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I. Introduction 

In the past, database management systems (DBMS) coutd roughly be subdivided into two major 
classes which one might call PC/workstation DBMS and (centralized) mainframe DBMS. 

PC/workstation DBMS provide a set of data management functions in a stand-alone fashion 
as a single-user system on a personal computer or workstation. There is no real data exchange 
between a PC/workstation DBMS and other data management systems, remote users, or DBMS 
at another place. Some PC/workstation DBMS provide limited functions to extract data as a 
"snapshot" from a remote database to process these data locally on the PC/workstation; there 
is, however, usually no way to propagate changed data back from the PC/workstation to the 
remote database at the end. Moreover, PC/workstation DBMS are not able to provide an inte- 
grated view of the data in a large organization. 

Centralized mainframe DBMS run on a large computer in a multi-user environment and are 
usually rather elaborated w.r.t, their functionality (concurrency control, database recovery, au- 
thorization, etc.). Data management capabilities are centralized on a single computer, and da- 
tabase access is done from "unintelligent" terminals, i.e. from rather simple devices without 
much internal computing power of their own. On a mainframe DBMS, data integration and 
data exchange between different users is basically no problem since all the data reside in the 
same database. On the other hand, the users (sometimes hundreds or thousands) of a mainframe 
DBMS strongly depend on the availability of the computer and the related system software and 
on the response time of the system which might be rather unpredictable in many cases. It is 
therefore quite impossible, for instance, to run a real-time application (CAD application, simu- 
lation of a technical process~ etc.) in a multi-user environment on a mainframe DBMS since the 
response time will vary drastically depending on the actual system workload. If the applications 
(for instance in banking, airline reservation, etc.) get larger and larger and thousands of termi- 
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nals are connected to a single computer system and DBMS, a severe bottleneck might occur 
which cannot always be removed just by installing a more powerful computer; in many cases, 
the specific installation will already be at the upper end of the scale of available computing 
power. Moreover, if the computer system in such an environment is not available for a while, 
all users and their applications are directly affected and cannot continue their running oper- 
ations. Finally, centralized mainframe DBMS are not able to reflect the organizational structure 
of large companies very well: on the one hand, data integration is of course still a must (to en- 
force data consistency, etc.) but, on the other hand, the "owners" of the data (divisions, depart- 
ments, etc.) might be spread all over the world so that there are good reasons to spread their 
data as well instead of having them all on a single centralized site. 

To cope with these shortcomings of traditional PC/workstation and centralized mainframe 
DBMS, new concepts have been elaborated which go in various directions. 

One approach is the idea of database sharing. Database sharing intends to solve the problem of 

limited growth in computer performance (no larger single computer available) as well as the 
problem of limited availability of a single computer system (in case of a system failure, computer 
operation and database access are completely down for some time). In the database sharing 
approach, a hardware and operating system environment is set up where several computing 
systems (usually mainframe computers) are connected in a way that 
6 each of these computer systems runs its own DBMS code and has its own main storage and 

database buffers, 
6 these computer systems and their DBMS also share the same data set (database files) on 

disk, 
i they are coupled via some high-speed communication line (such as channel-to-channel) to 

ensure fast data exchange between any two systems. 

From the database user's point of view, database sharing provides a single system image since 
the user needs not be aware of the computer where the database requests are actually processed. 
With such an overall system architecture, more computers can easily be added if the computing 
power of the existing ones is not sufficient anymore to meet the application demands. Hardware 
and software failures of single components (a single computer) do not necessarily affect system 
availability since the surviving "n-l" computers can continue their operation and take over the 
workload of the system which has failed. Load balancing (transaction scheduling), synchroni- 
zation, and recovery are important issues in database sharing and a lot of research has already 

been done to come up with suitable solutions. 

In a distributed DBMS, each node and each DBMS has its own data on disk; data are parti- 
tioned, i.e. there are - in contrast to database sharing - no shared data (files) on disk. The nodes 
are usually located at remote sites so that there are also no fast communication lines available 
between these nodes. In a distributed DBMS, similar to a database sharing environment, a sin- 
gle system image may be provided, i.e. the place (node) where the data are stored may be fully 
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transparent from a user's point of view. Therefore, the data can be stored at a place where they 
are most frequently needed (at a specific division or department within a large organization) but 

are still accessible from any other place within that organization as well. Data partitioning can 
be done in different ways and on different granularities, and data can also be replicated in order 
to speed up processing. Prominent problems which must be solved are related to query process- 
ing and optimization (how to retrieve the data from these different places in an efficient way, 
how to perform join operations efficiently, etc.) and update processing (how to materialize up- 
dates at different places (nodes) in a way that the data are still consistent after a system crash 
or some other kind of failure). 

