
cba

Stefan Lerm, Alieh Saeedi, Erhard Rahm (Hrsg.): BTW21 Dresden,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Extended Affinity Propagation Clustering for Multi-source
Entity Resolution

Stefan Lerm1, Alieh Saeedi2, Erhard Rahm3

Abstract: Entity resolution is the data integration task of identifying matching entities (e.g. products,
customers) in one or several data sources. Previous approaches for matching and clustering entities
between multiple (>2) sources either treated the different sources as a single source or assumed that
the individual sources are duplicate-free, so that only matches between sources have to be found.
In this work we propose and evaluate a general Multi-Source Clean Dirty (MSCD) scheme with
an arbitrary combination of clean (duplicate-free) and dirty sources. For this purpose, we extend a
constraint-based clustering algorithm called Affinity Propagation (AP) for entity clustering with clean
and dirty sources (MSCD-AP). We also consider a hierarchical version of it for improved scalability.
Our evaluation considers a full range of datasets containing 0% to 100% of clean sources. We compare
our proposed algorithms with other clustering schemes in terms of both match quality and runtime.
The proposed algorithms outperform previous methods and achieve an excellent precision in MSCD
scenarios.

Keywords: Entity Resolution; Clustering; Affinity Propagation; MSCD-AP

1 Introduction

Entity Resolution (ER), also referred to as record linkage or deduplication, is a main
data integration task. It is used to identify entities, such as specific costumer or product
descriptions, in one or several data sources that refer to the same real-world entity. Most
previous ER approaches focus on finding such matches in either a single source or between
two sources. Multi-source ER aims at finding matching entities in an arbitrary number of
sources which is more challenging than dealing with 1-2 sources since not only the degree
of heterogeneity but also the variance in data quality generally increases with the number of
sources.

There are two main phases for multi-source ER [Ra16, Sa18, Ch19]. First, similar pairs of
entities are determined over all sources as match candidates. These can be recorded in a
similarity graph where each vertex represents an entity and each edge a match relationship
between two entities. Edges may have a similarity score reflecting the match probability. In
the second phase, the matches are determined by a clustering algorithm on the similarity
graph. All matching entities from any source referring to the same real-world entity are
1 University of Leipzig & ScaDS.AI Dresden/Leipzig, s.lerm@studserv.uni-leipzig.de
2 University of Leipzig & ScaDS.AI Dresden/Leipzig, saeedi@informatik.uni-leipzig.de
3 University of Leipzig & ScaDS.AI Dresden/Leipzig, rahm@informatik.uni-leipzig.de

mailto:s.lerm@studserv.uni-leipzig.de
mailto:saeedi@informatik.uni-leipzig.de
mailto:rahm@informatik.uni-leipzig.de

2 Stefan Lerm, Alieh Saeedi, Erhard Rahm

grouped in one cluster. There are many possible approaches for this entity clustering,
especially the ones that have been proposed for clustering matches in a single source
[Ha09, SPR17]. In the special case of duplicate-free (clean) sources each cluster contains
at most one entity per source so that the cluster size is limited by the number of sources.
Cluster algorithms that utilize this restriction have been shown to achieve better match
quality than the more general approaches [NGR16, SPR18].

In this paper, we investigate a Multi-Source Clean Dirty (MSCD) entity clustering approach
that can utilize clean sources but can also deal with dirty sources so that only a fraction
(possibly 0%) of the sources have to be clean. The goal is to achieve better match quality
than with a general clustering scheme when there are clean sources while avoiding the
limitation of requiring that all sources have to be clean. While one could first deduplicate
dirty sources and then apply a clustering for clean sources, the effort to determine these
source-specific deduplication approaches is immense and perhaps not completely successful.
We experimented with such an approach for a data integration challenge [OSR19] but it
performed worse than matching dirty sources. Consequently, it is more flexible to support a
mix of both dirty and clean sources. For this purpose, we propose extensions to the Affinity
Propagation (AP) clustering approach [FD07] that converts the problem of clustering into a
constraint optimization problem. Our extension MSCD-AP adds a new constraint to AP to
deal with clean sources. We also consider a hierarchical variation of MSCD-AP for improved
scalability, provide parallel implementations based on Apache Flink and comparatively
evaluate the new approaches.

We make the following contributions:

• We are the first to consider a mix of clean and dirty sources for multi-source
entity resolution and propose an extended version of affinity propagation clustering,
MSCD-AP, for this purpose.
• For improved scalability, we propose a hierarchical variation, MSCD-HAP, and

provide parallel implementations for the clustering schemes based on Apache Flink.
• We perform a comprehensive evaluation of the match quality, runtimes and scalability

of the new approaches for different datasets and compare them with previous clustering
schemes.

After a discussion of related work, we give a brief summary of the standard AP algorithm in
Section 3. Section 4 presents the new clustering method MSCD-AP in detail while Section 5
describes the scalable approach MSCD-HAP. In Section 6 we present our evaluation.

2 Related Work

Entity resolution has been the subject of a large amount of research as can be seen from
many surveys and books such as [Ch12, Ch19, KR10, GM12, Pa19]. For larger datasets it is
imperative to apply blocking techniques to reduce the number of comparisons of entity pairs.

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 3

There are also many ways to determine match candidates, e.g. match rules requiring that a
combined similarity of selected attributes exceed some threshold or supervised approaches
using training data with both matching and non-matching pairs of entities to determine a
match classifier.

