’
activates T (using a lock response message) at the
point in time when the conflicting transactions have
released their Jocks on B and T is chosen from the
GLOBAL-WAIT-LIST to obtain the requested lock.
After receipt of the lock response message, T is
removed from the LOCAL-WAIT-LIST and inserted
into the GRANTED-LOCKS-LIST.

For illustration, look at Fig. 5 once more. Assume
that at the time when transaction T1 had issued its
X-request for block Bl1, there was no interest in Bl
at processor P2. Therefore, the GLT at PI had
contained INTERESTED = 10 and MODE = X0 for
Bl when the X-lock was granted to T1. After that,
suppose transaction T3 at P2 has wanted to modify
block B1. In the LLT of P2 a block entry for Bl was
created, then T3 was inserted into the LOCAL-
WAIT-LIST, and finally a lock request message was
sent to P1. This message resulted in the change of
INTERESTED to 11 and T3 was inserted into the
GLOBAL-WAIT-LIST since the requested X-lock
was not compatible with the granted X-lock at Pl.
Figure 5 shows the situation after a lock request from
transaction T2 issued at P1. This S-request of T2 was
also appended to the GLOBAL-WAIT-LIST.

3, OFTIMIZATIONS OF THE PRIMARY
COPY ALGORITHM

Unfortunately, the primary copy algorithm as de-
scribed so far has the potential problem that it works
well for a limited number of processors only, since its
quality heavily depends on partitioning and load
control. When a processor is added to the system the
PCAs have to be redistributed. This, however, in-
creases the probability that a transaction accesses
data not controlled by the local lock manager. So, the
number of lock request messages per transaction may
grow with the number of processors if the new
partitioning and transaction routing strategy cannot
assure the same locality of references. This makes it
difficult to achieve linear growth in transaction
throughput (without increasing response times un-
acceptably) when adding new processors.

In order to reduce the dependencies to partitioning
and load control, we now give an optimization that
should often allow local lock management even for
objects for which another processor holds the PCA.
The improvement mainly consists of a mechanism
that makes use of locality of reading references. A
fast handling of S-requests is very important, be-
cause, in general, they arc inore frequent than X-
locks (even in update transactions). The optimization
of S-requests is especially interesting for level-2-
consistency [18] being usual in existing DBMS. With
level-2-consistency, S-locks are not held until EOT

280

ERHARD RAHM

LLT contains a hleck \\\N
entry for B ? ///

L

create block entry for
B within the LLT

)

S-Request ?

LOCAL-WAIT-LIST is
empty &

1

. X=POSSIELE :=

N

‘true!

X-POSSIBLE='false' ?
\LY
insert T into
GRANTED-LOCKS-LIST

<

N
/

L

append T to the
LOCAL-WAIT-LIST

L

[communicate the lock

request to the PCA-
lock manager

Fig. 6. Use of the LLT to process a LOCK operation on block B issued by transaction T.

but are short. So, a communication delay in order to
grant a S-lock would last considerably longer than
the time the lock is held. This would cause a
significant increase in response time, especially in
companson with centralized DBMS.

Optimized S-request processing

To reduce the number of lock request messages for
S-locks, we distinguish between two synchronization
states for each block B:

State I: An X-lock for block B is requested by at
least one transaction in the system. The
X-lock may be granted or not.

Block B is not in synchronization state 1.
That means there is no interest in B or there
are only reading accesses.

State 2:

In synchronization state 1 the complete protocol as
described in the previous section has to take place.
So, each lock must be granted by the lock manager
owning the PCA (of course, communication is only
required if this Jock manager does not reside at the
transaction’s processor). In particular, each X-
request must be directed to the PCA-lock manager.
However, in synchronization state 2 communication
may be saved if each processor—irrespective of
whether or not it holds the PCA—is allowed to grant
S-locks. For this we add the following field in each
block entry of the LLT that should indicate which
synchronization state is given:

X-POSSIBLE: boolean,

(* default value: “‘true” =)

The value “true” (“false’”) of X-POSSIBLE corre-
sponds to synchronization state 1 (2). If X-
POSSIBLE has value *‘true” or if no block entry
exists in the LLT, a lock request must be granted by
the PCA-lock manager. If X-POSSIBLE has value
“false” than S-locks can be granted locally. X-
requests must always be directed to the PCA-lock
manager. These cases are clarified by Fig. 6, where
the actions of the lock manager are shown in order
to process a LOCK operation of a local transaction
using the LLT. If the lock request must be treated by
the PCA-lock manager, the requesting transaction is
inserted into the LOCAL-WAIT-LIST. When the
lock is grantable, the PCA-lock manager issues a lock
response that also contains information if X-
POSSIBLE can be set to “false”.