Workstation-server DBMS are another approach to distributed and cooperative database man- 
agement. The basic idea of workstation-server DBMS is the use of many workstations (e.g. in 
engineering applications) with local processing power and a local DBMS which are linked to a 
server machine (usually a mainframe) with a server DBMS. For the server DBMS, any of the 
above implementation concepts may be used (conventional centralized DBMS, database sharing 
approach, distributed DBMS). Workstation autonomy and very fast local data processing at the 
workstation are important issues in that environment. The data which shall be processed by a 
user at a workstation are checked-out from the database server and sent to a workstation where 
local processing is done. Local processing may last for days and weeks, for instance if a large 
engineering design process must be done. Long locks are set on these data to ensure that the data 
integrity cannot be violated by parallel users at other workstations. At the workstation site, there 
is a close interaction and very frequent data exchange between the user (his application pro- 
gram) and the local DBMS. The local DBMS must be designed in a way to support that kind 
of interaction very efficiently. Concepts like an "object cache" are an appropriate solution to 

speed up data access from an application program. A workstation-server DBMS must also 
support efficient check-in processing to propagate changed data back from the workstation to 
the server. Mechanisms which support a tight cooperation between database server and work- 
station turned out to be a very practicable solution to achieve that goal. 

The main part of this paper is organized as follows: In Section 2, concepts and implementation 
of the database sharing approach will be discussed. Section 3 deals with workstation-server da- 
tabase management systems, and in Section 4 distributed database management will be ad- 
dressed. Finally, Section 5 wilt give a summary and an outlook together with some concluding 
remarks. 

2. Database Sharing 

One approach to overcome the performance and availability limitations of centralized DBMS 
is database (data) sharing. In a database sharing system, the transaction workload is processed 
on multiple locally coupled computing systems (usually mainframe computers) that have direct 
physical access to the entire database on disk (therefore, this approach is also known as "shared 
disk'3. Each of the computer systems runs its own copy of the operating system and DBMS, 
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and has its own main memory and database buffers. Communication between different nodes 
typically takes place by means of message passing over a high-speed interconnect such as 
channel-to-channel adapters. An alternative to such loosely coupled systems is the use of shared 
semiconductor stores for data exchange (close coupling) to avoid the communication overhead 
associated with message passing. 

A main advantage of database sharing compared to other distributed architectures (e.g. data 
partitioning, see Section 4) is that there is no need to physically partition and allocate the data- 
base among the systems. This results in an increased flexibility for load balancing because every 
transaction or database operation can be completely executed at any system since each node can 
directly access the entire database. For instance, it is possible to allocate complex ad hoc queries 
and short on-line transactions to separate systems to avoid resource contention on CPU and 
memory between these conflicting workload types. In a data partitioning system, on the other 
hand, a database operation typically has to be executed where the data reside in order to limit 

the communication overhead. Thus the workload allocation is mainly determined by the 
(physical) data allocation leaving little freedom for dynamic load balancing, e.g. to avoid over- 
loading of some processors. Adding a processor in data partitioning systems is also cumbersome 
since it requires to reallocate the database in order to utilize all systems. The migration from a 
centralized to a multi-system environment Js therefore easier for database sharing since existing 

databases need not be changed. 

2.1 Technical Problems 

To take full advantage of the database sharing architecture, a number of technical problems 
have to be solved, notably in the areas of concurrency and coherence control/Ra88b/, workload 

allocation, and recovery: 

In loosely coupled database sharing systems, inter-node communication is required for 
concurrency and coherence control. Concurrency control is needed to synchronize the ac- 
cesses to the shared database and to enforce global seriatizability. Coherence control has 
to deal with the so-called buffer invalidation problem. This problem arises since every sys- 
tem caches pages from the shared database in its database buffer to limit the number of disk 
I/O's. The resulting replication of pages in main memory also permits multiple systems to 
read the same data concurrently. On the other hand, modification of a page in one database 
buffer makes all copies of that page in other buffers (and on disk) obsolete. Coherence 
control has to make sure that these buffer invafidations are either avoided or detected and 
that all transactions get access to the current versions of database objects. The number of 
messages for concurrency and coherence control has to be kept as low as possible to reduce 
the communication overhead and to limit transaction deactivations due to remote requests. 

Workload allocation is responsible for distributing the transaction workload among the 
processors. This transaction routing should not be statically determined by a fixed allo- 
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cation of terminals and/or programs to nodes, but should be automatic and adaptive with 
respect to changing conditions in the system (e.g. overload situations, node crashes, etc.). 
Effective workload allocation schemes do not only aim at achieving toad balancing to limit 
resource (CPU) contention, but also at supporting efficient transaction processing with a 
minimum of inter-system communication er I/O delays. For this purpose, so-called 
affinity-based routing schemes should be employed that assign transactions with affinity to 
the same database portions to the same node. (For typical on-line transaction types, the 
database reference pattern is generally known from previous executions.) This results in 
improved locality of reference that can be utilized by suitable concurrency control schemes 
to reduce the number of synchronization messages (see Section 2.2). Furthermore, hit ratios 
are improved and the frequency of buffer invalidations can be limited. 