This paper focuses on the final step of the ER pipeline, entity clustering on a similarity
graph, to group together all matches of a real-world object. Clustering can improve match
quality over the binary links in the similarity graph as it is possible to transitively infer
additional links or to eliminate links that are unlikely to be correct. There are numerous
approaches for clustering and also for entity clustering. Most previous entity clustering
approaches focus on finding matches in a single (dirty) source. Example approaches include
Connected Components, Center and Merge-Center clustering [HM09], Affinity Propagation
[FD07], Ricochet clustering [WB09], Markov clustering [VD00] and Correlation clustering
[BBC04]. [Ha09] comparatively evaluated many of these algorithms for a single source.

In [SPR17] we have shown that these approaches can be adapted for multi-source entity
clustering and we comparatively evaluated several approaches for such a setting. We further
developed new multi-source entity clustering approaches such as CLIP [SPR18], that work
for clean (duplicate-free) data sources and can outperform the more general approaches
for dirty sources. In our evaluation we will compare the new MSCD entity clustering
approaches based on affinity propagation with these previous methods for dirty and clean
sources. The previous clustering approaches including CLIP have been integrated into
the FAMER4 framework [Sa18] for multi-source entity resolution, that is used for our
comparative evaluation. All match and clustering approaches in FAMER are implemented
on top of Apache Flink to achieve a parallel entity resolution on a cluster of machines in
order to reduce runtimes and improve scalability to larger datasets.

3 Affinity Propagation Clustering

The Affinity Propagation clustering algorithm [FD07] groups entities by identifying
exemplars. An exemplar is the entity that best represents all the entities of a cluster. The
non-exemplar entities are assigned to the most appropriate exemplar. The goal of AP is to
find exemplars and cluster assignments in a way that the sum of similarities inside clusters
are maximized.

In [GF09], AP is solved by the iterative max-sum algorithm on a factor graph. The factor
graph is a bipartite graph between the exemplar assignments (variable nodes) and factor
nodes representing two constraints, called the g- and h-constraints. Figure 1a illustrates
such a factor graph for AP. Variable nodes and factor nodes are represented as circles and
rectangles respectively. For clustering = entities, the factor graph is represented by a =2

binary matrix B. The variable 18 9 has the value 1 if the datapoint (entity) 9 is the exemplar

4 https://dbs.uni-leipzig.de/research/projects/object_matching/famer

https://dbs.uni-leipzig.de/research/projects/object_matching/famer

4 Stefan Lerm, Alieh Saeedi, Erhard Rahm

(a)

(b)

(c)

(d)

Fig. 1: a) Factor graph of AP [AKK19] b) AP clustering example c) Binary matrix d) Oscillation

of 8. The factor nodes 68 and ℎ 9 assure a valid clustering by applying the constraints. The
g-constraint enforces that a datapoint has to have exactly one exemplar. It means in each
row of the binary matrix there must be exactly one variable with value 1. The h-constraint
assures that a datapoint selects itself as its exemplar, if it is already chosen as exemplar
by at least one other datapoint. It means, if there exists at least one 1 in a column of the
binary matrix, then the diagonal element 1 9 9 of that column must be set to 1 too. The cluster
assignments are based on the similarities between entities so that similarity values are also
represented as factor nodes (factor node B8 9 provides the similarity information between the
entities 8 and 9).

Figure 1b illustrates an example clustering of AP where five entities 0-4 from three
(differently colored) sources - , . and / are grouped in three clusters. The corresponding
output binary matrix in Figure 1c shows that entities 0, 2 and 3 are the exemplars of the
three clusters. As described above, the rows of the binary matrix illustrate the exemplar
(cluster) assignment while the columns depict the clusters. The group of 1 values in column
9 represents the entities of the cluster with exemplar 9 .

AP aims at finding a cluster assignment maximizing the sum of similarities within clusters.
This optimization problem can be formulated with the energy function [AKK19] shown
in Equation (1). Maximizing the function requires to find an optimal configuration of the
variables in B so that the sum of the similarities between entities and their exemplars is
maximized and the two constraints are met. An exact maximization of the energy function
is computationally intractable because a special case of this maximization problem is the
NP-hard k-median problem [FD07].

� (B) =
∑
8 9

B8 918 9 +
∑
8

68 (B(8, :)) +
∑
9

ℎ 9 (B(:, 9)) (1)

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 5

with

68 (B(8, :)) =


0 if
∑
9

18 9 = 1

−∞ otherwise
ℎ 9 (B(:, 9)) =

{
0 if 1 9 9 = max

8
18 9

−∞ otherwise

The proposed iterative max-sum algorithm uses several parameters that affect the clustering
result and that deal with the problem of non-convergence. The most important parameter is
called preference. It defines the self-similarity B88 of an entity 8. The higher the preference
value is chosen the more likely the entity becomes an exemplar. Parameters to deal with
non-convergence are the noise level and the damping factor _. AP suffers from oscillation
between solutions that are similarly well suited for optimizing the energy function. For
the similarity matrix in the top portion of Figure 1d, the symmetrical similarity values
between entities 0 and 1 make both equally well suited as an exemplar. In such a situation,
AP does not converge and oscillates between the two solutions with either entity 0 or 1 as
the exemplar as shown in the bottom part of Figure 1d. Oscillation is avoided by adding a
tiny amount of noise to the similarity values. The damping factor has a similar goal and is
related to the used message passing implementation for the iterative computation. It leads to
an adaptation of values exchanged between iterations. If oscillations nevertheless occur, the
preference or the damping factor must be adapted (see next section).

4 MSCD Affinity Propagation

To cluster mixed datasets of clean and dirty sources, we propose an extension to AP called
MSCD-AP. Since clean sources have no duplicates, every cluster should have at most one
entity of a clean source. This is now controlled by an additional clean-source consistency
constraint. It means that in each column of the binary assignment matrix B, value 1 is
allowed for at most one (row) entity of a clean source.