For a block B for which another processor holds
the PCA, S-locks are only locally grantable if a block
entry already exists in the LLT and X-POSSIBLE has
value “false”. To increase the probability of this case,
block entries with X-POSSIBLE = “false” are not
removed from the LLT when the last S-lock of a local
transaction is released. This results in block entries
with empty GRANTED-LOCKS-LIST and empty
LOCAL-WAIT-LIST allowing that subsequent
S-requests can be granted immediately. Therefore,
locality of reading references within one processor
is strongly supported independently of the PCA
distribution.

A further optimization is that the release of the last
S-lock need not be communicated to the PCA-lock
manager when X-POSSIBLE has value “false” since
the synchronization state remains unchanged. So, the

Primary copy synchronization for DB-Sharing 281

Pl P2
Liook entry in block entry in
T CLT 2
P B
. INT =101
. MODE=S0S
false .

P3

Diock entry in LLT 3

it
e E B
:
ENTED-LOCKS-LIST
false &

Fig. 7. Lock scenario in the improved PCL-scheme.

improved algorithm saves communication for re-
questing S-locks as well as for releasing it. As a
consequence of not always notifying the release of the
last S-lock. the vatue MODE (P) = S in a block entry
of the GLT does not imply that S-locks for the bleck
are actually granted at P but only that this is possible.

In the scenario of Fig. 7, it is assumed that P2 owns
the PCA for block B. In the block entry for B in
GLT?2, processors P1 and P3 are kept as “‘interested™
in B both with MODE = S. In the block entries of B
in LLT! and LLT3 the bits X-POSSIBLE have value
“false”. This gives Pl and P3 the right to immediately
grant S-locks for B and indicates that the release of
the last S-lock need not be notified to P2.

Processing of X-requesis

The local handling of S-requests by processors not
owning the PCA is only feasible if no X-requests for
the block are in the system (synchronization state 2).
If a transaction wants to modify a block in a situation
like in Fig. 7, “empty” block entries in the LLT’s (as
at P1) have to be removed. For block entries with
non-empty GRANTED-LOCKS-LIST (as at P3), the
bit X-POSSIBLE is set to ‘true’ indicating that the
release of the last S-lock must be notified to the
PCA-processor. This is necessary for level-3-
consistency in order to avoid that the page is modified
at one processor and concurrently read at another.
For level-2-consistency, a more effective handling of
X-requests is possible (see below).

In Fig. 6 the processing of a lock request issued by
a transaction T was only described with respect to the
LLT. If the lock request cannot be granted using the
LLT (what is always the case for X-requests), then
the PCA-lock manager must further process the
request using its GLT. The actions of the PCA-lock
manager in order to process such a lock request are
given in Fig. 8. The box LOCK-RESPONSE in this
flow chart indicates that the lock can be granted to

the requesting transaction T. If T is waiting at the
PCA-processor, it can be continued immediately,
otherwise a lock response message is sent.

In Fig. & the processing of an X-request has been
left open for the situation where the GLOBAL-
WAIT-LIST is empty and where no X-lock is
granted. In that situation one or more processors J
are kept with MODE (J) = §; these processors have
a block entry with X-POSSIBLE = “false’ for the
requested block in their LLTs in order to grant
S-locks locally. Since the X-request in that situation
means a change of the synchronization state from 2
to 1, all these processors must be notified by using
so-called STATE-CHANGED messages. The pro-
cessing of the X-request and these STATE-
CHANGED messages depends on the level of consis-
tency that should be supported.

