
Distributed Holistic Clustering on Linked Data

Markus Nentwig(B), Anika Groß, Maximilian Möller, and Erhard Rahm

Database Group, University of Leipzig, Leipzig, Germany
{nentwig,gross,rahm}@informatik.uni-leipzig.de,

m.moeller@studserv.uni-leipzig.de

Abstract. Link discovery is an active field of research to support data
integration in the Web of Data. Due to the huge size and number of
available data sources, efficient and effective link discovery is a very chal-
lenging task. Common pairwise link discovery approaches do not scale
to many sources with very large entity sets. We propose a distributed
holistic approach to link many data sources based on a clustering of enti-
ties that represent the same real-world object. Our approach provides a
compact and fused representation of entities, and can identify errors in
existing links as well as many new links. We support distributed exe-
cution, show scalability for large real-world data sets and evaluate our
methods with respect to effectiveness and efficiency for two domains.

1 Introduction

Linking entities from various sources and domains is one of the crucial steps to
support data integration in the Web of Data. A manual generation of links is very
time-consuming and nearly infeasible for the large number of existing entities and
data sources. As a consequence, there has been much research effort to develop
link discovery (LD) frameworks [10] for automatic link generation. Platforms
like datahub.io and sameas.org or repositories such as LinkLion [11] collect
and provide large sets of links between numerous different knowledge sources.
They can be reused to avoid an expensive re-determination of the links. It is
particularly complex to ensure high link quality, i.e., the generation of correct
and complete link sets. Existing link repositories cover only a small number of
inter-source mappings and automatically generated links can be erroneous in
many cases [2]. Despite the huge number of sources to be linked, most LD tools
focus on a pairwise (binary) linking of sources. However, LD approaches need to
scale for n-ary linking tasks as well as for an increasing number of entities and
sources that are added to the Web of Data over time [13].

To address these shortcomings we recently proposed an approach to cluster
linked data entities from multiple data sources into a holistic representation with
unified properties [8]. The method combines entities that refer to the same real
world object in one compact cluster instead of maintaining a high number of
binary links for k sources. The approach is based on existing owl:sameAs links
and can deal with entities of different semantic types as they occur in many
sources (e. g., for geographical datasets, countries, cities, lakes). Input links are
c© Springer International Publishing AG 2017
H. Panetto et al. (Eds.): OTM 2017 Conferences, Part II, LNCS 10574, pp. 371–382, 2017.
https://doi.org/10.1007/978-3-319-69459-7_25

372 M. Nentwig et al.

checked for consistency and new links (e. g., for previously unconnected sources)
are identified.

Considering the huge size and number of sources to be linked, scalability
becomes a major issue. Linking and clustering approaches usually comprise com-
plex operations such as similarity computations to identify similar entities or
clusters. These complex work steps can often be parallelized in a distributed
environment in order to reduce execution time significantly. Big Data frameworks
like Apache Spark or Apache Flink [1] provide execution engines to process very
large datasets in a distributed environment. With regard to the ever increasing
amount of data that needs to be linked and integrated in typical big data process-
ing workflows, it is essential to develop scalable solutions for link discovery and
holistic entity clustering.

Herein we study a distributed holistic clustering approach. In contrast to the
previous work, we support blocking strategies to reduce unnecessary comparisons
and present a comprehensive evaluation for quality and efficiency on real-world
data for different domains. An extended version with more details on Flink
implementation and creation of a reference dataset can be found in [9]. We make
the following contributions:

– We present a distributed holistic clustering approach for linked data to enable
an effective and efficient clustering of large entity sets from many data sources.

– We evaluate the efficiency and effectiveness of the distributed holistic clus-
tering for very large datasets with millions of entities from two domains.

We present the implementation of the distributed holistic clustering in Sect. 2.
Then, we show evaluation results in Sect. 3. Finally, we discuss related work in
Sect. 4 and conclude in Sect. 5.

