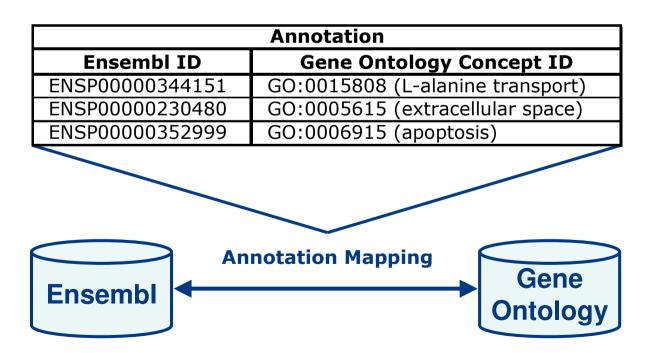


Quality of Functional Annotations in Life Science Data Sources

Anika Groß

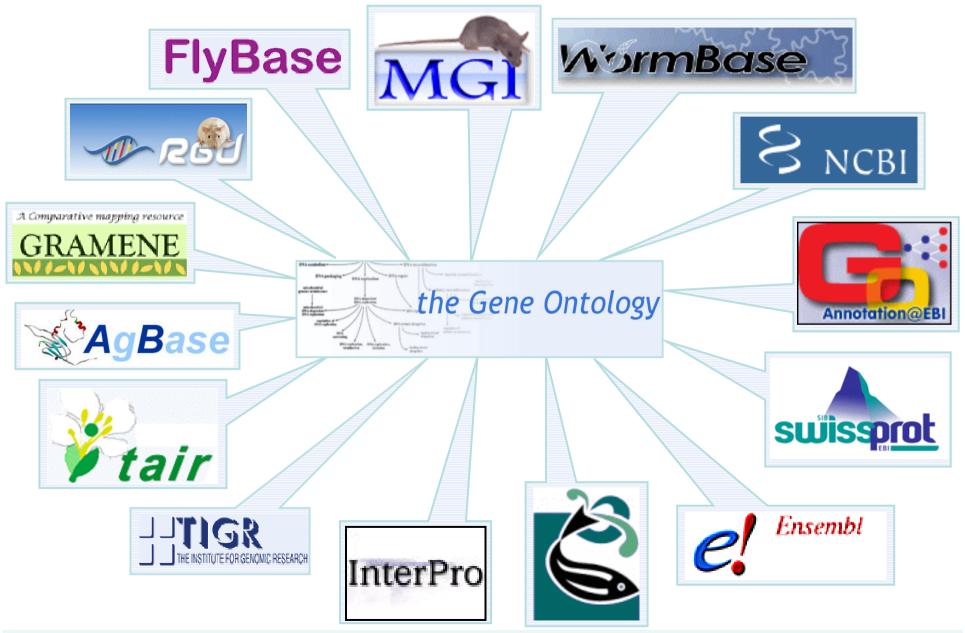
IZBI Interdisciplinary Centre for Bioinformatics http://www.izbi.uni-leipzig.de

Database Group Leipzig http://dbs.uni-leipzig.de


Leipzig, 25th November 2009

Functional Annotations in Life Sciences

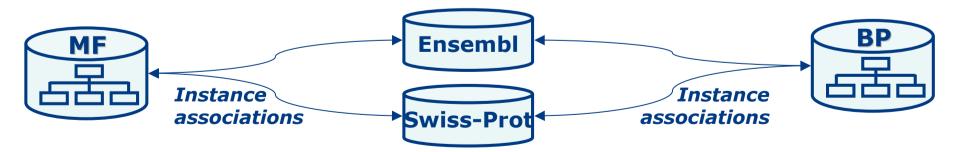
 Increasing use of ontologies in life sciences, mainly ontology-based annotations


Functional annotations

Semantic and uniform descriptions of properties of biological objects, e.g., a protein is involved in a specific biological process

Quality of Functional Annotations in Life Science Data Sources

Usage of Gene Ontology (GO)

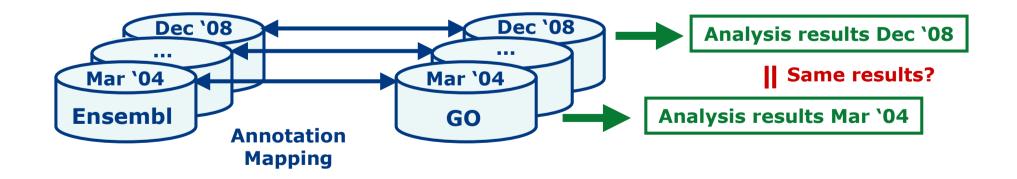


Application of GO Annotations

- Functional profiling of large data sets (e.g., gene expression microarrays) to find significantly overrepresented GO terms
 - > FUNC*, Term Enrichment Tool (Amigo), ...

