
Towards the smart use of embedding and instance
features for property matching

Daniel Ayala, Inma Hernández, David Ruiz
Universidad de Sevilla

ETSII, Avda. Reina Mercedes, s/n. Sevilla, Spain
e-mail: {dayala1, inmahernandez, druiz}@us.es

Erhard Rahm
Leipzig University

Institut für Informatik. Leipzig 04109, Germany
e-mail: rahm@informatik.uni-leipzig.de

Abstract—Data integration tasks such as the creation and
extension of knowledge graphs involve the fusion of hetero-
geneous entities from many sources. Matching and fusion of
such entities require to also match and combine their properties
(attributes). However, previous schema matching approaches
mostly focus on two sources only and often rely on simple
similarity measurements. They thus face problems in challenging
use cases such as the integration of heterogeneous product entities
from many sources.

We therefore present a new machine learning-based property
matching approach called LEAPME (LEArning-based Property
Matching with Embeddings) that utilizes numerous features
of both property names and instance values. The approach
heavily makes use of word embeddings to better utilize the
domain-specific semantics of both property names and instance
values. The use of supervised machine learning helps exploit the
predictive power of word embeddings.

Our comparative evaluation against five baselines for several
multi-source datasets with real-world data shows the high effec-
tiveness of LEAPME.

Index Terms—data integration; machine learning; knowledge
graphs;

I. INTRODUCTION

Data integration tasks such as the creation and refinement of
knowledge graphs have to increasingly deal with the matching
and fusion of data from many sources, e.g., different web
sites, already created knowledge bases and repositories. Such
knowledge graphs (KG) physically integrate numerous entities
with their properties (attributes) and relationships as well as
associated metadata about entity types and relationship types
in a graph-like structure [28]. Many companies (including
Google, Facebook, and Amazon) are increasingly relying on
the integrated and curated information in knowledge graphs
and there is also an increasing amount of research on KG
creation [2], [6], [10], [23], [31], [33], [35], [37] and KG
exploitation, e.g. for question answering [16], [38].

Integrating new data sources and their entities into a KG
requires matching the properties of entities, e.g., to focus entity
matching on comparable properties or to fuse the values of
equivalent properties.

Matching properties is far from trivial, especially with many
sources. As an example, Fig. 1 shows camera entities (from a
real dataset used in our evaluation) from three sources that may
be integrated into a product KG together with some property
matches indicated by symbols of the same shape. The example

shows that there are numerous similar but differently named
properties with diverse instance values. Matching properties
often have completely different names, e.g., for properties
“camera resolution”, “effective pixels” and “megapixel”.

To help solve the property matching problem in the case of
such scenarios, we present a new approach called LEAPME
(LEArning-based Property Matching with Embeddings). It
uses supervised machine learning and makes use of the typi-
cally good availability of instance in a KG. LEAPME applies
a dense neural network and a large set of features to classify
a pair of properties from different sources as related or not.

The proposed features make heavy use of word embeddings
computed from both the property names and their instance
values. The use of embeddings gives the classifier information
about the semantic proximity between two properties even
when their string similarity is low. For example, we expect
different words related to camera resolution such as “MP”,
“resolution” or “megapixels” to have similar embedding vec-
tors. The use of property values provides additional informa-
tion that is not tied to the name of a property, and makes the
proposal applicable to scenarios in which the properties do not
have meaningful names, e.g., identifiers that are automatically
generated by information extraction approaches [30].The use
of machine learning helps use these features in a smart way,
learning what features are more important and how they must
be combined.

The next section describes related work on schema matching
and the previous use of machine learning for this task. Sec-
tion III formally describes the problem of property matching.
Section IV describes LEAPME in detail. Section V contains
the evaluation with several baselines. Section VI summarizes
our contributions and discusses potential future work. Addi-
tional details about our technique and an expanded evaluation
can be found in [3].

