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= Beschaftigung mit einem praxis- und wissenschaftlich
relevanten Thema

» kann Grundlage fur Abschlussarbeit oder SHK-Tatigkeit
sein

= Erarbeitung + Durchflihrung eines Vortrags unter
Verwendung wissenschaftlicher (englischer) Literatur

= vorgegebene Literaturempfehlungen kénnen erganzt
werden (zB Recherche in Google Scholar)

= Diskussion

= schriftliche Ausarbeitung zum Thema

| = Hilfe und Feedback durch zugeteilte(n) Betreuer/in




UNIVERSITAT
scabsalll |1 onuL ZUORDNUNG LEIPZIG

= Seminar ist beschrankt auf Master Data Science

= Teil des Pflichtmoduls Skalierbare Datenbanktechnologien 1

= daneben noch 2 Vorlesungen aus IDBS1, Cloud and Big
Data Management, Data Mining

= Erh6hung des Teilnehmerlimits von 20 auf 30

[

UNIVERSITAT
ScaDSﬂ BEWERTUNG/ MODULTEILPRUFUNG LEIPZIG

= selbstandiger Vortrag mit Diskussion (ca. 22+8=30 Minuten)
= Abnahme der Folien durch Betreuer/in
» Folien: Englisch, Vortrag: Deutsch oder Englisch
= schriftliche Ausarbeitung (15-20 Seiten)
= Abnahme der Ausarbeitung durch Betreuer/in
= Abgabe-Deadline 31.3.2021
= Voraussetzungen fur erfolgreiche Seminarleistung
= aktive Teilnahme an allen Vortragsterminen
= beide Teilleistungen werden erbracht (Vortrag/Ausarbeitung)
= Bewertung: 50% Vortrag/Diskussion, 50% Ausarbeitung
= Seminar-Workload (gemaB Modulbeschreibung) 150 h:

= 30h Prasenzzeit
| = 120 h Selbststudium (Vorbereitung Vortrag, Ausarbeitung)
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* Themenzuordnung

UNIVERSITAT
LEIPZIG

= Praferenzen von 1 bis 5 bis bis 01.11.2020 23:59 Uhr

» Themenzuteilung ab 3.11. im Moodlekurs einsehbar

= Absprache mit Betreuer/in beztiglich Stoffauswahl /

Vortragsgestaltung

= moglichst frihzeitig

= Vortragstermine

= 5 Freitag Nachmittage in Moodle (8.1.,15.1., 22.1., 29.1, 5.2))
= 2 Sitzungen mit je 3 Vortragen ab 13:15 Uhr

44 Themen

(v rse swenior |
Machine Learning in Databases

Data Management in Machine
DB1 Learning:Challenges, Techniques, and Systems  Christen
DB2 DBMS Tuning with ML-Techniques Christen
DB3 Security and Privacy on Blockchain Franke
P1 Membership Inference Attacks Against Machine Schneider
Learning Models
P2 Preventing Membership Inference Attacks with Schneider

PATE

P3 Generating Differential Private Datasets Using  Schneider
GANs

P4 Clustered federated Learning: Model-Agnostic Sehili

Distributed Multitask Optimization under Privacy
Constraints

P5 Practical Secure Aggregation for Privacy-Preserving  Sehili
Machine Learning

P6 ABY3: A Mixed Protocol Framework for Machine Sehili

Learning
P7 Privacy-Preserving Classification on Deep Neural Sehili
Network
P8 Crime Data Analysis Franke
LD1 Human in the Loop for Entity Resolution K6pcke
Cross-Modal Entity Resolution Based on Co-
LD2 Attentional Generative Adversarial Network Kopcke
LD3 Transfer Learning for Entity Resolution Wilke
LD4 Effective and Efficient Data Cleaning for ER Kopcke
LD5 Semi-automated Labelling for ML Wilke
LD6 Machine Learning for Entity Resolution Saeedi

ime Series Analysis

TS1 Time-series forcasting Taschner
TS2 Time Series Classification with ML: HIVE-COTE and InceptionTime  Burghardt

Graphs
G1 Programming Abstractions for Distributed Graph Processing Rost

G2 Graph Stream Summarization Techniques Rost

G3 Dynamic/Stream Graph Neural Network Alkamel

G4 Graph Analytics on GPUs Gomez

G5 The Message Passing Framework for Graph Neural Networks Petit

G6 Graph Neural Networks from a Spectral Perspective Petit

G7 Attention Models in Graphs Petit

G8 Large-Scale Machine Learning on Graphs Schuchart

G9 Bootstrapping Entity Alignment with Knowledge Graph Embeddings Obraczka

G10 Multi-view Knowledge Graph Embedding for Entity Alignment Obraczka

Signal processing ]

