

PAnG – Finding Patterns in Annotation Graphs

Philip Anderson, Andreas Thor, Joseph Benik, Louiga Raschid, Maria Esther Vidal

Motivation

Abundance of data

- High-throughput lab experiments in systems biology.
- Annotated datasets adorned with CV terms from ontologies.
- W3C Linking Open Data (LOD) initiative.

Goal: Explore and evaluate patterns in complex annotation graphs.

- Help scientists explore large annotation graphs.
- Generate hypothesis, e.g., interactions between groups of genes or new functional annotations.

Approach

Dense Subgraph

- Density as a measure of relatedness, similarity between genes.
- Identifies highly annotated candidate regions of a graph.
- Distance threshold based on path lengths between terms in the ontology.

Graph Summarization

- Graph of supernodes, superedges, corrections to represent original graph.
- Intuitive way to extract and visualize graph patterns.
- Computed using cost model that gives weights to supernodes, superedges, and corrections.

Example Patterns

Clusters of clinical trials adorned with a condition "lung cancer" and corresponding treatments.

Cross genome GO annotations for cation/proton transporter genes in Arabidopsis thaliana and C. elegans.

Prototype

http://pang.umiacs.umd.edu/linkedct.html http://pattaran.umiacs.umd.edu

Future work