II. RELATED WORK

In the last decades, a huge amount of research has been
devoted to schema and ontology matching to automatically
determine corresponding schema attributes (properties) and
ontology concepts. As described in several survey articles and
books [13], [24], [29], most of the proposed approaches focus
on pairwise matching between two schemas or ontologies and
utilize a combination of several similarity values to determine
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  "aperture": "F/4.0-4.8",

  "category": "Digital Cameras",

  "digital zoom": "2x",

  "image resolutions": "640x480",

  "light sensitivity iso": "140",

  "max shutter speed": "1/362",

  "min shutter speed": "1/2",

  "optical zoom": "2x",

  "product name": "Kodak DC220",

  "product rating": "0 out of 5",

  "resolution": "0.9 MP",

  "screen size": "2\"",

  "sensor type": "CCD",

  "user reviews": "Write a review",

  "viewfinder type": "Optical",

  "weight": "550 g"

  "effective pixels": "24 megapixels",

  "focal length fmm": "1.5\u00d7",

  "hdmi": "Yes (mini-HDMI)",

  "iso sensitivity": "Auto, 100, 200, 400...",

  "lcd type": "Fixed",

  "lens mount": "Nikon F mount",

  "max resolution": "6000 x 4000",

  "microphone": "Mono",

  "sensor size": "APS-C (23.5 x 15.6 mm)",

  "sensor type": "CMOS",

  "shutter speed": "30 sec - 1/4000 sec",

  "total pixels": "25 megapixels",

  "usb": "USB 2.0",

  "viewfinder": "Optical (pentamirror...",

  "weight inc batteries": "430 g (0.95 lb...",

  "wireless": "Optional"

Eglobalcentral.co.uk

  "aperture range": "F4.0 (W) - F4.8 (T)",

  "audio formats": "WAV",

  "auto focus": "Yes, Contrast Detect...",

  "camera resolution": "12 MP",

  "digital zoom": "6.3x",

  "focal length": "6.4 - 32 mm (35 ...",

  "image format": "JPEG ( Fine &...",

  "image stablizer": "Yes",

  "iso rating": "100 - 1600",

  "lens type": "Fujinon 5x optical ...",

  "manual focus": "No",

  "maximum shutter speed": "1/2000 sec",

  "minimum shutter speed": "4 Sec",

  "optical zoom": "5x",

  "video format": "AVI",

  "white balancing": "White Balance..."

Mypriceindia.com Shopmania.in

Fig. 1. Camera properties from different sources. Two properties from different sources being annotated with the same shape denotes a match.

likely matches. The most common approach is to determine the
linguistic similarity of properties either based on string similar-
ity metrics, synonym information from background knowledge
resources such as dictionaries (e.g., WordNet [19]), or, more
recently, pre-trained word embeddings [15], [18]. Background
knowledge resources can even include a corpus of formerly
matched schemas as support for a new match [20], [27].
Some approaches additionally utilize the structural similarity
of elements (e.g., based on the similarity of neighbors in an
ontology) and the similarity of associated instance data [11],
[26].

The use of supervised machine learning is being increas-
ingly applied for a simplified configuration of schema and
ontology matching, since it can be considered a way to
aggregate several similarity metrics or matchers, removing the
need to set manual thresholds or use vector distance metrics
such as the cosine similarity, which give the same weight to
all features [8], [9], [12], [17], [21], [22], [32], [32], [34].
The training data consists of the similarity of matching and
non-matching pairs of schema/ontology elements together with
multiple similarity values, e.g., according to different linguistic
and structural similarities. Surprisingly, instance similarities
or word embeddings have not been utilized so far in these
approaches.

Most previous work focuses on pairwise schema and ontol-
ogy matching for two sources [27] while we have to deal
with an arbitrary number of sources with different sets of
properties per entity type. While multi-source property match-
ing also builds on pairwise property matching, the degree of
heterogeneity and thus the difficulty to achieve good match
quality increases with more sources. In our approach, we will
determine pairwise similarities between properties that can be
maintained in a similarity graph of properties from several
sources. Such a graph can be used as input for clustering so
that all matching properties are in the same cluster that can
be used as a basis to fuse these properties.

III. PROBLEM DEFINITION

We first provide some preliminary definitions that are
needed to understand the description of the problem and our
proposal.
Source: A source S is a location from where informa-

tion comes, e.g., a website, a relational database, or a
SPARQL endpoint, among other examples.

Entity and class: An entity e is a representation of some-
thing that can be uniquely identified, usually correspond-
ing to some real world object. Entities belong to a certain
source and a source-specific type or class C, and we
denote the source and class of entity e with S(e) and
C(e), respectively.

Property and instances: A property is an attribute to de-
scribe information about entities. The values of a property
are literals known as instances. Our algorithm processes
a collection of property instances represented as tuples
(p, e, v) where p is the property name, e is the entity
(identifier), and v is the property value. The components
of a property instance i=(p, e, v) are denoted by p(i),
e(i), and v(i).