SP1 Location Tracking using Mobile Device Sensors Rohde

SP2 Automated Reverse Engineering and Privacy Analysis of Modern Cars ~ Grimmer

SP3 Advances in pedestrian detection systems Taschner

SP4 Person Detection With a Fisheye Camera Burghardt

SP5 Bird Voice Recognition Franke
Marine Bioacoustics | : ORCA-SPOT: An Automatic Killer Whale Sound

SP6 Detection Toolkit Using Deep Learning Lin

Marine Bioacoustics Il : Marine Mammal Species Classification using
SP7 Convolutional Neural Networks and a Novel Acoustic Representation  Lin

PH1 Physics Informed Neural Networks Uhrich
PH2 Deep Neural Networks Motivated by Partial Differential Equations Uhrich
BM1 Deep Learning for Prediction of Survival of Brain Tumors Martin
BM2 Machine Learning for Genomics Data Christen
BM3 Construction of biomedical knowledge graphs Christen
BM4 Electronic Health Record Data Quality Rohde
BMS5 Human Behavioural Analysis For Ambient Assisted Living Burghardt

BM6 Active survival learning in precision medicine Pogany




ScaDSall ML & DATABASES

DRESDEN LEIPZIG

Machine Learning in Databases
Data Management in Machine _I
DB1 Learning:Challenges, Techniques, and Systems Christen
L DB2 DBMS Tuning with ML-Techniques Christen
DB3 Security and Privacy on Blockchain Franke

UNIVERSITAT
ScaDSﬂ DBMS AND ML (CHRISTEN, DB1/DB2) | LEIPZIG

---/—\L Security ) Block Chain

T ]| ACID

S ,
Declarative Query Deep Learning

Language

= bridge between relational DBMS and Machine Learning

= utilize ML techniques for DBMS tuning (index selection, query
reformulation, etc.)

= DB-inspired ML Systems

| = declarative ML-language




ScaDs ]  SECURITY AND PRIVACY UNIVERSITAT
wsoaiaric = ON BLOCKCHAIN (FRANKE, DB3)

= blockchain: list of records (blocks) that are linked using

cryptography
= each block contains a
= cryptographic hash of the previous block Header

= timestamp
= transaction data

= vulnerabilities in blockchain? E
= hashing operations i
= jdentity attacks :-.i

= routing attacks

L [1] Dasgupta, D. et al.: A survey of blockchain from security perspective. J BANK FINANC TECHNOL 3, 1-17, 2019

Output

(1]

scapsall  PRIVACY & SECURITY

DRESDEN LEIPZIG

P1 Membership Inference Attacks Against Machine Schneider
Learning Models

P2 Preventing Membership Inference Attacks with Schneider
PATE |

P3 Generating Differential Private Datasets Using GANsSchneider
P4 Clustered Federated Learning: Model-Agnostic Sehili

Distributed Multitask Optimization under Privacy
Constraints

P5 Practical Secure Aggregation for Privacy-Preserving Sehili
Machine Learning

P6 ABY3: A Mixed Protocol Framework for Machine Sehili
Learning

P7 Privacy-Preserving Classification on Deep Neural  Sehili
Network

P8 Crime Data Analysis Franke




ScaDSEll MEMBERSHIP INFERENCE tJEI?IFgEQSITAT
DRESDEN LEIPZIG (SCH NEIDER’ Pl)

= avoid membership inference attacks (MIA)
= find out whether a specific record/person is in training data used for ML
model

Jane
= MIA

Was Jane part of training data?
Exposes Jane’s HIV status!

Train ML model
recommend treatment
for HIV patient

[

UNIVERSITAT
ScaDSﬂ PATE FRAMEWORK (SCHNEIDER, P2) LEIPZIG

DRESDEN LEIPZIG

= Preventing Membership Inference Attacks with PATE

Jane Smith.,
\ Moisy aggregaticn
|,-' = 1 @ = nswer]
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www.cleverhans.io
PATE Differential Privacy
applies Differential Privacy no adversary can detect if Jane
and Ensemble Learning contributed to a query result

[




ScaDS 51l GENERATING SYNTHETIC DATA UNIVERSITAT

WITH GANS (SCHNEIDER, P3) LEIEZIG

iscriminator
Random Noise m disc ato
Discriminator
-ake

detect fakes

Real Data

www.medium.com

= Generative Adversarial Networks (GAN): adversarial training of two
neural nets

= protection of sensitive training data

= synthetization of training data using GANs based on real data

[

" Generator
md M generate realistic fake data and fool the

ScaDSﬂ PRIVACY-PRESERVING UNIVERSITAT

FEDERATED LEARNING (SEHILI, P4-P5) | ©2'¢

= federated learning models are trained and evaluated locally.

