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Agenda

• Data Integration
– Data analytics for domain-specific questions

– Use cases: Bibliometrics & Life Sciences

• Big Data Integration
– Techniques for efficient big data management

– Exploiting cloud infrastructures (MapReduce, NoSQL data stores)

• Lazy Big Data Integration
– (Efficient and) effective goal-oriented data integration

– Integrated analytical approach for big data analytics
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Use Case: Bibliometrics

• Does the peer review process actually work? 
Does it select the „best“ papers?

• Data from reviewing process (e.g., Easy Chair)
– Bibliographic information (title, authors, …) of submitted papers

– Review score(s) incl. editorial decision

• Data from bibliographic data sources (e.g., Google Scholar)
– Accepted papers and rejected papers that are published elsewhere

– Number of citations

• Determine covariance between review score(s) and #citations
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Data Integration

• Combining data residing 
at different sources and 
providing the user with a 
unified view of this data
– Added value by linking & 

merging data

– Queries that can only be 
answered using multiple 
sources

• Schema Matching
– Finding mappings of 

corresponding attributes

• Entity Matching
– Finding equivalent

data objects
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Data Quality

• Can/should we use Google Scholar citations for ranking …
– Papers

– Researchers

– Institutions 

– etc. 

• Convergent validity of citation analyses?
– Comparison of analysis results for source overlap

Google Scholar Web of Science

Coverage Huge Limited

Data quality Medium (fully automatic) High (manually curated)

Costs Free Expensive
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Use Case: Life Sciences

• Gene Annotation Graph
– Genes are annotated with 

Gene Ontology (GO) and 
Plant Ontology (PO) terms

• Links form a graph that 
captures meaningful biological knowledge

• Sense making of graph is important

• Prediction of new annotations 
– hypothesis for wet lab experiments

Is this annotation  
likely to be added in 

the future?
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Graph Summarization + Link Prediction

• Graph summary = Signature + Corrections

• Signature: graph pattern / structure
– Super nodes = partitioning of nodes

– Super edges = edges between super nodes 
= all edges between nodes of super nodes

• Corrections: edges e between 
individual nodes

– Additions: e  G but e  signature

– Deletions: e  G but e  signature

• p(PO_20030, CIB5)  0.96
– High prediction score because 

it is the “only missing piece” to a 
“perfect 4x6 pattern”
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(Big) Data Analytics Pipeline

Schema & 
Entity

Matching

Data
Extraction/

Cleaning

Data
Acquisition

Data
Fusion/ 

Aggregation

Bibliometrics

Life Sciences

Data
Analytics /

Visualization
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(Big) Data Analytics Pipeline

Schema & 
Entity

Matching

Data
Extraction/

Cleaning

Data
Acquisition

Data
Fusion/ 

Aggregation

Data
Analytics /

Visualization

Bibliometrics

Life Sciences

Query
Strategies

Product Code
Extraction

Load
Balancing

NoSQL
Sharding

Dedoop (Deduplication with Hadoop)
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How to speed up entity matching?

• Entity matching is expensive (due to pair-wise comparisons)

• Blocking to reduce search space
– Group similar entities within blocks based on blocking key

– Restrict matching to entities from the same block

• Parallelization
– Split match computation in sub-tasks to be executed in parallel

– Exploitation of cloud infrastructures and frameworks like MapReduce
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Blocking + MapReduce: Naïve

• Data skew leads to unbalanced workload
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Load Balancing for MR-based EM

Analysis to identify blocking key 
distribution

Global load balancing 
algorithms assigning similar 
number of pairs to reduce tasks
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BlockSplit

• Large blocks split into m sub-blocks
– according to m input partitions

– large if #PBlock > #POverall / #Reducer

• Two types of match tasks
– Single (small blocks and sub-blocks)

– Two sub-blocks

• Greedy load balancing
– Sort match tasks by number of pairs 

in descending order

– Assign match task to reducer with 
lowest number of pairs

• Example
– r=3 reduce tasks, split Φ4 in m=2 sub-blocks

– Φ4‘s match tasks: Φ4.1 , Φ4.2 , and Φ4.1×2

Partition Overall
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z Φ4 2 3 5 10

#P Reducer

M
at

ch
 T

as
ks

Φ1 6 1
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Φ3 3 3
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Φ2 1 1
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BlockSplit: MR-Dataflow
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Evaluation: Robustness + Scalability

„All entities in 
a single block“

„Uniform 
distribution“

Robust 
against data

skew

Scalable
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(Big) Data Analytics Pipeline

Schema & 
Entity

Matching

Data
Extraction/

Cleaning

Data
Acquisition

Data
Fusion/ 

Aggregation

Data
Analytics /

Visualization

Data Integration
Interpre-

tation
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Citation Analysis Pipeline

• For a given set of Bibtex entries
– Find matching Google Scholar entries

– Determine aggregated citation counts

• Analytical questions for a researcher
– Complete publication list + #citations

– Top-5 publications 

– H-Index, Average Number of citations

• Analytical questions for comparing
– Institutions 

– Research fields

– …
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„Lazy Machine“: Effectiveness

• Do the right thing! Do only things that are needed!
– Priorization / filtering of data objects to be processed

• Example: Top-5 publications of a researcher
– Entity Matching for highly cited

Google Scholar entries 

– Cutoff data that does not contribute to 
the analytical result (anymore)

– „does not“ → „is not likely to“ 

• Pipeline stages
– Data Akquisition: query strategies 

– Data Extraction: on-demand

– Data Matching: relevant entities only
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„Lazy User“: Data Quality

• Automatic data integration does not give 100% data quality
– Data acquisition might miss relevant data

– Matching is imperfect (precision, recall) 

– …

• Pipeline & integrated result should effectively point the user 
to the “weak points”

• Examples
– What (non-)matching pairs have the most effect on the analytical 

result?

– Outlier detection → What pipeline stage caused the effect?
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Lazy Big Data Integration

• Integrated approach for both
– Data integration workflow

– Analytical query

• Current work based on Gradoop (Graph Analytics on Hadoop)
– Graph model + operators for analytical pipelines

– Efficient execution in distributed environment

• Next steps
– Operators for complex analytical queries / statistics (e.g.,  h-index)

– Data provenance model for measuring the impact of data objects to 
specific results
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Summary

• Data Integration
– Data analytics for domain-specific questions

– Use cases: Bibliometrics & Life Sciences

• Big Data Integration
– Techniques for efficient big data management

– Exploiting cloud infrastructures (MapReduce, NoSQL data stores)

• Lazy Big Data Integration
– (Efficient and) effective goal-oriented data integration

– Integrated analytical approach for big data analytics