Class schema: For the sake of flexibility in applications such
as E-commerce, we do not assume the existence of a
predefined schema with a fixed set of properties per class.
Rather, we view the schema of class C as the collection
of all differently named properties for entities of class C
in the respective sources. Individual entities may use any
subset of these class properties.

Property matching: Task of determining correspondences
between the properties of different class schemas from
different sources.

The problem we address is property matching for properties
of the same class (e.g., camera properties). We consider the
case of multi-source matching so that properties may relate to
entities from an arbitrary number of sources. Correspondences
are not limited to equivalence relationships but also to more
complex relationships between semantically related properties.
A property in one source may thus have 0, 1 or several
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matching properties in another source, e.g., as for property
“shutter speed” in Figure 1.

IV. OUR APPROACH

Having defined the problem of property matching, we give
an overview of our proposal LEAPME (Section IV-A), and
describe in detail how features are computed (Section IV-B).
We discuss the use of embeddings in Section IV-C. Finally, we
describe aspects related to the implementation of LEAPME in
Section IV-D.

A. Overview

LEAPME is a supervised ML-based property matching
approach that focuses on the use of novel features. It computes
features from property instances, property names, and property
pairs to obtain large feature vectors that can be properly
handled by a classifier.

Algorithm 1 describes the main steps of LEAPME.
1) First, there is the initialization of the instance feature

vector IF , the property feature vector PF , the property
pair feature vector PPF , and the output similarity graph
(collection of matches) Sim (line 1 of Algorithm 1).

2) Next, the instance features are determined by every in-
stance with the help of function iFeatures, and added to
the respective property in the instance feature vector IF
(lines 2-3 of Algorithm 1). The features we determine will
be described below - they include meta-features about the
instance values as well as an embedding vector for the
specific property value.

3) In lines 4-6 of Algorithm 1 we compute property features
with the help of function pFeatures. They can be derived
for the property name or based on the aggregation of
instance features, e.g., average values of numeric instance
features.

4) For each property pair, we compute the property pairs
features using function ppFeatures (lines 7-9 of Algo-
rithm 1), which may be partially based on the aggregation
of property features.

5) We use the input training data with their labeled property
pairs and associated feature vectors to train a classi-
fication model using function trainClassifier in line
10 (labeled(PPF ) denotes the already labeled property
pairs). Then, we apply the trained classifier to the unla-
beled property pairs to obtain a match decision and sim-
ilarity score for each pair (lines 11-12 of Algorithm 1).

B. Features

Since we classify pairs of properties, the features that are
ultimately fed to the classifier must be associated to a pair of
properties. However, as we have mentioned, LEAPME con-
siders features at several levels that can be later transformed
into property pairs features. Next, we describe in detail each
of these levels:
Instance features: These features are computed from each

individual instance of a property (that is, a features vector

Algorithm 1: LEAPME
Input:
- I: set of property instances from m sources
- labeled property pairs (training)
Output:
- Sim: set of property pairs with similarities
(similarity graph)
Variables:
- IF : Map<Property, FeaturesV ectorSet> with
instance features vectors, grouped by property
- PF : Map<Property, FeaturesV ector> with
property features vectors.
- PPF : Map<PropertyPair, FeaturesV ector>
with property pair features vectors.
- m: classification model

1 initialize(IF, PF, PPF, Sim)
// Steps 1-4: compute features

2 for i in I do
3 IF [p(i)]← IF [p(i)] ∪ iFeatures(i))

4 for (p, V ) in IF do
5 PF [p]← pFeatures(p)

6 for p1 in keyset of PF do
7 for p2 from different source in keyset of PF do
8 PPF [(p1, p2)]← ppFeatures(p1, p2)

// Step 5: training and classification

9 m← trainClassifier(labeled(PPF ))
10 for (p1, p2) : v in unlabeled(PPF ) do
11 Sim.add((p1, p2,m.classify(v)))

is obtained for each property value) independently of the
property names.

Property features: These features are computed for each
individual property. They include all features computed
from the property name, such as the average embeddings
vector of its words. Furthermore, by grouping the instance
features on a per-property basis, we can aggregate them
and turn them into property features.