= summaries of local models are shipped to a server to be aggregated in
a new global model.

= utilize secure multiparty aggregation to aggregate local models.

Cloud-Hosted Mobile Intelligence Federated Learning Federated Learning with Secure Aggregation

(O O

L [1] Bonawitz, K. et al.: Practical Secure Aggregation for Privacy-Preserving Machine Learning. Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, 1175-1191, 2017

[1]




ScaDSall PRIVACY PRESERVING tJEI;JPI;'ERSITAT
DRESDEN LEIP21G MACHINE LEARNING (SEHILI, P6)

ML algorithms often use person-related data e.g. in medicine, finance

= problems: data sharing not possible due to competitive or regulatory
reasons.

= solution: encrypt data at owner —> (decrypt) data at use (MPC)
= ABY3 presents several protocols for multi-party computation (MPC)

= uses encrypted data for: — S S

EAEE " =EEs
— linear/logistic regression = =
- neural networks " ﬂ o

.0 ..
- extendable to other models =
= =
$

ML algorithm

Model |
https://dl.acm.org/doi/10.1145/3243734.3243760

Scaosﬂ PRIVACY PRESERVING tJEITJPI;'EGRSITAT
CLASSIFICATION ON DNN (SEHILI, P7)

= use of homomorphic encryption for privacy-preserving classification:

- user encrypts its data and sends it to server that holds a trained model.

- server makes prediction over encrypted data and generates an
encrypted result.

- the server sends encrypted result to the user who can decrypt it.
- the server knows nothing about user’s data and result.
- the user know nothing about the model hold by the server

= important requirements: efficiency and accuracy for deep neural

networks 3
You are fine.

SRR\
L [1] Pengtao Xie et al.: Crypto-nets: Neural networks over encrypted data. arXiv:1412.6181, 2014 [1]

No worries!




ScaDS 51l SECURITY — CRIME DATA ANALYSIS
DRESDEN LEIPZIG
(FRANKE, P8)
= pattern recognition for violent crimes Ei%f;, -
and accidents '}0
= goal: assistance for crime prevention & E q
= tracking, prediction and prevention _r___rf, i
= challenges @?‘ =g
= large amounts of heterogeneous multi- mE 2
sourced data Q)Z‘f—
= real-time processing and forecasting . % i '}1'@ 3
' 4&3‘“:"?./?. B2

[1]

UNIVERSITAT
LEIPZIG

L [1]1 M. Feng et al., "Big Data Analytics and Mining for Effective Visualization and Trends Forecasting of Crime Data," in IEEE Access,

vol. 7, pp. 106111-106123, 2019

caps S TECHNIQUES

FOR LIMITED LABELLED DATA

E——

LD1 Human in the Loop for Entity Resolution

Cross-Modal Entity Resolution Based on Co-
LD2 Attentional Generative Adversarial Network
LD3 Transfer Learning for Entity Resolution
LD4 Effective and Efficient Data Cleaning for ER

LD5 Semi-automated Labelling for ML

LD6 Machine Learning for Entity Resolution

Kopcke

Képcke
Wilke
K6pcke
Wilke

Saeedi
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DRESDEN LEIPZIG

= huge amount of data

= effective models require
representative
labelled data
= mostly small amount of
labelled data available
= data labelling is expensive and
time consuming

data

representative

Labelled data

Model ]
ScaDS Il HUMAN IN THE LOOP tJEITJF!;EéQSlTAT

DRESDEN LEIPZIG FOR ENTITY RESOLUTION (KOPCKE, I_Dl)

= entity resolution
= identification of representations for the same real world object

CID |Name Street City

11 [Kristen Smith |2 Hurley Pl [South Fork, MN 48503

24 |Christian Smith [Hurley St2 |S Fork MN

= |earning-based approaches have become state of the art

= challenges
= sufficient amount of labelled examples for learning high quality models
= explainability: Black Box models are difficult for humans to interpret

= approach

= explainable active learning




ﬁﬁggzéﬂ CRPSS-MODAL ENTITY RESOLUTION EEngSITAT
) (KOPCKE, LD2)

= cross-modal entity resolution aims to find semantically similar items
from objects of different modalities (e.g. image and text).