Figure 2a shows a possible clustering of MSCD-AP for the running example when sources
- and . are clean. There are four source-consistent clusters with at most one entity per
clean source. In the corresponding binary matrix, each column has at most one entity with
value 1 per clean source. For example, the column (cluster) for exemplar entity 1 has two
associated entities (1 and 2) from different sources.

Our proposed clean-source consistency constraint is expressed in Equation (2). It uses
function C to add a large penalty to the extended energy function in Equation (3) when the
constraint is violated. The constraint requires that for a column 9 the value 1 is allowed for
at most one datapoint from a clean source &.

C& 9 (B(8 ∈ &, 9) =


0 if
∑
8 ∈ &

18 9 ≤ 1

−∞ otherwise
(2)

6 Stefan Lerm, Alieh Saeedi, Erhard Rahm

(a)

(b) (c)

Fig. 2: a) MSCD-AP clustering example b) Messages of the MSCD-AP factor graph
c) The factor graph for MSCD-AP for the running example. The sources - and . are clean.

� (B) =
∑
8 9

B8 918 9 +
∑
8

68 (B(8, :)) +
∑
9

ℎ 9 (B(:, 9)) +
∑
&

∑
8∈&, 9

C& 9 (B(8, 9)) (3)

Figure 2c illustrates the extension of the AP factor graph to cluster our running example
data. For clean sources - and . , additional factor nodes CG and CH (marked in red and blue)
are added to each column of the binary matrix. The factor node CG 9 assures the clean-source
consistency constraint for source - and column 9 . It is connected to the variable node 18 9
only if entity 8 is from data source - . The clean-source constraint may get in conflict with
the ℎ-constraint of AP. The ℎ-constraint enforces a datapoint to choose itself as its own
exemplar, if it is selected by at least one other datapoint. So the diagonal element 1 9 9 of
column 9 is enforced to be 1, if there is any other 1 in that column. On the other hand,
the clean-source constraint enforces 1 9 9 to be 0, if another datapoint of the same clean
source selected it as its exemplar. So the two constraints enforce different values for 1 9 9

and thus the algorithm may struggle to converge. This situation is simply avoided in our
implementation by not having links between entities of the same clean source which is a
default feature of the linking component of FAMER.

For the traditional AP clustering, the max-sum optimization has been implemented by
a message passing algorithm [GF09]. The messages are exchanged between factor and
variable nodes of the factor graph to reflect the mutual dependencies within an iterative

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 7

process. The messages are computed differently depending on whether the recipient node
is a variable node or a factor node. Figure 2b shows the messages exchanged between the
nodes of the new factor graph of MSCD-AP. The grey-colored factor nodes enforce the g
and h constraints while the new factor node C (marked in orange) applies the clean-source
consistency constraint via the \ and W messages.

We build on the formulae from [Gi12] to update messages for the original constraints and
specify the new message formulas for our MSCD extension. In the max-sum algorithm,
outgoing messages of a variable node summarize all incoming messages to that node, except
of the node to which the new message will be sent. Due to the new constraint, all outgoing
messages from variable nodes to factor nodes are now modified because the new factor
nodes C& 9 are additional neighbours of 18 9 . As sum of the incoming messages from the
neighbouring nodes, except of the recipient, the modified messages V and d as well as the
new message W are easily deduced as listed in Equation (4) - (6).

The message formulas from factor nodes to variable nodes do not change in AP when a new
factor node is added. Therefore the incoming messages of U (eq. (7)) and [(eq. (8)) remain
unchanged compared to AP. The new incoming message \ from the new factor node C& 9 is
expressed in Equation (9). The more complex derivation of message \ from the max-sum
algorithm is given in the appendix. The variable assignments that maximize the energy
function are calculated by Equation (10).

V8 9 = B8 9 + U8 9 + \8 9 (4) d8 9 = B8 9 + [8 9 + \8 9 (5) W8 9 = B8 9 + U8 9 + [8 9 (6)

U8 9 =

{∑
:≠ 9 max(0, d: 9) 8 = 9

min[0, d 9 9 +
∑

:≠{8, 9 } max(0, d: 9)] 8 ≠ 9
(7)

[8 9 = −max
:≠ 9

V8: (8) \8 9 = <8=(0,−max
:≠8
[W: 9]) (9)

18 9 =

{
1 U8 9 + d8 9 > 0
0 U8 9 + d8 9 ≤ 0

(10)

Algorithm 1 lists the pseudo code of MSCD-AP with focus on the parameter adaptation.
There are several inputs for the algorithm. The clustering problem is defined by the similarity
matrix (and the specification of the clean sources (BA2�= 5 >). _ denotes the damping
factor. The preference can be set separately for dirty (?38AC H) and clean (?2;40=) sources.
Random gaussian noise is added to the similarity values at a decimal position specified by
the =>8B4!4E4;. Parameter adaption for the preference values and the damping factor is
done stepwise by BC4??A4 5 and BC4?3<? . The adaptation steps are real values in (0,1] that
are used to increase the original values towards the maximum 1 or decrease them towards 0.
As algorithm output the binary matrix B describes the exemplar assignment of every entity.

8 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Algorithm 1: MSCD-AP
Input: (, BA2�= 5 >, _, ?38AC H , ?2;40=, =>8B4!4E4;, BC4??A4 5 , BC4?3<?