For level-3-consistency, the X-request on block B
of transaction T is inserted into the GLOBAL-
WAIT-LIST at first. Then, all processors J + P with
MODE (I) =S are informed about the new syn-
chronization state by STATE-CHANGED messages.
After receipt of such a message two alternatives are
possible at a processor J:

{a) if no S-locks are locally granted at J (“empty”
block entry), the block entry for B is removed
from the LLT and this is communicated to the
PCA-lock manager having the effect that
INTERESTED {(J) and MODE (J) are set to 0.

(b) if S-locks are currently granted at J, the bit
X-POSSIBLE is switched to “true””. The PCA-
lock manager is getting informed after the release
of the last local S-Lock on B.

The PCA-lock manager can grant the X-lock of T
when it has received all responses to the STATE-
CHANGED messages for after that it is guaranteed
that no transaction is accessing block B.

Although this procedure ensures level-3-
consistency, it makes clear that the optimized S-
request handling considerably favours S-locks instead
of X-locks. It may happen that X-requests must be
delayed even when no S-locks are granted at any
processor since several “‘empty” block entries have to
be removed at first. Furthermore, the position of the
PCA-processor is weakened since such a delay would
be necessary even when the X-request has been issued
within the PCA-processor (with basic PCL the X-
request would have been granted immediately).

These shortcomings can be avoided when focussing
on level-2-consistency. For this level of consistency,
an X-request need not be delayed until all responses
to STATE-CHANGED messages are arfived at the
PCA-lock manager. Here, the X-lock from processor
P can be granted immediately provided that no
transaction at P is still owning a S-lock on the
requested block.

The message STATE-CHANGED is sent to all
processors J == P with MODE (J) = 8. Here, such a
message has the effect that the block entry for block

282

ERHARD RAHM

GLT contains a block
entry for B ?
I

INTERESTED (P} := 1

l

GLOBAL-WATT-LIST N
is empty ?

ly
¥~lock is granted ?

3

\u
/

¥
S-Request ?

1

create block entry:
INTERESTED (P} :=1;
MODE (P} := mode of
requested lock

insert T into
GLOBAL-WAIT-LIST

MODE (P} :=S5

3

JF
The actions in this

situation are discussed in
the text

[_ LOCK~RESPONSE]

Fig. 8. Use of the GLT to process a LOCK operation on block B issued by transaction T running on
processor P,

B is always removed from the LLT in the receiving
processor-—irrespective of whether or not S-locks are
locally granted! This is feasible with the convention
that a S-UNLOCK requires no treatment if the
corresponding block entry cannot be found in the
LLT. Removing the block entry from the LLT guar-

antees that no S-locks for B are (locally) granted after .

receipt of the STATE-CHANGED message. S-locks
granted before the receipt of such a message only
allow the reading of block B in its state before the
modification by transaction T. This, however, does
not affect level-2-consistency since no dirty data is
read (note that unrepeatable reads are tolerated
which occur when a transaction reads different ver-
sions of the same block).

So, an X-request can nearly always be granted
immediately in the above mentioned situation where
the X-request causes a change of the synchronization
state from 2 to 1. Only when local transactions still
hold S-locks on the requested block, the X-request
must be delayed until the last of these S-locks is
released in order to avoid that a local transaction
reads dirty data.

This treatment of X-requests ensures level-2-
consistency and prevents that the optimized S-request
processing is at the expense of X-requests. It is
supposed that the improvements will reduce the
communication overhead for requesting and re-

leasing S-locks to 2 minimum since locality of reading
references is heavily exploited.

Activation of waiting fransactions

The activation of a waiting transaction is usually
done by the PCA-lock manager. This takes place
after the release of an X-lock is notified or the release
of all granted S-locks is ensured. The GLOBAL-
WAIT-LIST need not be processed in FIFO-order,
but more flexible strategies can be adopted in order
to reduce communication, however, without starving
some transactions. For example, it may be advisable
to tell in a lock response message that two trans-
actions in the receiving processor can obtain an
X-lock one after the other. So only the last unlock
must be notified. Similarly, one could grant all
waiting S-requests of a LOCAL-WAIT-LIST when
this is permitted for one of them. Alternatively, all
these S-locks may be granted before an X-request is
satisfied.