= key challenge: How to bridge the modality gap

= approach:

= co-attentional Generative Adversarial Network (CAGAN) : Generative
adversial network with co-attention mechanism

= co-attention: eliminate the imbalance of information between modalities
and generate more consistent representations

[

ScaDSﬂ TRANSFER LEARNING FOR EETIJ;EQSITAT
DRESDEN LEIP1G ENTITY RESOLUTION (WILKE, LD3)

= transfer learning: reduce the amount of training data by using models
that are pretrained on very large and ‘generic’ data

= can we combine ER with transfer learning?

| w1 & ]
Yes.
N Attribute Type Known tvpe‘ =
Detection model | 2

A ‘

i No =
| [1] Zao, He. Auto-EM: End-to-end Fuzzy Entity-Matching using Pre-trained Deep Models and Transfer Learning. WWW,

2019.




ScaDSalll EFFECTIVE AND EFFICIENT LIVERSITAT

DRESDEN LEIPZIG DATA CLEANING (KOPCKE, LD4)

= ER quality can be improved by data cleaning
= but: time cost of data cleaning by human experts could be prohibitive

= approach:

= maximize ER quality by data cleaning under a time constraint on the
cleaning efforts by users

= recommend to human experts a time-efficient order in which values of
attributes could be cleaned in the given data

i Insufficient Ti |
” U - elected .
At(ante- pairs Attribute- pair Time Time Cleamngr&
(.—u Pair Pair Checking —— Reevaluating
e Checking Selecting EM
| Inpu Y "
| Higher
! Other Recumme'nded Pair *—Flrscorej—omer;mse
| Current -
g || _\Knowled ¢ |Recon endati f:l:r" -Pairs| S?:::lilr‘;n- Rollback
| pata I 1 Heuristics Recording Cleaning
| i o
| 8 | Unselected
i i .
| | Pairs
| User | 1 Has Remianing Time
L---i----l . ) - Time
Final F1-score| Terminating =—Mo Remaining Tim
Solution-Pairs Checking
Standard Our
Process Modification

[1] Ao, J. et al.: Effective and Efficient Data Cleaning for Entity Matching. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics (HILDA'19) Article 2, 1-7, 2019

ScaDSﬂ SEMI-AUTOMATED LABELLING tJEITJFI%/EQSITAT
DRESDEN LEIPZIG FOR Ml_ (W”_KE, LDS)

= “Labeling training data is increasingly the largest bottleneck in
deploying machine learning systems”

= rule-based systems are much faster to train/configure but lack
expressivity

= jdea: combine many “weak” sources to create a generative model of
the training data

’ P
® A
: ® .. \—
N
>Q309$290{0
@LE0L I I-100
.. ?f‘"\\‘
& J
Labeling Noisy Training Statistical Probabilistic Discriminative
Functions Labels Label Model Training Labels Model

(1

[1] Ré. Software 2.0 and Snorkel: Beyond Hand-Labeled Data. KDD 2018.




ML FOR ENTITY RESOLUTION UNIVERSITAT

ScaDSall
DRESDEN LEIPZIG (SAEEDII LD6) LEIPZ'G

[

Entity Resolution (ER): the task of disambiguating records that
correspond to real world entities

recent approaches are focused on Machine Learning (ML)

challenge: little amount of labelled training data
* One solution: Gradual ML

= Steps:
Easy Instance Labeling [—> | 'd7y d% =~ d% = dey -~ dy d; - d d,
1 - _ . ! .
Feature Extraction 1 ‘,’l &y e b . y '/
2 > H 1;1 W 3 ?%
Influence Modeling T‘Eiﬁa‘nﬂ?\éln!l M fi f e * -:‘0 rga’mr!zvanu 1

U

Gradual Inference :> — —

d unmatching pair  d, unlabeled pair (d", matching pair fj} feature
(11
[1] B. Hou et al.: "Gradual Machine Learning for Entity Resolution," in IEEE Transactions on Knowledge and

Data Engineering, 2020 25

DRESDEN LEIPZIG

scabsall  TIME SERIES ANALYSIS

L

—

TS1Time-series forcasting Taschner
Time Series Classification with ML:
TS2 HIVE-COTE and InceptionTime Burghardt




TIME-SERIES FORECASTING UNIVERSITAT
LEIPZIG

ScaDsall ..
DRESDEN LEIPZIG (TASC H N E R’ TS 1)

= key area in academic research with applications in climate modeling,
biological science, decision making in retail and finance, ...