Result: B with exemplar assignments
1 repeat
2 initializeMessages();
3 initializeB();
4 modifyS(?38AC H , ?2;40=, =>8B4!4E4;, BA2�= 5 >);
5 for 8C4A0C8>= = 0 : <0G do
6 updateMessages(_);
7 updateB();
8 if isConverged() then break;
9 B>;DC8>=�>D=3 ← isSolutionFound(B);

10 if ¬B>;DC8>=�>D=3 then adaptParameters(BC4??A4 5 , BC4?3<?);
11 until B>;DC8>=�>D=3;

After the initialization of the messages and output matrix (line 2 and 3) the diagonal elements
B 9 9 of the similarity matrix are set to the defined preference values and noise is added
to all similarity values in line 4. The iterative message passing starts in line 5. In each
iteration, the messages are updated in line 6 according to Equation (4) - (8). Additionally, U
and d messages are damped in order to prevent oscillations. Finally in line 7, the binary
matrix values are updated according to Equation (10). If no changes are observed in the
binary matrix after a specific number of iterations, the algorithm converges and is ended
(line 8). Otherwise it ends after a maximal number of iterations. If the algorithm stops
but the solution is not found yet (line 9 and 10), then it has to be restarted with adapted
parameters. For this purpose, function adaptParameters initially decreases the preference
values by preference adaption step (BC4??A4 5) until the minimum value 0. If convergence is
still not reached, the preference values are then increased step by step until the maximum 1
is reached. In case of no success, the preference values are reset to their original values and
the damping factor _ is now increased by damping adaption step (BC4?3<?). This process
continues until the algorithm finds a valid solution.

5 Scalable MSCD Affinity Propagation

Clustering large datasets is a challenge for AP since its time and memory complexity
grows quadratically with the number of entities and thus the data volume5. Liu et al. [Li13]
proposed Hierarchical Affinity Propagation (HAP) to make AP suitable for clustering
large-scale datasets. Following a divide and conquer strategy, HAP clusters the dataset by
executing AP several times on different hierarchy levels.

5 In the case of a sparse similarity matrix, the time complexity reduces to # :;>6 (#) with k being the average
connectivity of the similarity matrix [Zh10].

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 9

Fig. 3: HAP for three hierarchy levels �. Circles illustrate local (;) and global (6) exemplars, rectangles
represent partitions.

Figure 3 illustrates the hierarchical clustering for three levels. In the first (lowest) hierarchy
level, the dataset is randomly divided into equal-sized partitions of maximal size " . Then
AP is executed on each partition, resulting into a set of so called local exemplars for each
partition. In the next hierarchy level, the exemplars of the previous level are merged and
again partitioned. This process is repeated until the input size of a hierarchy level is lower or
equal to " . The execution of AP on the top hierarchy level determines the global exemplars
for the dataset. All non-exemplar entities are assigned to the global exemplar with the
highest similarity. Thus AP is executed once for each partition of each hierarchy level with
a complexity of $ ("2).

Unfortunately, applying the hierarchical algorithm for MSCD-AP does not guarantee the
clean-source consistency. This is because, the clustering of local exemplars by MSCD-AP
on intermediate hierarchy levels violates the clean-source consistency when two local
exemplars from a previous level are clustered together although they have associated entities
from the same clean source. A naive solution is to extend each local exemplar with the
source information of the entities assigned to it in the previous hierarchy level. This could
be used in subsequent cluster decisions to avoid that more than one entity of a clean source
is assigned to an exemplar. This approach, however, can lead to poor clustering results. A
bad decision in a lower level of the hierarchy, where an entity of a clean source with a low
similarity is assigned to a local exemplar, can prevent that a much more similar entity from
the respective source is merged at a higher level resulting in poor cluster decisions.

A more promising solution is to assign entities to global exemplars separately for clean
and dirty sources. Initially, HAP is executed using MSCD-AP to determine local and
global exemplars on the partitions. As in HAP, dirty source entities are then assigned to
the exemplars with the highest similarity. By contrast, clean source entities are assigned
using the Hungarian algorithm [Ku55, Mu57]. Given the similarities between these entities
and exemplars, the Hungarian algorithm finds a 1:1 assignment between entities of a clean
source and exemplars (i.e., each exemplar is assigned to at most one entity of a clean source)
so that the overall similarity of all assignments is maximized. If the number of entities
from a clean source exceeds the number of exemplars, the excess points form singleton

10 Stefan Lerm, Alieh Saeedi, Erhard Rahm

Tab. 1: Overview of evaluation datasets

General information Perfect result
domain entity properties #entity #src type #clusters #links

DS-G geography label, longitude, latitude 3,054 4 MSC 820 4,391
DS-M music artist, title, album, year, length 19,375 5 MSC 10,000 16,250
DS-P1 persons name, surname, suburb, postcode 5,000,000 5 MSC 3,500,840 3,331,384
DS-P2 10,000,000 10 MSC 6,625,848 14,995,973
DS-C camera heterogenous key-value pairs 21,023 23 MSCD 3,910 368,546

clusters. When a global exemplar is from a clean source, the clean-source consistency is
also enforced since there is no similarity link between entities of the same clean source.

The Hungarian algorithm has a computational complexity of O(<:2) for a<× : cost matrix
[Cu16] with : global exemplars and < entities from one clean source. The complexity is
higher compared to AP, but the bipartite matching is executed on small subsets of the =-sized
dataset (<, : � =). Thus the combination of HAP with MSCD-AP and the Hungarian
algorithm is still more suitable for large datasets than MSCD-AP. We call this combination
MSCD-HAP and comparatively evaluate it in the next section.

6 Evaluation

We now evaluate the cluster effectiveness and efficiency of the proposed MSCD extensions
of AP in comparison to standard AP and previous clustering schemes. We first describe the
used datasets from four domains. We then analyze comparatively the effectiveness of the
proposed algorithm. Finally, we evaluate runtime performance and scalability.