Property pair features: These features are computed for
each pair of properties to be classified. These are the
final features actually fed to the classifier. Aggregated
property features can also be used to determine property
pair features, e.g. by computing the numeric difference
between two vectors of such features.

C. Embeddings and classification

When matching properties, a high value of the string sim-
ilarity of the property names is usually a clear indicator of a
match. Low similarity, however, can be caused by the issues
we mentioned in Section I.

To overcome these limitations, we propose the use of word
embeddings for both property names and property values.
They can provide rich information about the semantics of a
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property that can help solve some issues such as the potentially
low string similarity between synonymous properties.

Embeddings vectors usually have hundreds of components
with unknown meanings that may require nonlinear combina-
tions to properly exploit their predictive power. For that reason,
LEAPME uses a neural network for classification, which is
also a popular choice in the related work and is able to properly
weight features even when there is a large amount of them.

D. Implementation

Type Id Description

# of 

features

1

The fraction and number of occurrences of several 

character types (letters (uppercase, lowercase, and both), 

mark characters, numbers, punctuation, symbols, 

separators, other)

18

2

The fraction and number of occurrences of several token 

types (words, words starting with a lowercase letter, 

words starting with an uppercase letter followed by a non-

separator character, uppercase words, numeric strings)

10

3 The numeric value of the instance (-1 if it is not a number) 1

4
The average embeddings vector of the words in the 

instance
300

5 The average of every instance feature 329

6
The average embeddings vector of the words in the 

property name
300

7
The difference between the features vectors of the two 

properties
629

8
The optimal string alignment distance between the 

property names
1

9 The Levenshtein distance between the property names 1

10
The Full Damerau-Levenshtein distance between the 

property names
1

11
The longest common substring distance between the 

property names
1

12 The 3-gram distance between the property names 1

13
The cosine distance between the 3-gram profiles of the 

property names
1

14
The Jaccard distance between the 3-gram profiles of the 

property names
1

15 The Jaro-Winker distance between the property names 1

Instance

Property

Properties 

pair

TABLE I
FEATURES USED IN OUR IMPLEMENTATION.

Table I provides an overview about the features we have
implemented. Instance features are computed with TAPON [4],
[5], which includes several format-related features to which we
added the embedding ones.

To compute embeddings, we use the pre-trained GloVe
approach [25]1, specifically for the uncased Common Crawl
corpus that includes 300-dimensional vectors for 1.9 million
words. Unknown words are mapped to a vector filled with
zeroes. For each property value and name we determine the
average embeddings of the individual words.

Regarding the architecture of the neural network behind
LEAPME, it consists of two fully connected hidden layers of
sizes 128 and 64. We use a batch size of 32 and perform 10
epochs with learning rate 10−3, 5 with 10−4, and 5 with 10−5.
We fine-tuned these hyper-parameters manually in preliminary

1https://nlp.stanford.edu/projects/glove/

tests, though most alterations (such as changing the size of the
layers) do not significantly impact on the results. The final
layer has two neurons from which the final score is obtained
for the two possible outcomes (positive/negative). This allows
the use of the positive output as a similarity score, which is
useful for post-processing steps such as property clustering.

V. EVALUATION

We experimentally evaluate our property matching approach
LEAPME on four real-word datasets with up to 24 sources.
We analyze the impact of different amounts of training data
and the effectiveness of the different kinds of features; in
particular, the use of embeddings for both property values
and property names. We further compare LEAPME with five
baselines and study the use of transfer learning. The focus is
on match quality with the standard metrics precision, recall
and F-measure (F1 score).

We first give some details about the studied feature con-
figurations for LEAPME and the baseline approaches. Next,
we describe the four datasets. The results are discussed in
subsection V-C. The evaluated implementations along with the
detailed results and additional material are available online2.

A. Feature configurations and baselines

The rich set of features exploited by supervised learning is
a main advantage of LEAPME and we therefore analyze the
effectiveness of the different kinds of features in detail. Along
one dimension, we compare the use of instance-related features
only, name-related features only and the combined use of both
kinds of features. Another dimension is the consideration of
embedding-based features only, non-embedding features only
or the combined use of both kinds of features. In total, this
sums up to 9 possible feature configurations to analyze.