Deadlocks

So far we have said nothing about recognition and
treatment of deadlocks. Deadlocks between local
transactions can be treated as in centralized DBMS
[e.g. if a lock request of transaction T cannot be
satisfied it is checked if the delay of T causes a local
deadlock; if so, the deadlock is resolved by aborting

Primary copy synchronization for DB-Sharing

one {e.g. the originator T) or more transactions]. For
global deadlock management, the same techniques
can be applied as for distributed database systems
(conceivable techniques are described in [17, 19, 20]).
The simplest solution to global deadiocks would be
a timeout mechanism (a transaction is aborted after
a fixed maximal waiting time due to external trans-
actions); such an approach may be sufficient in many
cases, because it is assumed that most lock requests
can be done locally with primary copy locking.
Therefore, global deadlocks should be a rare event.

Recovery aspects

To provide high availability, the concurrency con-
trol algorithm must be capable of correctly con-
tinuing synchronization after a processor crash. For
the primary copy approach, the partition of a failed
processor cannot be accessed until the crash recovery
has been finished. In order to continue concurrency
control for this partition, it is necessary to reconstruct
the global lock table that was lost due to the pro-
cessor crash. As explained in [21] this can be done by
merging the block entries belonging to the partition
to be recovered that can be found in the LLTs of the
surviving processors. In the mentioned paper, there is
also a description of how a new PCA distribution can
be established.

4. SOLUTIONS TO THE BUFFER
INVALIDATION PROBLEM

In this section, we describe some possible strategies
to cope with buffer invalidations in the context of

primary copy locking, We distinguish between sys-.

tems with FORCE and NOFORCE propagation.
FORCE-propagation requires that modified blocks
of an update transaction have to be forced to disk
before the transaction commits. This allows simpler
solutions to buffer invalidation since the valid copy
of a block can always be read from disk. With
NOFORCE-propagation the blocks on disk are ob-
solete in general. Therefore, it may at first be neces-
sary to determine the processor holding the valid
page before propagating it to the requesting
processor.

4.1 Solutions in a FORCE-environment

(a) Broadcast solution. The simplest treatment of
buffer invalidation using a FORCE-propagation
would be to broadcast the identifier of modified
objects to all processors before the modifying trans-
action commits. Then, invalidated pages have to be
discarded from the buffers to avoid access to obsolete
objects. The FORCE-scheme ensures that the latest
version of an object can be read from disk when the
object does not reside in the local buffer, The broad-
cast solution has the advantage that it is nearly
independent from the synchronization method in use
but it can cause potential bandwidth problems.
Assume for example a system of 8 processors, a

283

throughput of 1000 tps with 50% update transactions
and 4 modified objects per update transaction. With
a message size of 100 bytes, there are 1.4 MB/sec
necessary only for these invalidation messages. Fur-
thermore, this message overhead increases as a square
fucntion of the number of processors.

With the primary copy approach, buffer
invalidations can be treated by the lock managers
without any extra communication! This can be done
by maintaining additional information in the block
entries of the global lock tables and within the lock
request and lock response messages as will be shown
in the rest of this section. The techniques to be
described are also applicable in a CLM-scheme.

(b) Timestamp solution. With this solution a time-
stamp is assigned to each page describing the most
recent modification of any object in the page. For
modified objects, the responsible lock managers keep
the timestamps of the latest modification in the global
lock table. When a lock request should be issued, it is
firstly checked if the corresponding page resides in the
local buffer. If so, the timestamp of this copy is sent
to the authorized lock manager together with the lock
request. This enables the lock manager to detect a
conceivable buffer invalidation. In the example in
Fig. 9, processor P2 owns the primary copy authority
for block B. It is assumed that B was most recently
changed at time t2 by a transaction T. With the
release of the X-lock required for the modification, T
also communicates the modification time t2 to the
lock manager at P2. This timestamp is stored in the
block entry for B in the GLT of P2. Assume now that
a transaction at P1 wants to access page B and that
the buffer of P1 holds a copy of B with timestamp t1
(t1 < t2). Since this timestamp is sent to P2 along with
the lock request message, P2 can recognize the buffer
invalidation by inspecting the block entry for B in the
GLT. A detected invalidation provokes a lock re-
sponse containing the demand to read the page from
disk.

To reduce the overhead of storing the timestamps
in the global lock tables, the identifiers of modified
pages along with the set of timestamps can be broad-
cast in certain intervals to allow each processor to
become aware of buffer invalidations. After success-
ful broadcast the timestamp {or even the whole block
entries) can be removed from the global lock table.