6.1 Datasets and Configuration Setup

We evaluate the new approaches with four multi-source datasets of clean sources (MSC)
that have also been used in previous studies [SPR17, SPR18, Sa18]. Table 1 gives an
overview of the datasets from three domains (geography, music, persons) including available
properties and number of entities. For the evaluation of mixed datasets of clean and dirty
sources, we use the dataset of the ACM SIGMOD 2020 Programming Contest6. It contains
approximately 30k product specifications from 24 dirty sources. For our purposes, we
determine a subset called DS-C focussing on camera products (Table 1). We excluded the
source www.alibaba.com because it contains just a few cameras but many non-cameras.
Table 2 lists the 23 remaining sources and their number of entities with and without
duplicates. The matching result of the SIGMOD contest winner [Bl20] is considered as the
ground truth. It achieved f-measure of 99% by extensive domain-specific preprocessing and

6 http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 11

Tab. 2: Overview of camera dataset (DS-C)

Source name ID #entity #entity
dedup.

buy.net 1 358 244
cammarkt.com 2 198 94
www.buzzillions.com 3 832 630
www.cambuy.com.au 4 118 56
www.camerafarm.com.au 5 120 59
www.canon-europe.com 6 164 163
www.ebay.com 7 14,009 3,255
www.eglobalcentral.co.uk 8 190 75
www.flipkart.com 9 118 47
www.garricks.com.au 10 130 69
www.gosale.com 11 895 578
www.henrys.com 12 181 137
www.ilgs.net 13 102 64
www.mypriceindia.com 14 347 279
www.pcconnection.com 15 211 126
www.price-hunt.com 16 327 282
www.pricedekho.com 17 366 325
www.priceme.co.nz 18 740 475
www.shopbot.com.au 19 516 334
www.shopmania.in 20 630 556
www.ukdigitalcameras.co.uk 21 129 73
www.walmart.com 22 195 115
www.wexphotographic.com 23 147 87

sum 21,023 8,123

Tab. 3: MSCD datasets

Name %cln1 cln2 #cln3 #dirt4

DS-C0 0 0 21,023

DS-C26 26 1-6,
8-23 4,868 14,009

DS-C32 32 7 3,255 7,014

DS-C50 50
7, 18,
19,20,
22, 23

4,822 4,786

DS-C62A 62

1, 4, 6
7, 9, 11,
13, 15,

17, 19, 20

5,748 3,536

DS-C62B 62

2, 3, 5,
7, 8, 10,
12, 14,
16, 18,
21-23

5,630 3,478

DS-C80 80 1-12
14-18 6,894 1,719

DS-C100 100 1-23 8,123 0
1 Percentage of entities from clean sources
2 Clean source IDs
3 Number of entities from clean sources
4 Number of entities from dirty sources

matching camera entities against a prepared list of nearly all available cameras in the market.
Our matching and clustering approaches are generic and applicable to different datasets.
Our goal is not to achieve the best possible result but to enable a fair comparison of the
clustering schemes based on reasonably good input similarity graphs for different datasets.

Using DS-C, we create eight datasets with different combinations of clean and dirty sources
and thus different degrees of dirtiness. As shown in Table 3, we name the datasets according
to the percentage of entities from clean sources, where DS-C0 and DS-C100 means that all
entities are from dirty and clean sources, respectively. For the mixed cases, an important
distinction is whether a clean or dirty version of source 7 (www.ebay.com) is considered
because it is the largest source and contains many duplicates. In DS-C62A and DS-C62B,
the clean form of source 7 is included, while all other sources that are clean in 62A are dirty
in 62B and vice versa.

Tab. 4: Linking configurations of clean multi-source datasets

Blocking Key Similarity Function

DS-G prefixLength1 (label) Jaro-Winkler (label) & geographical distance
DS-M prefixLength1 (album) Trigram (title)

DS-P1/P2 prefixLength3 (surname) + prefixLength3 (name) avg (Trigram (name) + Trigram (surname)
+ Trigram (postcode) + Trigram (suburb))

12 Stefan Lerm, Alieh Saeedi, Erhard Rahm

The blocking and matching configurations for the clean datasets are listed in Table 4 and
correspond to the ones in previous studies [SPR18, Sa18]. For the camera dataset, we
extracted the manufacturer name, a list of model names, manufacturer part number (mpn),
european article number (ean), digital and optical zoom, camera dimensions, weight, product
code, sensor type, price and resolution from the heterogeneous product specifications. In
order to reduce the number of comparisons, standard blocking with a combined key of
manufacturer name and model number is applied. Within these blocks, all pairs with exactly
the same model name, mpn or ean are classified as matches. We assign a similarity value
to the matched pairs determined from a weighted average of the character-3Gram Dice
similarity of string values and a numerical similarity of numerical values (within a maximal
distance of 30%).

6.2 ER Quality of Clustering Algorithms

To evaluate the quality of the clustering results, we use the standard metrics precision, recall
and their harmonic mean, f-measure w.r.t. the links of the perfect cluster results (last column
of table 1). We compare the quality of AP and the proposed MSCD-AP approaches with
seven previous clustering schemes comprised in FAMER [Sa18]. The CLIP approach is
tailored to clean sources. The other six algorithms are general approaches for dirty sources
(connected components, correlation clustering CCPivot, two variants of star clustering
and two variants of center clustering). We also provide the quality of the input similarity
graph (without clustering) in our figures. For AP and MSCD-AP we manually determined
suitable parameter configurations. We use the interval [0.01, 0.7] for preference values and
set a higher preference value for clean sources than for dirty sources to choose exemplars
preferably from clean sources. The damping factor is set to 0.5 and noise is added to the
similarity values from the third decimal place. For the smaller datasets DS-G, DS-M and
DS-C, we used a partition size of 1000 while for the person datasets we apply MSCD-HAP
with partition size 100 to reduce runtimes. When the size of a connected component is
smaller than the partition size, MSCD-AP is executed. Higher similarity thresholds result in
fewer links and smaller components that are mostly executed without partitioning. Because
DS-G and DS-C consist of small components, partitioning is not used. Thus AP and
MSCD-AP are executed. In DS-P the hierarchical algorithms are used. For reasons of space
the results of DS-P1 are omitted, as they are very similar to those of DS-P2.