The LEAPME results are compared to the results obtained
by the following baselines: the latest Github implementation of
Agreement Maker Light [14] (AML); the latest Github imple-
mentation of FCA-Map [7]; an implementation of the machine
learning proposal by Nezhadi et al. [22]; an implementation of
SemProp [15] using the following thresholds: 0.2 for SynM,
0.2 for SeMa(-), and 0.4 for SeMa(+); and an implementation
of the proposal by Duan et al. [11] based on local-sensitive
hashing (LSH), using minhash with a band size of 1.

B. Datasets

For our evaluation, we use four real-word datasets with
different kinds of e-commerce products (cameras, headphones,
phones, and TV sets) from multiple sources.

All datasets align the properties in each source to a ref-
erence ontology. We consider that two properties are related
(matching) when they are both aligned to the same reference
property.

The camera dataset comes from the DI2KG19 challenge [1].
It is the largest dataset with 24 sources, more than 3200
properties and about 9200 matching property pairs. We limited
the number of entities to 100 per source in order to balance

2https://github.eii.us.es/dayala1/LEAPME
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P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

20% 0.66 0.55 0.59 0.72 0.52 0.58 0.55 0.43 0.44 - - - - - - - - - - - -

80% 0.93 0.75 0.83 0.91 0.77 0.83 0.64 0.59 0.61 - - - - - - - - - - - -

20% 0.54 0.61 0.56 0.61 0.64 0.60 0.54 0.57 0.54 - - - - - - - - - - - -

80% 0.76 0.70 0.69 0.64 0.70 0.64 0.60 0.51 0.53 - - - - - - - - - - - -

20% 0.60 0.59 0.58 0.58 0.63 0.59 0.47 0.41 0.42 - - - - - - - - - - - -

80% 0.84 0.75 0.79 0.85 0.74 0.79 0.59 0.44 0.50 - - - - - - - - - - - -

20% 0.61 0.62 0.60 0.61 0.62 0.60 0.49 0.57 0.52 - - - - - - - - - - - -

80% 0.83 0.74 0.78 0.84 0.73 0.78 0.65 0.60 0.61 - - - - - - - - - - - -

20% 0.89 0.88 0.88 0.87 0.86 0.86 0.91 0.75 0.82 0.86 0.82 0.83 - - -

80% 0.99 0.98 0.98 0.98 0.98 0.98 0.95 0.76 0.84 0.96 0.93 0.94 - - -

20% 0.68 0.79 0.73 0.67 0.81 0.72 0.82 0.62 0.70 0.73 0.69 0.70 - - -

80% 0.84 0.82 0.82 0.83 0.81 0.81 0.91 0.58 0.70 0.80 0.72 0.75 - - -

20% 0.70 0.71 0.70 0.65 0.74 0.67 0.80 0.51 0.61 0.64 0.56 0.59 - - -

80% 0.93 0.84 0.88 0.91 0.85 0.88 0.92 0.51 0.66 0.74 0.68 0.71 - - -

20% 0.62 0.77 0.67 0.70 0.78 0.72 0.85 0.68 0.75 0.67 0.70 0.68 - - -

80% 0.95 0.86 0.90 0.93 0.84 0.88 0.93 0.70 0.80 0.83 0.79 0.81 - - -

20% 0.91 0.83 0.87 0.83 0.77 0.79 0.88 0.74 0.80 0.86 0.82 0.83

80% 0.99 0.97 0.98 0.98 0.97 0.98 0.93 0.82 0.87 0.96 0.93 0.94

20% 0.74 0.81 0.76 0.65 0.80 0.70 0.79 0.68 0.73 0.73 0.69 0.70

80% 0.89 0.87 0.88 0.88 0.90 0.89 0.80 0.68 0.72 0.80 0.72 0.75

20% 0.71 0.72 0.70 0.59 0.70 0.63 0.66 0.52 0.56 0.64 0.56 0.59

80% 0.93 0.85 0.89 0.92 0.86 0.89 0.83 0.57 0.68 0.74 0.68 0.71

20% 0.64 0.80 0.70 0.60 0.81 0.67 0.71 0.67 0.67 0.67 0.70 0.68

80% 0.95 0.89 0.92 0.94 0.86 0.90 0.88 0.77 0.82 0.83 0.79 0.81

0.99 0.34 0.50

tvs 0.97 0.40 0.57 0.99 0.34 0.50

0.99 0.38 0.55

headphones 0.95 0.36 0.52 0.99 0.37 0.54

B
o

th

cameras 0.99 0.61 0.75

phones 0.98 0.34 0.50

0.50

tvs 0.97 0.40 0.57 0.99 0.34 0.50

0.98 0.34 0.50 0.99 0.34

headphones

phones

tvs

N
a
m

e
s

cameras

headphones

phones

In
st

a
n

c
e
s

cameras

Nezhadi AML FCA-Map
Info Dataset

Train. 