The method described has the advantage that no

P1 P2

- w | [l -]

buffer

B Jt1]

Fig. 9. Timestamp solution {example).

284

additional communication is required in the normal
case. The drawback is the necessity to store a time-
stamp in every page. This can be avoided with the
next solution.

(¢} Jnvalidation vector solution. 1n this scheme a bit
vector [{invalidation vector) is stored in the global
lock table instead of using timestamps. Each
invalidation vector I consists of N bits where N is the
number of processors. The value of I(P) in the block
entry of a block B indicates whether or not processor
P may have an invalidated copy of B in its buffer.
This information can be maintained because after a
modification of block B at a processor P, only P has
a valid copy of B in its buffer; for all remaining
processors a buffer invalidation is possible. There-
fore, I(P) is set to 0 when the X-lock on B is released;
for all processors J+ P, I{J) is set to | because they
may have an obsolete copy of B in their buffers.

With this scheme, each lock request from a
processor P contains additional information whether
or not the required page resides in P’s buffer. If
the local buffer holds a copy of the requested block,
the PCA-lock manager can decide by using the
invalidation vector whether this copy is up-to-date.
The detection of a buffer invalidation is told within
the lock response; in that case the block must be read
from disk. When it is ensured that P gets the latest
version of the block by reading from disk, the
PCA-lock manager sets I(P) to 0.

In the above example for the timestamp solution
assume now that transaction T which has modified
page B was running on processor P2. Since P2 holds
the PCA for B, the release of T's X-lock can be
treated locally. When managing this lock release, the
lock manager at P2 sets I = 10 in B’s block entry of
the GLT. This indicates that only processor P1 may
have an invalidated copy of B in its buffer. When
processor Pl issues a lock request for B in that
situation and P1's buffer contains a copy of B, the
lock manager of P2 can detect the buffer invalidation
using the invalidation vector. Therefore, the lock
response message also reports that the old copy of B
has to be removed from the buffer and the new copy
must be read from disk. P2 also sets I =00 because
P1 gets the latest version of B.

4.2 Solutions in a NOFORCE-emvironment

Although a FORCE-propagation simplifies the
treatment of buffer invalidations it results in serious
performance problems since forcing modified pages
at EOT (in a synchronous manner) is overly ex-
pensive. Response times of update transactions are
increased and the use of large database buffers is
restricted since page modifications of different trans-
actions cannot be accumulated before updating the
database on disk[10]. Hence, for reaching high per-
formance NOFORCE propagation should be the
method of choice.

To cope with buffer invalidation using a
NOFORCE-propagation scheme means to solve two

ERHARD RAHM

Pl PZ

lock request messade

buffer

lock

response
message

nroagation
demand
ressage

P2

buffer

Fig. 10. Invalidation scemario with a NOFORCE-

propagation.

subproblems:

(a) avoid access to obsolete objects in the local buffer
and

(b) give the latest copy of an object to a requesting
processor (transaction).

For subproblem (a) all three solutions described
above are applicable. However, we only consider the
last solution which is clearly superior to the others.
Subproblem (b) is new because with FORCE the
latest copy could always be read from disk. With
NOFORCE, however, the valid copy may be in any
buffer or/and on disk.

A first solution with NOFORCE using invali-
dation vectors is to store also the name of the
processor that has performed the latest modification
of a block in the giobal lock table. For illustration
assume that processor P2 owns the PCA for a block
B, that was most recently changed by processor P3,
and that processor Pl keeps an invalidated copy of
B in its buffer (Fig. 1¢). In the block entry for B in
the GLT of P2, P3 is kept as the processor having
performed the last modification of B. The invali-
dation vector 1 indicates that P1 and P2 (but not P3})
may have an obsolete copy of B in their buffer.

When now Pl issues a lock request message for
block B to P2, it is told that there is a copy of B in
Pl’s buffer. Using the invalidation vector, P2 recog-
nizes that the copy at Pl is obsolele and that the
correct version. of B has to be propagated to P1 if the
lock is grantable (a propagation would also be neces-
sary if P} had no copy of B in its buffer). Since P2
does not know whether the valid page is on disk or
only in the buffer of P3, a message is sent to P3
(propagation demand) in order to arrange a correct
propagation. P3 sends the lock response to Pl along
with the valid page or with the demand to read the
page from disk.