We first analyze cluster quality for the datasets with only clean sources. Figure 4 shows
the results for the three MSC datasets for different similarity thresholds to generate the
input similarity graph. As expected, the f-measure results are best for the CLIP approach
tailored to ER for clean sources. However, the proposed MSCD-AP approach achieves
about the same quality for two datasets (DS-G, DS-P2) and performs better than the six
general clustering schemes for DS-M. It also outperforms AP in all cases. These surprisingly
good results are mainly due to an excellent precision of MSCD-AP which can outweigh its
comparatively low recall. The recall is limited since AP and MSCD-AP strongly depend

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 13

precision recall f-measure

D
S-

G
D

S-
M

D
S-

P2

similarity threshold similarity threshold similarity threshold

Fig. 4: Clustering quality for the multi-source clean ER datasets

on the relative similarity values and can even consider a high similarity value such as 0.8
as low if it is below the average of the considered value range, e. g. [0.8, 1.0]. This leads
to more small clusters and thus a lower recall compared to other algorithms. Due to the
clean-source constraint, MSCD-AP creates more exemplars than AP and therefore obtains a
lower recall compared to AP but a much better precision.

Figure 5 shows the quality of the clustering results for the camera datasets with different
degrees of dirtiness. Due to space constraints we show results for 5 of the 8 cases but the
results for the remaining datasets confirm the overall outcome. We observe that MSCD-AP
achieves the best f-measure for all cases with a mix of dirty and clean sources. For the case
of only clean sources (DS-C100) it is only outperformed by CLIP. For dirty sources only
(DS-C0) MSCD-AP is identical to AP which is among the best approaches. As a result,
MSCD-AP is the best or among the best approaches over all configurations while other

14 Stefan Lerm, Alieh Saeedi, Erhard Rahm

precision recall f-measure

D
S-

C
0

D
S-

C
32

D
S-

C
50

D
S-

C
80

D
S-

C
10

0

similarity threshold similarity threshold similarity threshold

Fig. 5: Clustering quality for the multi-source clean/dirty ER datasets

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 15

schemes like CLIP are good in only one configuration. Another strong point of MSCD-AP
is that its f-measure is nearly stable over all threshold values used to determine the input
similarity graph while the general clustering schemes depend on finding a suitable threshold.
As for the MSC datasets, the good results of MSCD-AP are mainly due to its excellent
precision values in all cases that outweigh its lower recall results.

6.3 Runtimes and Speedups

We evaluate runtimes and speedup behavior for the larger datasets from the person domain.
The speedup of MSCD-HAP is determined for the parallel execution with different numbers
of workers. We also analyze the effect of different MSCD-HAP partition sizes on runtime
as well as on clustering quality. The experiments are performed on a shared nothing cluster
with 16 worker nodes. Each worker consists of an E5-2430 6(12) 2.5 Ghz CPU, 48 GB
RAM, two 4 TB SATA disks and runs openSUSE 13.2. The nodes are connected via 1
Gigabit Ethernet. Our evaluation is based on Hadoop 2.6.0 and Flink 1.9.0. We run Apache
Flink standalone with 6 threads and 40 GB memory per worker.

Figure 6 shows the runtime of each clustering approach for a parallel execution on 16
workers. As expected, the larger dataset DS-P2 leads to higher runtimes than for DS-P1
while higher similarity thresholds reduce runtimes due to the lower number of edges in
the similarity graph. MSCD-HAP is slower than HAP because the calculations for the
clean-source constraint and the exemplar assignment by the Hungarian algorithm need
additional runtime. The clean-source constraint of MSCD-AP also leads to more exemplars
and potentially more entities of the same source that are equally well suited to be an exemplar.
Thus, oscillations occur more frequently for MSCD-AP compared to AP leading to more
parameter adaptions to find a converging solution.

MSCD-HAP along with CCPivot and MergeCenter are among the slowest algorithms for
the lowest threshold. Yet with higher similarity thresholds the runtime of MSCD-HAP

DS-P1 DS-P2

Fig. 6: Runtimes for clustering schemes (with partition size 100 for HAP and MSCD-HAP)

16 Stefan Lerm, Alieh Saeedi, Erhard Rahm

DS-P1 DS-P2

Fig. 7: Speedup of MSCD-HAP for different similarity thresholds

improves significantly making it one of the fastest algorithms. This is because a high
minimum threshold avoids that a large number of entities are connected in the similarity
graphs resulting in mostly small clusters and reduced work for the Hungarian algorithm.
Moreover, oscillations occur less in such cases.

Figure 7 depicts the speedup of MSCD-HAP with partition size 100 for different similarity
thresholds and for 1 to 16 worker machines. We observe that close to perfect speedup is
achieved for the larger dataset DS-P2 and for a lower similarity threshold (bigger similarity
graph) for the smaller DS-P1 dataset. For the higher thresholds the needed computations for
DS-P1 cannot utilize 16 machines so that a good speedup is only achieved until 8 workers.