2 Distributed Holistic Clustering Approach

In this section we outline the workflow and implementation for our distributed
holistic clustering approach based on the big data stream and batch processing
system Apache Flink [1]. Starting with a introduction to Apache Flink (Sect. 2.1),
we present the transformation and adaptation of the holistic clustering approach
towards a distributed processing workflow (Sect. 2.2).

2.1 Apache Flink and Gelly API

Apache Flink’s batch processing provides the DataSet API and well-known
dataset transformations like filter, join, union, group-by or aggregations (rela-
tional databases) and map, flat-map and reduce (MapReduce paradigm). Special
in-memory, distributed data structures called DataSets store data within Flink
programs. DataSets can be manipulated based on so called transformations that
return a new DataSet. Some transformation operations make use of user-defined
functions (UDFs) and allow for customized definitions how DataSet values need
to be changed. We make use of the graph processing library (Gelly) in our

Distributed Holistic Clustering on Linked Data 373

Fig. 1. Example clustering workflow.

holistic clustering workflow. In particular, we employ Gelly graphs containing a
DataSet<Vertex<K, VV>> vertices and a DataSet<Edge<K, EV>> edges.

The complex data types Vertex and Edge are inherited from the Flink Tuple
classes Tuple2<K,VV> (type K as vertex id, VV as vertex value), Tuple3<K,K,EV>
(source vertex id, target vertex id (each type K) and EV as edge value), respec-
tively. Operators like join, filter or group-by rely on tuple positions (starting
from 0), e. g.,

vertices.join(edges).where(0).equalTo(1)

.with((vertex, edge) -> new Tuple1<>(edge.getSimilarity))

.filter(tuple -> tuple.f0 >= 0.9);

will join all edges with the vertices where the vertex id (position 0 in
vertices) equals the target id of the edge (position 1 in edges) and returns
the similarity value if the accompanied filter function is evaluated and returns
true.

Besides the used graph data model we benefit from Flink’s and Gelly’s
abstract graph processing operators like graph neighborhood aggregations or
abstracted models for iterative computations. In particular, we will make use
of the Flink delta iteration in different variations as discussed in the following
sections.

2.2 Distributed Holistic Clustering

In this section, we will discuss the transformation and adaptation of the holistic
clustering workflow towards a distributed processing workflow in Apache Flink.
From a high-level perspective, we read input entities and links into a Gelly graph
G with vertices V and edges E and apply a set of transformation operators to
generate entity clusters C. We illustrate the workflow steps using the running
example in Fig. 1. There are six input edges E having optional similarity values
and seven input vertices V further described by a label (l1, l2, . . .), the originating
data source S and colored dependent on their semantic type (t1, t2 or no type).

374 M. Nentwig et al.

Fig. 2. Sub-workflows with operators for type-based grouping (a) and similarity-based
refinement (b).

Preprocessing. During preprocessing we apply several user-defined functions
on the input graph, e. g., to harmonize semantic type information, remove incon-
sistent edges and vertices and normalize the label property value. First, we com-
pute similarities only for given input edges based on vertex property values. For
each vertex, we carry out a consistency validation using grouping on adjacent
vertices and associated edges, and remove neighbors with equal data sources
(details in [8]). We omit the preprocessing in the example (Fig. 1) and directly
start with the preprocessed input graph G.

Initial Clustering. To determine initial clusters, we determine the connected
components (CC) within G and assign a cluster id to each vertex. In the exam-
ple, vertices 1-4 obtain cluster ids cid1 and vertices 5-7 cid5. Intra-cluster edges
are then generated within each cluster accompanied by a similarity computa-
tion based on properties such as a linguistic similarity on labels or normalized
geographical distance.