= extraction of meaningful characteristics from historical data

= time-series forecasting

= prediction of future values based on previous observations + uncertainty
estimation

= objectives of recommended literature:

= overview over traditional (domain expertise) and modern data-driven
approaches

= comparison of different methods (one-step-ahead, multi-horizon, ...)
= evaluation of recent approaches using ML / Deep Learning

UNIVERSITAT
ScaDSalll TIME SERIES CLASSIFICATION WITH ML: LEIPZIG

DRESDEN LEIPZIG
HIVE-COTE AND INCEPTIONTIME (BURGHARDT, TS2)

= TSC = ML area for categorization (oF Questions:

. . . What is TSC?
labelllng) Of time series = What are the application areas for TSC?

= Which methods are there for TSC (e.g. Time Series Forest)?

" Slgnlﬁca nt progress In accuracy Of = How does these methods work and differ among each
classifiers in last decades other?

= What special properties must the data have for successful
application of TSC?
= What use cases can be solved with TSC methods?

* Flat Collective of Transformation-based = How does FLAT-COTE differ from the classic methods?
Ensembles (Flat-COTE) = What makes HIVE-COTE different from FLAT-COTE?
= combines 35 classifiers on 4 = Strengths and weaknesses of HIVE-COTE?

= How does InceptionTime differ from HIVE-COTE and the
other methods?

= HIVE-COTE: Hierarchical Vote Collective of = Which method is suitable for a special application from
Transformation-based Ensembles production (band saw, classification of condition band saw).

representations




DRESDEN LEIPZIG

scapsalll GRAPH MACHINE LEARNING

Programming Abstractions for Distributed Graph

G1 Processing Rost

G2 Graph Stream Summarization Techniques Rost

G3 Dynamic/Stream Graph Neural Network Alkamel

G4 Graph Analytics on GPUs Gomez
The Message Passing Framework for Graph Neural

G5 Networks Petit

G6 Graph Neural Networks from a Spectral Perspective  Petit

G7 Attention Models in Graphs Petit

G8 Large-Scale Machine Learning on Graphs Schuchart
Bootstrapping Entity Alignment with Knowledge

G9 Graph Embeddings Obraczka
Multi-view Knowledge Graph Embedding for Entity

G10 Alignment Obraczka

UNIVERSITAT
ScaDSﬂ GRAPH-ML — CHALLENGES LEIPZIG

DRESDEN LEIPZIG

i - HatemBazian

= analysis of large graphs

= analysis/prediction of graph evolution
= new nodes/edges, deletions ...

= interpretable graph representations for ML
= graph node embeddings

Table 6: The sizes of the participants’ graphs. = \

(a) Number of vertices. (b) Number of edges. (c) Total uncompressed bytes.

Vertices Total R P Edges Total R P Size Total R P

< 10K 22 11 11 < 10K 23 11 12 < 100MB 23 12 11
10K-100K 22 9 13 10K-100K 22 9 13 100MB-1GB 19 9 10
100K-1M 19 7 12 100K-1M 13 3 10 1GB-10GB 25 9 16
IM-10M 17 6 11 IM-10M 9 5 4 10GB-100GB 17 5 12
10M-100M 20 10 10 10M—-100M 21 8 13 100GB-1TB 20 8 12

> 100M 27 10 17 100M-1B 21 8 13 > 1TB 17 5 12
M > 1B 20 8 12

[1] Sahu, S., Mhedhbi, A., Salihoglu, S. et al. The ubiquity of large graphs and surprising challenges of graph processing: extended survey.

The VLDB Journal 29, 595-618, 2020
[2] https://towardsdatascience.com/information-flow-within-twitter-community-def9e939bb99




ScaDSalll EFFICIENT ANALYSIS OF LARGE [V ERSITAT
AND EVOLVING GRAPHS (ROST, G1)

= using distributed graph processing systems

= algorithms require a high-level abstraction 8 8
= high-level programming abstractions for
distributed graph processing
= goal : present overview of most prevalent high-
level abstractions for distributed graph CSubaraphcentic) = =
. ertex-centric
processing Processing ?
M1 j
. Label
M2 Pattern Matching | Propagation ]
Connected
M3 Component

I_ M4

ScaDSall GRAPH STREAM SUMMARIZATION tJEITlgEQSITAT
DRESDEN LEIPZIG TECHNIQU ES (ROST’ Gz)

= Graph streams

= continuous sequence of edges, including its two endpoints and attributes
= streaming graphs are very large and change fast