Figure 8 investigates the effect of partition size on both runtime and clustering quality.

runtime in s precision recall f-measure

D
S-

P1
D

S-
P2

similarity threshold similarity threshold similarity threshold similarity threshold

Fig. 8: Clustering quality and runtime for different partitions sizes of MSCD-HAP

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 17

We observe that larger partition sizes lead to much higher runtimes but also to improved
clustering quality. These effects are most pronounced for smaller similarity threshold such as
0.6 that lead to bigger similarity graphs and thus to more computations. With larger partition
sizes there are more entities and more similarity values in each partition. Therefore, the
probability of finding good local and global exemplars rises and consequently the precision
is improved. Yet recall drops slightly, because on bigger partitions more exemplars can be
found and AP generally tends to form many small clusters. While the runtime is up to seven
times higher for partition size 400 compared to 100 (for DS-P2) for threshold 0.6, these
differences largely go away for higher thresholds and much smaller similarity graphs. This
is also the case for clustering quality, where similarity value 0.7 or higher leads to about the
same f-measure for all partition sizes.

7 Conclusions

We studied how to support multi-source entity clustering for a mix of clean (duplicate-
free) and dirty data sources. The proposed extension of Affinity Propagation clustering,
MSCD-AP, showed to be highly effective and perform better than previous methods
for mixed configuration where a subset of the sources is duplicate-free. To improve
runtimes we proposed the use of a hierarchical version MSCD-HAP and provide parallel
implementations of the algorithms. The parallel implementations achieve good speedup
values thereby supporting scalability to larger datasets. In future work, we will investigate
how to extend additional clustering schemes for multi-source ER for mixed configurations
with both clean and dirty sources.

8 Acknowledgements

This work is partially funded by the German Federal Ministry of Education and Research
under grant BMBF 01IS18026B in project ScaDS.AI Dresden/Leipzig.

Bibliography
[AKK19] Amjad, R.; Khan, R.; Kleinsteuber, M.: Extended Affinity Propagation: Global Discovery

and Local Insights. IEEE Transactions on Knowledge & Data Engineering, 2019.

[BBC04] Bansal, N.; Blum, A.; Chawla, S.: Correlation clustering. Machine learning, 56(1-3):89–113,
2004.

[Bl20] Blacher, M.; Klaus, J.; Mitterreiter, M.; Giesen, J.; Laue, S.: Fast Entity Resolution With
Mock Labels and Sorted Integer Sets. CEUR Workshop Proceedings, 2726, 2020.

[Ch12] Christen, P.: Data matching: concepts and techniques for record linkage, entity resolution,
and duplicate detection. Springer Science & Business Media, 2012.

18 Stefan Lerm, Alieh Saeedi, Erhard Rahm

[Ch19] Christophides, V.; Efthymiou, V.; Palpanas, T.; Papadakis, G.; Stefanidis, K.: End-to-End
Entity Resolution for Big Data: A Survey. arXiv preprint arXiv:1905.06397, 2019.

[Cu16] Cui, H.; Zhang, J.; Cui, C.; Chen, Q.: Solving large-scale assignment problems by Kuhn-
Munkres algorithm. 2nd International Conference on Advances in Mechanical Engineering
and Industrial Informatics (AMEII), 2016.

[FD07] Frey, B. J.; Dueck, D.: Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

[GF09] Givoni, I. E.; Frey, B. J.: A binary variable model for affinity propagation. Neural
computation, 21(6):1589–1600, 2009.

[Gi12] Givoni, I. E.: Beyond affinity propagation: Message passing algorithms for clustering.
Citeseer, 2012.

[GM12] Getoor, L.; Machanavajjhala, A.: Entity resolution: theory, practice & open challenges.
Proceedings of the VLDB Endowment, 5(12):2018–2019, 2012.

[Ha09] Hassanzadeh, O.; Chiang, F.; Lee, H. C.; Miller, R. J.: Framework for evaluating clustering
algorithms in duplicate detection. PVLDB, 2(1):1282–1293, 2009.

[HM09] Hassanzadeh, O.; Miller, R. J.: Creating probabilistic databases from duplicated data. The
VLDB Journal, 18(5):1141, 2009.

[KFL01] Kschischang, F. R.; Frey, B. J.; Loeliger, H-A: Factor graphs and the sum-product algorithm.
IEEE Transactions on information theory, 47(2):498–519, 2001.

[KR10] Köpcke, H.; Rahm, E.: Frameworks for entity matching: A comparison. Data & Knowledge
Engineering, 69(2):197–210, 2010.

[Ku55] Kuhn, H. W.: The Hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[Li13] Liu, X.; Yin, M.; Luo, J.; Chen, W.: An improved affinity propagation clustering algorithm
for large-scale data sets. In: 2013 Ninth International Conference on Natural Computation
(ICNC). IEEE, pp. 894–899, 2013.

[Mu57] Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the
society for industrial and applied mathematics, 5(1):32–38, 1957.

[NGR16] Nentwig, M.; Groß, A.; Rahm, E.: Holistic entity clustering for linked data. In: 2016 IEEE
16th Int. Conf. on Data Mining Workshops (ICDMW). IEEE, pp. 194–201, 2016.

[OSR19] Obraczka, D.; Saeedi, A.; Rahm, E.: Knowledge Graph Completion with FAMER. In:
Proc. KDD workshop Data Integration for Knowledge Graphs (DI2KG). 2019.

[Pa19] Papadakis, G.; Skoutas, D.; Thanos, E.; Palpanas, T.: A survey of blocking and filtering
techniques for entity resolution. CoRR, abs/1905.06167, 2019.

[Ra16] Rahm, E.: The case for holistic data integration. In: East European Conference on Advances
in Databases and Information Systems. Springer, pp. 11–27, 2016.