Cluster Decomposition. Type-based grouping is the first part of the decom-
position to split clusters into sub-components dependent on the compatibility
of semantic types. Figure 2a shows the sequence of applied transformations and
short descriptions. Within clusters, a ReduceGroup function assigns new clus-
ter ids based on semantic types, e. g., in the example vertex 3 and 4 are sep-
arated from vertex 2. Vertices without type (like vertex 1) require a special
handling. We apply GroupReduceOnNeighbors (a Gelly CoGroup function to
handle neighboring vertices and edges) to produce tuples for vertices with miss-
ing semantic type, e. g., vertex 1 creates a (id,sim,type,cid) for each outgoing
edge ((1, 2), (1, 3), (1, 4)), namely (1, 1.0, t 1,cid1) for edge (1, 2) and (1,
0.8, t 2, cid2) for edge (1, 3) and (1, 4). Grouping on the vertex id executes
an aggregation function for each group to return the tuple with the highest simi-
larity per vertex, which is (1, 1.0, t 1, cid1) for vertex 1, processed vertices
update their cluster id accordingly (e. g., vertex 1 → cid1). The result of the
type-based grouping is a set of clusters with intra-cluster edges.

Similarity-based Refinement. We further decompose clusters by removing non-
similar entities from their cluster. We use a Gelly vertex-centric iteration using

Distributed Holistic Clustering on Linked Data 375

Fig. 3. Sequence of transformations for the cluster merge using Flink DeltaIteration

the core idea to iterate between a custom MessagingFunction and a VertexUp-
dateFunction (see Fig. 2b for details). In the first round, all vertices are active
and send messages to all their neighbors. Messages are tuples containing the
originating id, the edge similarity and an average edge similarity asim over all
incoming messages (0 in the first iteration). Starting with the second iteration,
we illustrate the sent messages for vertex 7 in cluster cid5 in our example: vertex
5 sends (5, 0.4, 0.65) to 7, vertex 6 sends (6, 0.3, 0.6) to 7 and vertex 7
sends messages to 5 and 6, resulting in asim = (0.4+0.3)/2 = 0.35 for vertex 7.
Now in each cluster the vertex with the lowest asim will be deactivated (and is
therefore excluded from the cluster) given that this asim is below a certain sim-
ilarity threshold. In Fig. 1, vertex 7 will be deactivated and isolated into cluster
cid7. Vertices send only messages if they are updated and deactivated vertices
never send messages again, therefore, iteration termination is guaranteed.

Finally, we create a unified Cluster Representative for each cluster based
on contained entities. Aggregation of property values is used for covered data
sources and semantic types as well as selection of best label or geographic coor-
dinates, see Fig. 1.

Cluster Merge. The main operators for the merge phase are sketched in Fig. 3.
The implemented DeltaIterate function iteratively combines highly similar clus-
ters into larger ones. To avoid the quadratic complexity comparing all clusters,
we employ blocking strategies to avoid unnecessary comparisons, e. g., standard
blocking on properties like label, not comparing representatives with incompat-
ible semantic type and check for already covered data sources. In our example
in Fig. 1 three blocks are created by applying blocking strategies. Only rcid1 and
rcid5 need to be compared, such that a triplet (rcid1, 0.9, rcid5) is created as a
merge candidate.

The delta iteration starts with an initial solution set containing the previously
determined clusters and an initial workset (merge candidates) as seen in Fig. 3.
Each iteration updates the workset applying a custom step function to generate
changes for the solution set. In detail, for each block the merge candidate with
the highest similarity is selected using a custom Reduce function. For our running
example, (rcid1, 0.9, rcid5) is the best candidate and is merged using a custom
FlatMap function. The new cluster rcid1 contains combined values for properties

376 M. Nentwig et al.

S, T and l (see Fig. 1). This will directly affect the cluster representatives in
the solution set, and the already merged cluster rcid5 will be deactivated in the
solution set. Merge candidates in the workset are adapted based on changed
clusters within the iteration step (see Fig. 3 solution set). Again, triplets are
discarded if the data sources for the participating clusters overlap or exceed the
maximum possible number of covered sources.

The delta iteration ends when the workset is empty (true for our running
example after the first iteration). Note that parts of the dataset will converge
faster to a solution, when clusters can not be merged anymore. These parts will
not be recomputed in following iterations, such that only smaller parts of the
data will be handled.

3 Evaluation

In the following we evaluate our distributed holistic clustering approach w.r.t.
effectiveness and efficiency for datasets from the geographic and music domains.
We first describe details of the used datasets (Sect. 3.1). We then evaluate the
effectiveness and efficiency of our approach (Sect. 3.2).