= Graph stream summarization

= G=(V,E) > Gh=(Vh, Eh) eg egesgeg s
where |Vh| < |V| and |Eh| < |E]

= structural, attribute-based or hybrid

= requirements of summarization:

= (1) the linear space cost
= (2) the constant update time

Edge Stream [1]

= Graph Stream Summarization Techniques

L [1] Khan, A., Aggarwal, C. Toward query-friendly compression of rapid graph streams. Soc. Netw. Anal. Min. 7, 23, 2017




ScaDS 51l DYNAMIC STREAMS & tJElTlggsnm
DRESDEN LEIPZIG GRAPH NEURAL NETWORK (ALKAMEL, G3

= Graph Neural Network

= generation of representations consisting of structural and local features
= only for static graphs

= adaptation of existing GNNs for graph streams

DyGNN Representation
Graph eg egesgeggeig I:> 0.1 0.4
—01 O O —0.2

Stream
Edge Stream O . 8 0

[

ScaDS ﬂ EETF!;EQSIW
epavierz - GRAPH ANALYTICS ON GPU (GOMEZ, G4)

= challenges on GPU graph processing
= partition large graphs among GPUs
= implement efficient communication among GPUs
= ensuring efficient computation on each GPU
= for multi-host: efficient communication

= graph analytics for massive datasets on distributed GPUs

T
) B

M1

M2 =M Result II

M3

| M4

ﬁ@
3 ®

gk

T
ElE)




ScaDS 51l GRAPH EMBEDDINGS EETI%E;RSITAT
prespRE (PETIT, SCHUCHART)

= embedding (knowledge) graph entities into a low-dimensional space
= encode entity properties and relationships to neighbors in graph

= generation and application of embeddings

= the Message Passing Framework for Graph Neural Networks
= Graph Neural Networks from a spectral perspective
= Graph Attention Networks

[

ScaDSaINl THE MESSAGE PASSING FRAMEWORK | [y

DRESDEN LEIPZIG ( P ETIT’ G 5)

= general formulation for Graph Neural Networks (GNNs)

= different approaches can be formulated in MPNN (message passing
neural networks) framework

= aggregate from local neighborhood and then update

TARGET NODE il
g -. ®
/ @ — AGGREGATE ... o
‘ / @ A @
® oy
INPUT GRAPH ~®

[

L [1] Hamilton, William L.:Graph representation learning. Synthesis Lectures on Atrtifical Intelligence and Machine Learning

14.3 (2020): 1-159.




UNIVERSITAT
ScaDSalll GNNS FROM A SPECTRAL PERSPECTIVE LEIPZIG

DRESDEN LEIPZIG ( P ETIT’ G 6)

= GNNs = Graph Neural Networks

= connection between graph signal processing and GNNs

= GNNs as filters on graph signals

= advantageous: background knowledge in signal processing

[1] Stankovi¢ L., Dakovi¢ M., Sejdi¢ E.:Introduction to Graph Signal Processing. In: Stankovi¢ L., Sejdi¢ E. (eds) Vertex-Frequency Analysis
of Graph Signals. Signals and Communication Technology. Springer, Cham., 2019

5caosﬂ ATTENTION MODELS FOR GRAPHS tJE'T’ggSITAT
(PETIT, G7)

= attention mechanism gained a lot of traction in
the past years: de-facto standard in many
sequence-based tasks

= transfer of attention mechanism to graph
domain: attending over the neighborhood of a
graph

L [1] https://dsgiitr.com/blogs/gat/




scaDSENl LARGE-SCALE ML ON GRAPHS tJEITlFI;EQSITAT
DRESDEN LEIPZIG (SCHUCHART' G8)

= Graph Convolutional Networks highly effective on small to medium
sized graphs, but challenging for large graphs
= high memory consumption
= hard to compute

= ClusterGCN:

(=] [ -
= cluster small sub-graphs s ' Ce 8 RS
= |earn on subset of sub-graphs . — °
Lo e - - B
Layer 3 o e g o e
[ ] ]
o B o e
Layer 2 ® o ® o

Layer 1

(1]

L [1] Chiang, Wei-Lin et al.: Cluster-GCN. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge 39

Discovery & Data Mining, 2019

ScaDSall GRAPH EMBEDDINGS FOR tJEITJI:l%/EanAT
DRESDEN LEIPZIG ENTITY RESOLUTION (OBRACZKA, Gg/Gl )

= ERto identify the same entities in two knowledge graphs (KG)

= challenges
= supervised ER approaches require already matched entity pairs
= features for generating embeddings (attributes, relationships, etc. )