Primary copy synchronization for DB-Sharing

It should be clear that only with three different
processors Pl, P2 and P3 this procedure has to go
through. A good partitioning and load balancing
mechanism will achieve that most (read or update)
accesses of pages are done at the processor with the
PCA, resulting in simpler treatment and less com-
munication delay for most lock requests. For exam-
ple the simplest case would be if P1 =P2=P3 for
avoiding all messages; if P2 =P3 the propagation
demand would not be necessary and if P1 =P2 the
lock request message could be saved.

Amnother treatment of buffer invahdation with NO-
FORCE also uses an invalidation vector for modified
pages in the global lock table and also requires
information in the lock request messages whether or
not the requested page is in the buffer of the sending
processor. In difference to the former solution the
valid version of a page is always found in the buffer
of the PCA-processor or on disk. To guarantee this,
update transactions must transfer cach modified page
to the PCA-processor during their EOT-processing
{of course, communication is only required if the
local processor does not hold the PCA). Although
one needs no extra messages when the pages are
piggy-backed to the release messages for the write
locks, these messages are getting rather lengthy. The
advantage of this strategy is that al} lock requests for
a page can now be managed by the PCA-processor
without involving other processors.

This approach works best if there are no band-
width problems and if the processors own large
database buffers (for which conventional replacement
strategies like LRU are applicable). Then, a fast
exchange of modified pages (objects) is possible and
a system-wide accumulation of updates can be per-
formed without any physical writes, The efficiency
(practicability) of this second proposal depends even
more than the first solution on a good PCA distribu-
tion and on a coordinated load balancing scheme.

To get a feeling for the required bandwidths for the
last solution, let us make a coarse estimation: Assume
a throughput of 1000 tps with 50% update trans-
actions. If each update transaction modifies 4 pages
in average there are 2000 modified pages every
second. If 80% of the updates are done by the
PCA-processors and the page size is 2 KB then the
exchange of medified pages requires 0.8 MB/sec. If
only 50% of the updates could be done within the
PCA-processors the bandwidth requirement would
be 2 MB/sec. Of course, the message system still has
to handle the synchronization messages requiring
about 1 MBy/sec (for 1000 tps, 10 locks per trans-
action, 50% local requests, 100 bytes for either lock
request or lock response message). So, the total
message traffic 1s clearly within the technically
feasible range.

In the optimized version of PCL as described in
Section 3, it is possible that lock managers not
owning the PCA can locally grant S-locks. Since the
PCA-lock manager is also responsible for detecting

285

buffer invalidations, S-locks should only be granted
by other lock managers if the respective page resides
in the local buffer. Otherwise, when the block can’t
be found in the local buffer, communication with the
PCA-processor must take place anyhow in order to
get the valid page (the copy on disk may be obso-
lete!). So, ‘empty’ block entries in the LLT can be
removed after the respective block is discarded from
the local buffer.

5. CONCLUSIONS

In a loosely coupled DB-Sharing system the syn-
chronization protocol must reduce the number of
synchronization messages between the processors as
far as possible. This can be achieved with the de-
scribed primary copy approach if the centralized
database is partitioned apprepriately and if an
effective load balancing can be performed. Besides of
a basic version of the algorithm we have given some
improvements in Section 3. A mechanism was intro-
duced allowing effective handling of read locks
thereby avoiding communication in most cases even
for processors not owning the primary copy authority
for the requested block.

In section 4, we presented a number of solutions to
the problem of buffer invalidation. Most promising
are the solutions using so-called invalidation vectors
for avoiding any extra messages. The concept of the
invalidation vector can be used in combination with
a FORCE-propagation scheme as well as in a
NOFORCE-scheme.

The optimized primary copy approach together
with the invalidation vector solution to buffer
invalidation has been implemented as part of a
simulation system that should allow to guantify the
performance behavior (throughput, response times)
of the algorithm. The simulations are driven by
real-life object reference strings[22] that represent
different types of transaction load. The results of our
simulations that are currently under way at the
university of Kaiserslautern will be reported in a
sequel to this paper.