3.1 Datasets

We use five datasets of different sources from the music and geographic domains
(Table 1). Datasets DS1 and DS3 are used to evaluate the quality of entity clus-
ters generated by the distributed holistic clustering while DS2, DS4 and DS5 are
used to analyze the efficiency and scalability (see Sect. 3.2).

We use two datasets (DS1, DS2) from the Geographic Domain, covering enti-
ties from the data sources DBpedia, GeoNames, NY Times, Freebase for DS1
and additionally LinkedGeoData for DS2. Entities for both datasets have been
enriched with properties like entity label, semantic type and geographic coor-
dinates by using SPARQL endpoints or REST APIs. DS1 is based on a subset
of existing links provided by the OAEI 2011 Instance Matching Benchmark1.
For DS1, clusters and links have been manually checked and create a novel ref-
erence dataset for multi-source clustering [9]. We provide this dataset covering

Table 1. Overview of evaluation datasets. Number of resulting clusters and deduced
correct links are given for reference datasets.

Domain Entity properties Dataset #entities #sources #correct links #clusters

Geography label, semantic type DS1 3,054 4 4,391 820

longitude, latitude DS2 1,537,243 5 - -

Music artist, title, album DS3 19,375 5 16,250 10,000

year, length, language DS4 1,937,500 5 1,624,503 1,000,000

number DS5 19,375,000 5 16,242,849 10,000,000

1 http://oaei.ontologymatching.org/2011/instance/.

http://oaei.ontologymatching.org/2011/instance/

Distributed Holistic Clustering on Linked Data 377

Fig. 4. Dataset structure for DS1 (a), DS2 (b) and DS3 (c) with number of entities and
links.

the input dataset and the perfect cluster result as JSON files2. Dataset DS2
(Fig. 4b) originates from the link repository LinkLion [11]. We reuse about 1
Mio existing owl:sameAs links from LinkLion as input for the holistic cluster-
ing. However, there is no reference dataset available to evaluate the quality of
created clusters for dataset DS2. We use DS2 to evaluate the scalability of our
approach for very large entity sets.

For the Music Domain, we use the publicly available Musicbrainz dataset
covering artificially adapted entities to represent entities from five different data
sources [4]. Every entry in the input dataset represents an audio recording and
has properties like title, artist, album, year, language and length. The property
values have been partially modified and omitted to generate a certain degree of
unclean data and duplicate entities that need to be identified. Beside a set of
artificially created duplicates, each dataset covers cluster ids from which links
between entities, that refer to the same object, can be easily derived. DS3 will be
used for quality evaluation, while DS4 and DS5 are used to analyze the scalability
of the distributed holistic clustering.

3.2 Experimental Results

We now present evaluation results w.r.t. the quality of the determined clusters
as well as the scalability of the distributed holistic clustering for the five datasets
DS1-DS5.

Setup and Configurations. The experiments are carried out on a cluster
with 16 workers (Intel Xeon E5-2430 6x 2.5GHz, 48GB RAM) operating on
OpenSUSE 13.2 using Hadoop 2.6.0 and Flink 1.1.2. All experiments are carried
out three times to determine the average execution time.

We created input links for DS1 using three different configurations (confs) -
computing similarities based on JaroWinkler on the entity label; confs 2 and 3
additionally compute a normalized geographic distance similarity below a max-
imum distance of 1358 km. Conf 1 applies a minimal similarity threshold of 0.9
for labels while confs 2 and 3 apply threshold 0.85 and 0.9 for the average label
and geographic similarity, respectively.

2 https://dbs.uni-leipzig.de/research/projects/linkdiscovery.

https://dbs.uni-leipzig.de/research/projects/linkdiscovery

378 M. Nentwig et al.

Table 2. Evaluation of cluster quality for geography dataset DS1 w.r.t. precision (P),
recall (R) and F-measure (F1).