[Sa18] Saeedi, A.; Nentwig, M.; Peukert, E.; Rahm, E.: Scalable matching and clustering of
entities with FAMER. Complex Systems Informatics and Modeling Quarterly, pp. 61–83,
2018.

Extended Affinity Propagation Clustering for Multi-source Entity Resolution 19

[SPR17] Saeedi, A.; Peukert, E.; Rahm, E.: Comparative evaluation of distributed clustering schemes
for multi-source entity resolution. In: European Conference on Advances in Databases and
Information Systems. Springer, pp. 278–293, 2017.

[SPR18] Saeedi, A.; Peukert, E.; Rahm, E.: Using link features for entity clustering in knowledge
graphs. In: European Semantic Web Conference. Springer, pp. 576–592, 2018.

[VD00] Van Dongen, S. M.: Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, 2000.

[WB09] Wijaya, D. T.; Bressan, S.: Ricochet: A family of unconstrained algorithms for graph
clustering. In: International Conference on Database Systems for Advanced Applications.
Springer, pp. 153–167, 2009.

[Zh10] Zhang, X.: Contributions to Large Scale Data Clustering and Streaming with Affinity
Propagation. Application to Autonomic Grids. PARIS: University PARIS-SUD, 2010.

Appendix: Derivation of Equation (9)

In MSCD-AP, \ is a message from a factor node to a variable node and therefore is derived
from Equation (11) of the max-sum algorithm, following [KFL01] and [Gi12].

` 5 →G (G) = max
=(5)\{G }

©­«;= 5 (G, H1, ..., H<) +
∑

H8 ∈=(5)\{G }
`H8→ 5 (H8)

ª®¬ (11)

The binary variable 18 9 either obtains value 1 or 0. Firstly, we investigate both cases by
considering all possible configurations of all neighboring variable nodes 1: 9 (: ≠ 8) of C& 9

and then according to Equation (12) [Gi12], we combine them in order to to get a scalar
value for the \ message.

`8 9 = `8 9 (1) − `8 9 (0) (12)

For bi j = 1: Equation (13) shows \ for the case that 8 chooses 9 as its exemplar. All
neighbors of C& 9 are from the same clean source &. Let @ be the number of entities in &.
All incoming messages `1: 9→C&9

(1: 9) of C& 9 are defined as W: 9 (1: 9). For not hurting the
clean source constraint, no other datapoint in & is allowed to choose 9 as its exemplar.
Therefore all other neighboring variable nodes 1: 9 (: ≠ 8) of C& 9 are set to 0. This is the only
configuration that satisfies the clean source constraint and thus the optimal one. Acording to
Equation (2), the C& 9 function evaluates its maximum value of 0.

20 Stefan Lerm, Alieh Saeedi, Erhard Rahm

\8 9 (1) = max
1: 9 ,:≠8

[;= C& 9 (11 9 = 0, ..., 18 9 = 1, ..., 1@ 9 = 0) +
∑

1: 9 ,:≠8

W: 9 (1: 9 = 0)]

=
∑
:≠8

W: 9 (0)
(13)

For bi j = 0: There is more flexibility for finding the optimal solution if datapoint 8 does not
choose 9 as its exemplar. In order to guarantee the clean source consistency, utmost one of
the 1: 9 variables is allowed to be set to 1. There are @ possible solutions that satisfy the
clean source constraint: @ − 1 for each 1: 9 being set to 1 and one for all 1: 9 variables being
set to 0. Let the case when all 1: 9 are set to 0 be G (eq. (14)) and the case when exactly
one of the 1: 9 is set to 1 be H (eq. (15)). The message for 18 9 = 0 in Equation (16) is the
maximum of the two cases G and H.

G = 0 +
∑
:≠8

W: 9 (0) (14) H = max
:≠8
[0 + W: 9 (1) +

∑
?∉{:,8 }

W? 9 (0)] (15)

\8 9 (0) = max
1: 9 ,:≠8

[;= C& 9 (11 9 , ..., 18 9 = 0, ..., 1@ 9) +
∑

1: 9 ,:≠8

W: 9 (1: 9)]

= max(G, H)
(16)

)i j (1) and)i j (0) combined: In Equation (17) - 23, we bring both formulas for the cases
18 9 = 0 and 18 9 = 1 together. According to Equation (12), the scalar message is the difference
of the message values for the two settings of the binary variable.

Equation (20) is transformed to Equation (21) by the transformation 0−<0G(10, 11, ..., 1=) =
−<0G(10 − 0, 11 − 0, ..., 1= − 0). Subtracting the two sums in Equation (20), only −W: 9 (0)
is left (eq. (22)) and then Equation (22) is transformed to Equation (23), according to
Equation (12).

\8 9 = \8 9 (1) − \8 9 (0) (17)
= G − <0G(G, H) (18)
= <8=(0, G − H) (19)

= <8=(0,
∑
:≠8

W: 9 (0) − <0G:≠8 [W: 9 (1) +
∑

?∉{:,8 }
W? 9 (0)]) (20)

= <8=(0,−<0G:≠8 [W: 9 (1) +
∑

?∉{:,8 }
W? 9 (0) −

∑
:≠8

W: 9 (0)]) (21)

= <8=(0,−<0G:≠8 [W: 9 (1) − W: 9 (0)]) (22)
= <8=(0,−<0G:≠8 [W: 9]) (23)

	Introduction
	Related Work
	Affinity Propagation Clustering
	MSCD Affinity Propagation
	Scalable MSCD Affinity Propagation
	Evaluation
	Datasets and Configuration Setup
	ER Quality of Clustering Algorithms
	Runtimes and Speedups

	Conclusions
	Acknowledgements