%

LEAPME LEAPME(emb)LEAPME(-emb)

0.99 0.38 0.55

0.99 0.37 0.54

0.99 0.61 0.75

0.95 0.36 0.52

0.62 0.68 0.65

0.66 0.65 0.66

SemProp

0.82 0.75 0.78

0.67 0.48 0.56

0.62 0.68 0.65

0.66 0.65 0.66

0.82 0.75 0.78

0.67 0.48 0.56

LSH

0.54 0.73 0.62

0.75 0.43 0.55

0.74 0.21 0.33

0.78 0.28 0.41

0.74 0.21 0.33

0.78 0.28 0.41

0.54 0.73 0.62

0.75 0.43 0.55

TABLE II
RESULTS SUMMARY WITH F1 SCORES. LEAPME(EMB) = LEAPME WITH EMBEDDING FEATURES ONLY. LEAPME(-EMB) = LEAPME WITHOUT

EMBEDDING FEATURES.

their size and impact. The other datasets contain headphones,
phones and TV product entities and correspond to the WDC
Gold Standard for Product Matching and Product Feature
Extraction [36]. These are much smaller than the camera
dataset and there are different numbers of entities per source
leading to a less balanced setting than that of the camera
dataset. In our analysis of the results, we will refer to the
three smaller and imbalanced datasets as low-quality datasets
as opposed to the high-quality camera dataset.

We take a fraction of the sources of a dataset (at random)
for training. We use the examples that involve two sources of
data in the training set to train the classifier, and test it with
the rest. We performed experiments using different training
fractions: 0.2 and 0.8. For each of these fractions and for each
dataset, we ran LEAPME 25 times, using different random
combinations of training sources.

For all datasets, the training data consists of two negative
(non-matching) pairs of properties for every positive (match-
ing) pair, and the negative pairs are randomly selected.

C. Results

Next, we compare the results obtained by different config-
urations of LEAPME, as well as those obtained by the five
baselines.

We summarize the average results, including F1 scores, in
Table II for both 20% and 80% training data. The table also
provides results for the sole use of instance features and the
sole use of name features, again differentiated by the use
of embedding features only, non-embedding features only or

both. The best F1 results of each row have been marked in
bold. We make the following observations:

• Unsupervised techniques can achieve a high precision but
struggle to reach a similar recall.

• For all datasets, LEAPME achieves a better F1 score than
all baseline approaches even when using only 20% train-
ing data. For 80% training data, it achieves excellent F1
scores from 88% (for headphones) to 98% (for cameras).
In this case, the baselines are outperformed especially
for the low-quality and more challenging datasets (head-
phones, phones, and TVs). The unsupervised baselines
were outperformed by up to 42 F1 percentage points (50
vs 92% for the TV dataset) and the supervised baseline
of Nezhadi by up to 18 percentage points (71 vs 89% for
the phones dataset).

• When only using property names LEAPME without
embedding features already outperforms the baselines.
The embedding features for property names are the most
effective features in LEAPME. Their use alone is more
more effective than the use of non-embedding features
relying on string similarities.

• Only using instance features achieves weaker results
for LEAPME than using name features especially with
little training. Again, using embedding features is more
effective than using the non-embedding ones that focus
on format-oriented meta-features. Still, the combination
of both instance and name features helps to achieve a
slight improvement over the sole use of name features in
most cases.
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VI. CONCLUSIONS

We have presented LEAPME, a new powerful approach
for matching properties from many sources. It is a machine
learning approach that utilizes a large spectrum of features,
in particular embedding features, on both property names and
instance values. Our evaluation with four real-world multi-
source datasets shows that LEAPME clearly outperforms
several baseline approaches representing the current state-of-
the art. The improvements are even achieved for relatively
little training data.

In future work, we will investigate the use of LEAPME
within a more comprehensive data integration approach for
knowledge graphs that also includes entity matching and
clustering as well as data fusion. In particular, we plan to
evaluate different methods for deriving clusters of equivalent
properties from the match results determined with LEAPME.
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