Config 1 Config 2 Config 3

P R F1 P R F1 P R F1

Input links 0.933 0.806 0.865 0.964 0.938 0.951 0.981 0.799 0.881

Best (star1, star2) 0.863 0.844 0.853 0.963 0.941 0.952 0.951 0.838 0.891

Holistic 0.903 0.824 0.862 0.913 0.919 0.916 0.968 0.836 0.897

For the music dataset DS3 we created input links using a soft TF/IDF imple-
mentation weighted on title (0.6), artist (0.3) and album (0.1) with a threshold
of 0.35. DS4 and DS5 are used to show scalability, we simply create edges based
on the cluster id from the perfect result by linking the first entity of each cluster
with all its neighbors.

Quality. We analyze the achieved cluster quality for all datasets based on pre-
cision, recall and F-measure. The input links DS1 (see Fig. 4 a) are manually
curated, therefore, they achieve a precision of 100%. However, missing links
between lead to a recall of only 50%, resp. F-measure of 66.7%. With the holis-
tic clustering approach, we achieve very good results w.r.t. recall (97.1%) while
preserving a good precision (99.8%) resulting in the F-measure of 98.5%. This
shows that we produce high-quality clusters based on existing input links thereby
finding many new links.

However, as input mappings are not perfect in real-world situations, we used
automatically generated input links ations (config 1-3) as described above. To
evaluate the cluster quality, we further compare our results with the best con-
figurations recently published results in [14]. Star clustering creates overlapping
clusters, thus clusters may contain duplicates. Besides, star clustering does not
create a compact cluster representation. Table 2 shows results w.r.t. the cluster
quality for the computed input links, the best result of [14] and our approach.
The distributed holistic clustering nearly retains the input link quality for con-
fig 1, while best(star1, star2) achieves slightly worst results. For config 2, the
star2 implementation achieves a slightly better F-measure compared to the input
mapping. For config 3 the holistic clustering improves the quality of the input
mapping by 1.6% w.r.t. F-measure.

For the music domain, we evaluate the cluster quality for DS3 using a set of
computed input links (see setup in Sect. 3.2). Overall, the quality of the input
links is lower than for DS1. Due to strongly corrupted entities and more proper-
ties, DS3 is more difficult to handle. Applying the holistic clustering, we identify
a quality improvement for both precision (89.0%) and recall (86.1%), resulting
in a significant increase of F-measure by approx. 7% to 87.6% showing that our
approach is able to handle such unclean data.

Distributed Holistic Clustering on Linked Data 379

#workers pre dec merge total

DS2 1 312 668 351 1331
2 164 367 268 799
4 79 231 207 518
8 45 130 186 361
16 23 42 162 227

DS4 1 423 419 608 1450
2 224 236 417 876
4 121 123 301 545
8 62 73 238 372
16 40 35 237 312

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

Linear
pre (preprocessing)
dec (decomposition)
merge
total

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

Linear
preprocessing
decomposition
merge
total

Fig. 5. DS2 and DS4 execution times (left) in seconds and speedup (DS2 top right,
DS4 bottom right) for the single workflow phases and total workflow.

Overall, the holistic approach achieves competitive results although the DS1
dataset facilitates achieving relatively good input mappings making it difficult
for any clustering approach to find additional or incorrect links.

Scalability. To evaluate the distributed holistic clustering w.r.t. efficiency and
scalability, we determine the absolute execution times as well as the speedup
for the very large geographic (DS2) and music datasets (DS4, DS5). To show
scalability, we vary the number of Flink workers and use a parallelism equal to
the number of workers.

Figure 5 show the achieved execution times for DS2 and DS4 for different
phases of the clustering workflow and the overall workflow execution time. For
each phase, an increased number of workers leads to improved execution times.
The best improvement can be achieved for the preprocessing (pre) and decom-
position (dec). The merge phase is by far more complex. While preprocessing
and decomposition operate within connected components and clusters, the merge
phase attempts to combine similar clusters based on the assignment in the block-
ing step and therefore can suffer from data skew problems for some blocks. These
effects become also clear in Fig. 5 showing the speedup results compared to the
linear optimum. Preprocessing and decomposition achieve nearly linear speedup,
while the merge phase shows decreased speedup values. In total, we achieve a
good speedup of 5.86 for the large geographic dataset DS2 and 4.65 for the large
music dataset DS4. For the largest dataset DS5, we could determine results for
two configurations: 8 workers could finish the complex task in 43,589 seconds,
16 workers finished after 24,722 seconds (reduced by factor ≈1.8).