Acknowledgements—I1 would like to thank T. Hdrder and P.
Peinl for their helpful suggestions on an earlier version of
this paper. The comments of the referees are also gratefully
acknowledged. This work was financially supported by
SIEMENS AG, Munich.

REFERENCES

1] Anon er al. A measure of transaction processing power.
Datamation, pp. 112-118 (April 1985).

[2] J. Gray et ai. One thousand transactions per second.
In Proc. IEEE Spring CompCon, San Francisco, pp.
96-101 (1985).

{3] W. Kim. Highly available systems for database applica-
tions. ACM Comput. Surv. 16(1), 71-98 (1984).

[4] J. Gray. Why do computers stop and what can be
done about it. In Proc. Office Automation 85, German
Chapter of the ACM, pp. 128-145. Teubner (1985).

286

[S] T. Hirder and E. Rahm. Classification of multipro-
cessor database systems—requirements, key concepts,
implementation principles. Internal Report 152/85,
Dept of Computer Science, Univ. of Kaiserslautern (in
German) (1985).

[6] E. Rahm. Closely coupled architectures for a DB-
sharing system. In Proc. &th NTG/GI Conf. on Com-
puter Architecture and Operating Systems, pp. 166-180,
(in German) (1986).

[71 W. N. Keene. Data sharing overview. In IMS/VS V1,
DBRC and Data Sharing User’s Guide. Release 2,
G30-5911-0 (1982).

[8] K. Shoens er al. The AMOEBA Project. In Proc. [EEE
Spring CompCon, San Francisco, pp. 102-105 (1985).

{9] T. Harder. DB-sharing vs DB-distribution—die Frage
nach dem Systemkonzept zukiinftiger DB/DC-
Systeme. In Proc. 9th NTG/GI Conf. On Computer
Architecture and Operating Systems, NTG-Fach-
berichte 92, pp. 151-165 (in German) (1586).

[10] T. Hérder and A. Reuter. Principles of transaction-
ortented database recovery. ACM Comput. Surv. 15(4),
287-317 (1983).

[11] A. Reuter. Load control and load balancing in a shared
database management system. Proc. 2nd Data En-
gineering Conf., pp. 188-197 (1986).

[12} E. Rahm. Algorithms for efficient load control in
multiprocessor database systems. Angewandte Informa-
tik 28(4), 161~169 (in German) (1986).

{t3] E. Rahm. Concurrency control in DB-sharing systems.
In Proc. I6th Annual GI Conf., Informatik-
Fachberichte 126, pp. 617-632. Springer (1986).

ERHARD RABEM

[14] T. Hérder and E. Rahm. Quantitative analysis of
a synchronijzation algorithm for DB-sharing. In Proc.
of 3rd GIINTG Conf. on Measurement, Modelling
and Evaluation of Computer Systems, Informatik-
Fachberichte 110, pp. 186-201. Springer (in German)
(1985).

[£5] A. Reuter and K. Shoens. Synchronization in a data
sharing environment. IBM San Jose Research Lab.
{preliminary version) {1984).

[16] T. Hiirder, P. Peinl and A. Reuter. Optimistic concur-
rency control in a shared database environment. Dept
of Computer Science, Univ. of Kaiserslautern/Stuttgart
(1985).

[17] P. A. Bernstein and N. Goodman. Concurrency contrel
in distributed database systems. ACM Comput. Surv.
13(2), 195-221 (1981).

{18] J. Gray. Notes on database operating systems. kn
Leciure Notes in Computer Science, Vol. 60, pp.
393-481. Springer (1978).

[19] R. Obermarck. Distributed deadlock detection algor-
ithm. ACM TODS 7(2), 187-208 (1982).

[20] A. K. Elmagarmid and M. T. Liu. Fault tolerant
deadlock detection in distributed database systems. In
Proc. [5th FTCS, pp. 240-245 (1985).

[21] E. Rahm. A reliable and efficient synchronization
ptotocol for DB-sharing. Internal Report 139/85, Dept
of Computer Science, Univ. of Kaiserslautern (1985).

[22] T. Hirder, P. Peinl and A. Reuter. Performance anal-
ysis of synchronization and recovery schemes. Database
Engng 8(2), 50-57 (1985).