= solutions
= sampling strategies to extend the training data
= - bootstrapping ER with KG embeddings (G9)

= multi-view KG embeddings for ER (G10)
= train different models per feature and combine them

[




DRESDEN LEIPZIG

scaDsalll  SIGNAL & IMAGE PROCESSING
-]

SP1 Location Tracking using Mobile Device Sensors Rohde
Automated Reverse Engineering and Privacy Analysis

SP2  of Modern Cars Grimmer

SP3  Advances in pedestrian detection systems Taschner

SP4  Person Detection With a Fisheye Camera Burghardt

SP5  Bird Voice Recognition Franke
Marine Bioacoustics | : ORCA-SPOT: An Automatic

I Killer Whale Sound Detection Toolkit Using Deep
SP6 Learning Lin

Marine Bioacoustics Il : Marine Mammal Species
Classification using Convolutional Neural Networks
SP7 and a Novel Acoustic Representation Lin

ScaDS&alll LOCATION TRACKING USING MOBILE tJE"I‘]P%EGRS”AT

DRESDEN LEIPZIG

DEVICE SENSORS (ROHDE, SP1)

= tracking mobile phones essentially
means tracking people

= even without permission to access
GPS or WIFI (SSID) attackers might
infer the location e.g. from
= the varying power consumption
depending on the distance to the base

station and obstacles between them
(arXiv:1502.03182)

= gyroscope, accelerometer, and

magnetometer information
(DOI 10.1109/5P.2016.31)

L [1] Michalevsky, Y. et al.:PowerSpy: Location Tracking using Mobile Device Power Analysis., CoRR abs/1502.03182, 2015

[2] Google




ScaDsSy]| AUTOMATED REVERSE ENGINEERING AND | UNIVERSITAT
sesoemizris  PRIVACY ANALYSIS OF MODERN CARS LEIFZIC
(GRIMMER, SP2)

= “l Know Where You Parked Last Summer”
= what “private” information is recorded by your car?
= can we obtain this information?

- e L ~. ; =¥ = = | = Thoe: e
Front object > )
| https://carfromjapan.com/article/car-maintenance/types-of-sensors-used-in-automobile-engine/

ScaDS 51| PEDESTRIAN DETECTION SYSTEMS tJEITlggSITAT
DRESDEN LEIPZIG (TASCHNER’ SP3)

= problem area of object detection and tracking

= application in fields of video surveillance, autonomous driving, human-
computer interaction, ...

= objectives of recommended literature:
= compilation of different (recent) approaches
= comparison of approaches and techniques used
= methods and results of evaluation
regarding accuracy,
performance, robustness, ...

L [1] Brunetti, A. et al.: Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing 300, 17-33,2018




scaDSTIll ANIMAL VOICE RECOGNITION tJE';JF';'EGRSlTAT
(FRANKE, LIN, SP4-SP6)

DRESDEN LEIPZIG

= motivation
= studies about behaviour and implicitly about climate change or agriculture
= build bioacoustics archives to identify reappearing communication patterns
= challenges
= small amount of data
= noisy recordings (cars, construction areas, etc.)
= bird voice recognition (SP4)
= concurrent singing, large amount of species

= marine mammal recognition using CNNs (SP5, SP6)

DRESDEN LEIPZIG

scapsall DEEP LEARNING IN PHYSICS

PH1 Physics Informed Deep Learning Uhrich |

Deep Neural Networks Motivated by

I PH2 Partial Differential Equations Uhrich




ScaDsall

DRESDEN LEIPZIG

= modeling and simulation of physical

systems

= data-driven solution and discovery of
nonlinear partial differential equations

= new class of data-efficient function
approximators that naturally encode

| OO
.2\ ,J:;-

PHYSICS INFORMED NEURAL NETWORKS
(UHRICH, PH1)
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[2]
[1] Peng, G.C.Y et al.: Multiscale Modeling Meets Machine Learning: What Can We Learn?. Arch Computat Methods Eng, 2020
[2] https://nextjournal.com/kirill_zubov/physics-informed-neural-networks-pinns-solver-on-julia-gsoc-2020-second-evaluation
UNIVERSITAT
ScaDSalll DEEP NEURAL NETWORKS MOTIVATED BY | (E1pZIG

DRESDEN LEIPZIG

PARTIAL DIFFERENTIAL EQUATIONS (UHRICH, PH2)

= network design is central task in deep learning

= approach for designing, analyzing and training of more effective models

= Inspired by partial differential equations

= improves training outcomes and generalizes neural network
architecture design with less trial and error