Overall, the distributed holistic clustering achieves good execution times and
moderate scalability results for very large entity sets. The approach is scalable
for different data sources and employs a multi-source clustering instead of basic
binary linking of two sources. The distributed implementation further allows to

380 M. Nentwig et al.

scale for a growing number of entities and data sources and is very useful for
complex data integration scenarios in big data processing workflows.

4 Related Work

Link discovery (LD) has been widely investigated and there are many approaches
and prototypes available as surveyed in [10]. Typical LD approaches apply binary
linking methods for matching two data sources but lack efficient and effective
methods for integrating entities from k different data sources to provide a holistic
view for linked data. Some approaches enable distributed link discovery or for
matching two data sources, e. g., Silk [6] and Limes [5] realized LD approaches
based on MapReduce before distributed data processing frameworks like Spark
or Flink became state of the art, therefore they are suffering from limitations
of MapReduce like repeated data materialization and lack of iterations. They
further focus on pairwise matching and do not support reuse of existing links
sets.

While LD is driven by pairwise linking of data sources, support for multiple
data sources can be found in related research areas. In [3] ontology concepts
from multiple data sources are clustered based on topic forests for extracted
keywords from concepts and their descriptions to determine matching concepts
within groups of similar topics. In [7] a maximum-weighted graph matching and
structural similarity computations are applied to concepts of multiple ontolo-
gies to find high quality alignments. However, these holistic ontology matching
approaches do not focus on clustering and have limitations w.r.t. scalability for
LD.

There are few LD approaches for linked data on multiple sources. Thalham-
mer et al. [15] present a pipeline for web data fusion using multiple data sources
applying hierarchical clustering. The unsupervised LD approach Colibri [12] con-
siders error detection for LD in multiple knowledge bases based on the transi-
tivity, while clustering of entities is not the main focus. Both approaches do not
realize distributed execution and have not been evaluated w.r.t. scalability. The
work in [14] considers the implementation of existing clustering algorithms on
top of Apache Flink for entity resolution of several data sources. The approach
does not handle incorrect links or semantic type information and does not create
a compact cluster representation.

5 Conclusion

We presented a distributed holistic clustering workflow for linked data using
the distributed data processing framework Apache Flink using dataset transfor-
mations and user-specific Flink operators. Our approach is based on the reuse
of existing links and is able to handle entities from various data sources. We
presented comprehensive evaluation results for datasets from two domains with
up to 20 million entities showing that the proposed approach can achieve a very
high cluster quality. In particular, we were able to find many new correct links

Distributed Holistic Clustering on Linked Data 381

and could remove wrong links. The distributed execution in a parallel cluster
environment resulted in very good execution times for the considered dataset
sizes and good overall scalability results.

For future work, we plan to further improve the scalability of our approach,
e. g., by realizing sophisticated blocking and load balancing methods for the
complex cluster merge phase. We further plan the development and combination
with an incremental clustering to support the addition of new entities and data
sources, particularly to address the ongoing growth of the Web of Data.

Acknowledgments. This research was supported by the Deutsche Forschungsgemein-
schaft (DFG) grant number RA 497/19-2.