GO Term	Aspect	P-value	Sample frequency	Background frequency	Genes
GO:0002376 immune system process	P	1.02e-07	10/14 (71.4%)		Q9NZ08 P42081 015533 Q6P179 P19838 Q9NZQ7 P33681 Q03519
GO:0048002 antigen processing and presentation of peptide antigen	Ρ	3.26e-07			Q9NZ08 015533 Q6P179 Q03519 /cgi-bin/amigo/term_enrichment1

Instanced-based ontology matching

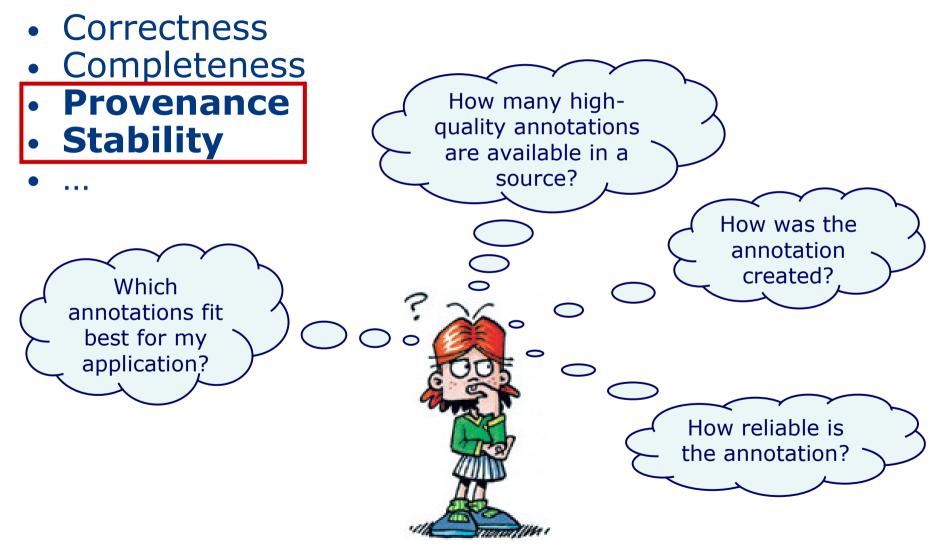

* Prüfer, K. et al: FUNC: a package for detecting significant associations between gene sets and ontological annotations, BMC Bioinformatics, 2007

Motivation

- Computed results of such applications depend on the **quality** of the underlying **functional annotations** → (Garbage In/Garbage Out principle)
- Domain knowledge changes

- New findings, addition and revision of knowledge
- Result: modification of data sources (evolution)

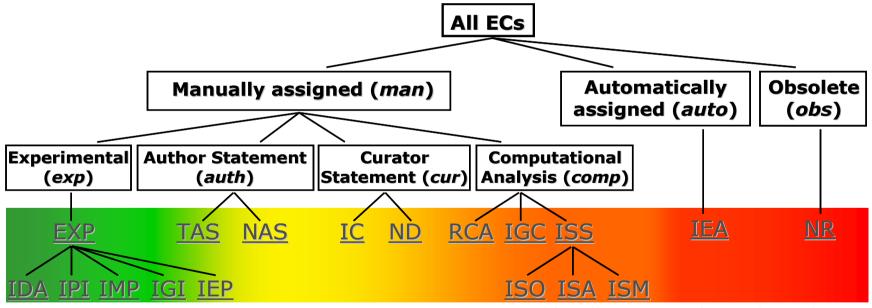
Example – Changing Annotations


		Provenance				
Ensembl ID	Gene Ontology Concept ID	V ₄₈	V ₄₉	V ₅₀	V ₅₁	V ₅₂
ENSP00000344151	GO:0015808 (L-alanine transport)					
ENSP00000230480	GO:0005615 (extracellular space)					
ENSP00000352999	GO:0006915 (apoptosis)		-	-	1	
experimentally verified author statement automatically annotated						

> Evolution of annotations

- varying provenance
- absence/presence of annotations
- Major changes in annotation mappings may substantially influence or even invalidate earlier findings

Quality of Annotations


Quality criteria

Provenance of Functional Annotations

- Annotations can be generated by different creation methods → have different provenance
- Evidence Code (EC) * = indicates how the annotation to a particular term has been derived,

e.g., by which type of experiment or analysis

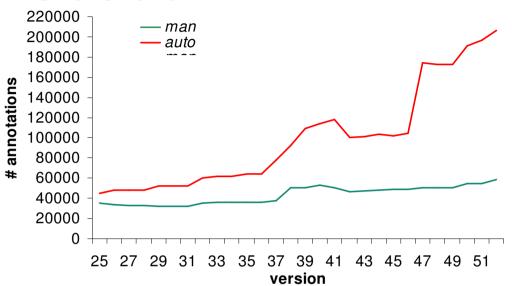
* http://www.geneontology.org/GO.evidence

 Gives information how biologically founded or reliable an annotation is

First Step: Comparative Analysis

- Analysis of annotation evolution *
 - Trend chart
 - Provenance Changes

0 ...