A. Convergence for STL-10

B. Convergence for CIFAR-10

%% validation accuracy
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C. Convergence for CIFAR-100

701 R |

Gl

G0 80
epochs

20 40

50
100 120 140 160 180

20 40 60 80 100 120 140 160 180

epochs

= Hamiltonian CNN
Parabolic CNN
| = Second-Order CNN
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[1] Ruthotto, L., Haber, E.: Deep Neural Networks Motivated by Partial Differential Equations. J Math Imaging Vis 62, 352-364, 2020
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DRESDEN LEIPZIG

BIO-MEDICAL APPLICATIONS

Deep Learning for Prediction of Survival of Brain

BM1
BM2
BM3
L BM4

BM5
BM6

Tumors
Machine Learning for Genomics Data
Construction of biomedical knowledge graphs
Electronic Health Record Data Quality

Human Behavioural Analysis For Ambient Assisted
Living

Active survival learning in precision medicine

Martin
Christen
Christen
Rohde

—

Burghardt
Pogany

ScaDsall

DRESDEN LEIPZIG

DEEP LEARNING FOR SURVIVAL PREDICTION FOR
BRAIN TUMORS (MARTIN, BM1)

| Tumor Segmentation
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UNIVERSITAT
LEIPZIG
Keywords

= Radiomics

= MR images

= Feature Extraction
= Feature Selection

= |mage Processing

= Deep Learning

= CNN

= Transfer Learning

= Statistical Analysis

= Signature
Construction

[1] Lao et al.: A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme, Nature

Scientific Reports, 7:10353, 2017




ScaDS 51l MACHINE LEARNING tJEITF!;lEGRSITAT
DRESDEN LEIP1G FOR GENOMICS DATA (CHRISTEN, BM2)

= effective representations of genomics data enable the application of
ML-techniques
= clustering and classification

Embeddings for
genes
| > 0.1
' ' ' ~0.1
§ 08 0.1
TTTAAAGAGACCGGCGATTCTAGTGAAATCGAACGGGCAGGTCAATT —-0.1
. 0.8

Transcription ]

(Simplified)

= Goal:

= embeddings preserve the similarity if
transcription, translation or protein

. r re similar
protein products are simila
[2]
[1] by Clker-Free-Vector-Images from Pixabay 51

[2] Shen, Chang-Hui.:Gene Expression: Translation of the Genetic Code, Diagnostic Molecular Biology, 2019
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ScaDSﬂ REPRESENTATION OF BIOMEDICAL UNIVERSITAT

LEIPZIG
DRESDEN LEIPZIG
DATA (CHRISTEN, BM3)
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= application of embedding techniques
https://covidgraph.org/

= representation of genomics data

= methods to generate representations
for gene expression data
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ScaDS gl DATA QUALITY OF ELECTRONIC EETIJ‘;IEBRSITAT
DRESDEN LEIPZIG HEALTH RECORDS (ROHDE’ BIVI4)

= electronic health records (EHR) are valuable sources for secondary use
in research, operational analytics etc.
= ytility depends on the data quality

= goal
. review existing data quality
assessment terminologies and tools

L [1] https://www.aamc.org

ScaDSll HUMAN BEHAVIOURAL ANALYSIS FOR | UNIVERSITAT
: AMBIENT-ASSISTED LIVING (BURGHARDT, BMS)

= elders at home with chronic disease requiring ongoing care
= so far: medical monitoring, e.g. blood glucose levels, heart rate, weight,
blood pressure ....
* new research trends focus on unobtrusive monitoring of behaviour,
including activity levels, falls and adherence to health behavior

= guestions:

= what are the challenges in the field of human behavioural analysis for
ambient assisted living?

= what methods can be applied in human behavioural analysis for ambient
assisted living?

= what are the trends in human behavioural analysis?

= what are further application areas for human behavioural analysis?




Scapsan  ACTIVE SURVIVAL LEARNING IN UNIVERSITAT
PRECISION MEDICINE (POGANY, BM6)

Training Machine ]caming model
Labeled data /\/q Unlabeled
L o pool set (U)

Queries

Oracle (e.g., human annotator) selection

(11

= in medicine, labelled data is scarce and is often high-dimensional
= use deep learning to reduce features in unsupervised way
= use active learning to overcome labels problem

[1] Nezhad, M. Z. et al.: A Deep Active Survival Analysis approach for precision treatment recommendations: Application of prostate cancer,
Expert Systems with Applications 115, 16-26, 2019
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