References

1. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015)

2. Faria, D., Jiménez-Ruiz, E., Pesquita, C., Santos, E., Couto, F.M.: Towards anno-
tating potential incoherences in bioportal mappings. In: ISWC, pp. 17–32 (2014).
doi:10.1007/978-3-319-11915-1 2

3. Grütze, T., Böhm, C., Naumann, F.: Holistic and scalable ontology alignment for
linked open data. In: WWW2012 Workshop on Linked Data on the Web (2012)

4. Hildebrandt, K., Panse, F., Wilcke, N., Ritter, N.: Large-Scale data pollution with
apache spark. IEEE Trans. Big Data PP(99), 1–1 (2017). doi:10.1109/TBDATA.
2016.2637378

5. Hillner, S., Ngonga Ngomo, A.C.: Parallelizing LIMES for large-scale link discov-
ery. In: I-Semantics 2011, pp. 9–16. ACM, New York (2011). doi:10.1145/2063518.
2063520

6. Isele, R., Jentzsch, A., Bizer, C.: Silk Server - Adding missing Links while consum-
ing Linked Data. In: Proceedings of the First International Workshop on Consum-
ing Linked Data, CEUR Workshop Proceedings, vol. 665 (2010). CEUR-WS.org

7. Megdiche, I., Teste, O., Trojahn, C.: An extensible linear approach for holistic
ontology matching. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M.,
Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 393–410.
Springer, Cham (2016). doi:10.1007/978-3-319-46523-4 24

8. Nentwig, M., Groß, A., Rahm, E.: Holistic entity clustering for linked data. In:
Proceedings ICDM Workshops, pp. 194–201. IEEE (2016). doi:10.1109/ICDMW.
2016.0035

9. Nentwig, M., Groß, A., Möller, M., Rahm, E.: Distributed holistic clustering on
linked data. CoRR abs/1708.09299 (2017)

10. Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A survey of current link
discovery frameworks. Semant Web 8(3), 419–436 (2017). doi:10.3233/SW-150210

11. Nentwig, M., Soru, T., Ngonga Ngomo, A.-C., Rahm, E.: LinkLion: a link repos-
itory for the web of data. In: Presutti, V., Blomqvist, E., Troncy, R., Sack,
H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 439–443.
Springer, Cham (2014). doi:10.1007/978-3-319-11955-7 63

http://dx.doi.org/10.1007/978-3-319-11915-1_2
http://dx.doi.org/10.1109/TBDATA.2016.2637378
http://dx.doi.org/10.1109/TBDATA.2016.2637378
http://dx.doi.org/10.1145/2063518.2063520
http://dx.doi.org/10.1145/2063518.2063520
http://CEUR-WS.org
http://dx.doi.org/10.1007/978-3-319-46523-4_24
http://dx.doi.org/10.1109/ICDMW.2016.0035
http://dx.doi.org/10.1109/ICDMW.2016.0035
http://dx.doi.org/10.3233/SW-150210
http://dx.doi.org/10.1007/978-3-319-11955-7_63

382 M. Nentwig et al.

12. Ngonga Ngomo, A.-C., Sherif, M.A., Lyko, K.: Unsupervised link discovery through
knowledge base repair. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M.,
Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 380–394. Springer,
Cham (2014). doi:10.1007/978-3-319-07443-6 26

13. Rahm, E.: The case for holistic data integration. In: Pokorný, J., Ivanović, M.,
Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 11–27. Springer,
Cham (2016). doi:10.1007/978-3-319-44039-2 2

14. Saeedi, A., Peukert, E., Rahm, E.: Comparative evaluation of distributed clus-
tering schemes for multi-source entity resolution. In: Kirikova, M., Nørv̊ag, K.,
Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 278–293. Springer,
Cham (2017). doi:10.1007/978-3-319-66917-5 19

15. Thalhammer, A., Thoma, S., Harth, A., Studer, R.: Entity-centric data fusion on
the web. In: Proceedings of the 28th ACM Conference on Hypertext and Social
Media. ACM (2017). doi:10.1145/3078714.3078717

http://dx.doi.org/10.1007/978-3-319-07443-6_26
http://dx.doi.org/10.1007/978-3-319-44039-2_2
http://dx.doi.org/10.1007/978-3-319-66917-5_19
http://dx.doi.org/10.1145/3078714.3078717

	Distributed Holistic Clustering on Linked Data
	1 Introduction
	2 Distributed Holistic Clustering Approach
	2.1 Apache Flink and Gelly API
	2.2 Distributed Holistic Clustering

	3 Evaluation
	3.1 Datasets
	3.2 Experimental Results

	4 Related Work
	5 Conclusion
	References