- Two large life science sources (Mar 2004 Dec 2008)
- GO Annotations for human proteins

* Groß, A.; Hartung, M.; Kirsten, T.; Rahm, E.: Estimating the Quality of Ontology-based Annotations by Considering Evolutionary Changes, Proc. DILS, 2009

Analysis Results

Trend chart

- Manually assigned vs. automatically assigned
- 78% (22%) of 265,000 auto (man) assigned annotations
- growth_{auto} 4.6
- v₄₀ v₄₂ considerable number of deletions

Provenance changes

Annotations that changed **from** one provenance type **to** another

from / to	ехр	auth	cur	сотр	auto	obs	Sum	
ехр	896	413	11	1,259	2,966	3	5,548	13%
auth	1592	798	73	1,038	11,901	23	15,425	35%
cur	21	27	0	16	182	0	246	1%
сотр	1,280	1,206	26	0	3,101	0	5,613	13%
auto	3,311	10,169	228	2,329	0	116	16,153	37%
obs	79	391	9	12	725	0	1,216	3%
Sum	7,179	13,004	347	4,654	18,875	142	44,201	
	16%	29%	1%	11%	43%	0%		

- EC changes predominantly between auth and auto (in both directions)
- No obvious trend for the rest
- Due to vast amount of auto annotations

Second Step: Assessing Annotation Quality

Idea: Assessing the quality of annotations based on their <u>history</u> and occurred <u>changes</u> (stability) **Aim:** Filtering annotations w.r.t. different quality criteria

Stability Measures

Existence stability a_{age} age of annotation (in #versions) $a_{present}$ presence within a_{age}

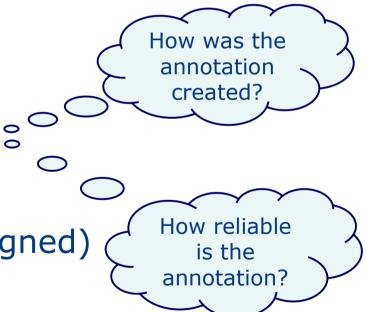
 $stab_{exis}(a) = a_{present} / a_{age}$

Quality stability

a_{changed} # provenance changes a_{unchanged} # unchanged provenance

$$stab_{qual}(a) = a_{unchanged} / (a_{unchanged} + a_{changed})$$

V ₀	V 1	V ₂	V 3	V 4	a _{age}	stab _{exis}	stab _{qual}	stab comb	=min (stab _{exis} , stab _{qual})
q ₁	q ₁	q ₁	q 1	(i ₁ ,c ₁ ,q ₁)	5	5/5=1	4/(4+0)=1	1	
q 1			q ₁	(i ₂ ,c ₂ ,q ₁)	5	3/5=0.6	2/(2+0)=1	0.6	
\checkmark	q ₂	q 2	q ₁	(i ₃ ,c ₃ ,q ₃)	4	4/4=1	1/(1+2)=0.33	0.33	


Ensembl Annotations Classified by Stability

		stab _{exis}	stab _{qual}	stab _{comb}				
	ovo	21,659	20,486	20,122				
	ехр	650	1,880	2,187				
	auth	29,157	26,862	26,067	stable stab ≥ 0.9			
	aulii	1,033 3,116	4,123	unstable stab < 0.9				
	cur	462	399	393				
	Cui	15	78	84				
	comp	3,127	2,409	2,317				
	сотр	205	1,078	1,015				
	auto	183,127	201,968	179,490				
	auto	23,210	4,369	26,847				
	0.1100	237,532	252,124	228,389				
	sum	25,113	10,521	34,256				
I		\wedge		\square				
					130/ upstablo			
	High s			13% unstable, mainly <i>auto</i> (80%)				
	of tem	poral						
	abse	nce		and	some <i>auth</i> (12%)			

Use – Putting different criteria together

Protein ID	GO Concept ID	Provenance	Age in Years	\boldsymbol{stab}_{exis}	stab _{qual}	stab _{comb}
ENSP00000344151	GO:0015808 (L-alanine transport)	exp	3	1	1	1
ENSP00000230480	GO:0005615 (extracellular space)	auto	2.5	1	0.462	0.462
ENSP00000352999	GO:0006915 (apoptosis)	exp	3	0.824	1	0.824

- Different criteria to assess the quality of annotations w.r.t. provenance, stability, ..
- Users/Applications can filter
 less/more reliable annotations
 (e.g. stable, old, manually assigned)

Use – Putting different criteria together

Stable, old, manually assigned:
 In Ensembl about ○
 30,000 (11%)

Which annotations fit

best for my application?

- Criteria selection is highly dependent on application!
- Annotation instability is not necessarily a negative aspect
- Alternative interpretation

novel or unstable annotations (in Ensembl 96,000; 37%) are of special research interest / significant new biological findings

Conclusion and Future Work

- Generic approach to estimate the quality of ontologybased, functional annotations by taking their evolution history and provenance into account
- Evaluation in two large life science sources
 - Instabilities for *auth* or *auto* annotations
- Different quality criteria: provenance, stability, age to classify annotations
 - > Users/applications can filter annotations
- Investigate other quality aspects
- Explore the impact of unstable annotations on dependent applications (e.g., FUNC, instancebased ontology matching)