Crash recovery and media recovery are the major recovery forms that require new solutions 
for database sharing. Crash recovery for a failed node has to be performed by the surviving 
nodes in order to provide high availability. In general, lost effects of transactions committed 
at the failed node have to be redone (REDO recovery) while modifications of in-progress 
(failed) transactions may have to be undone. Special recovery actions may be necessary to 
properly continue concurrency and coherence control, e.g. reconstruction of lost control in- 
formation. Media recovery may require the construction of a global log where the modifi- 
cations of all nodes are recorded in chronological order. 

These problems have been addressed in several existing database (disk) sharing systems (e.g. 
IMS Data Sharing, DIGITAL's VaxCluster, and Computer Console's Power System) and vari- 
ous research projects. In the next two subsections (2.2 and 2.3), we review the major solutions 
for concurrency and coherence control in loosely coupled database sharing systems. In Section 
2.4, we then discuss the realization of a closely coupled system that utilizes a shared and non- 
volatile semiconductor store to improve performance. A detailed treatment of workload allo- 
cation and recovery is beyond the scope of this paper, but can be found in two recent reports 
by one of the authors/Ra89a,b/. 

2.2 Concurrency Control 

Various locking schemes and optimistic concurrency control (OCC) methods have been pro- 
posed or implemented for synchronization in database sharing systems. The appeal of OCC is 
that only one remote request per transaction may be needed for concurrency control, namely for 
validation at the transaction's end. On the other hand, the amount of wasted work due to 
transaction restarts (required to resolve concurrency conflicts) can be excessive for transaction 
workloads of moderate or high conflict probability. This basic trade-off could be confirmed in 
detailed, trace-driven simulations of various central and distributed OCC protocols with differ- 
ent conflict resolution strategies/Ra88a,b/. It turned out that locking schemes (described below) 
could obtain comparable performance for read-intensive workloads, but were clearly superior 
with a higher share of update transactions and in the presence of hot spots. Since locking is also 
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the method of choice in all commercially available DBMS, we exclude OCC from further con- 
sideration in this paper. Rather, we are going to describe a central and a distributed locking 
approach together with applicable optimizations to reduce the number of remote (global) lock 
requests. Finally, we briefly discuss the concurrency control methods employed in existing da- 

tabase sharing systems. 

2.2.1 Central Lock Manager (CLM) 

In the central locking protocol, global locks are processed by a CLM running on a designated 
node. In the simplest form, every lock request and release is forwarded to the CLM node. This 
results in two messages per lock request which is not acceptable for high performance trans- 
action processing. Batching of messages reduces the communication overhead, but at the ex- 
pense of increased delays for the synchronous lock requests and thus increased response times. 
(increased response time implies longer lock holding time and thus higher lock contention.) To 
make the CLM approach more viable, two other techniques can be incorporated that utilize lo- 
cality of reference and are able to reduce both the communication overhead and response times: 

6 So-called read optimization /Ra86, Ra88a,b/ allows multiple nodes at the same time to 
grant and release read locks for a database object locally without contacting the CLM. The 
first read access to an object O in a node has to be granted by the CLM. If no write lock 
request is known at the CLM at this point in time, the CLM assigns a so-called read au- 
thorization for O to the requesting node. This read authorization gives the node the per- 

mission to process all further read lock requests and releases for O locally, thus reducing the 
number of synchronization messages and response time delays. To make full use of this 
idea, read authorizations generally are held beyond the transaction's end (in contrast to 
regular read locks) to allow other transactions to read the respective objects without lock 
delay. Thus, the effectiveness of this technique increases with increasing locality of read ac- 
cesses. Write accesses, however, may suffer from this technique since a write lock cannot 

be granted until the CLM has revoked all read authorizations. 

* A similar concept, called sole interest, can be applied to grant an authorization for a local 
synchronization of read and write requests (write authorization). Such an authorization is 
assigned to a node when it requests a lock at the CLM and no other node has issued a lock 
request for the same page ('sole interest'). Of course, a write authorization can be assigned 
only to one node at a time, and has to be revoked by the CLM as soon as any other node 
requests a read or write lock for the same object. If a read request causes the sole interest 
revocation, the write authorization is degraded into a read authorization. Otherwise the 
write authorization of the current owner is given up, and assigned to the requesting node (if 

there are no waiting requests from other nodes). 
The sole interest concept pays off only if more lock requests can be locally satisfied than sole 
interest revocations occur. This is because four messages are required for a lock request 
causing a sole interest revocation, compared to two messages without sole interest concept. 
In contrast to the read optimization, the effectiveness of sole interest depends on the amount 
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of node-specific locality of reference requiring that different node~ should reference differ- 
ent portions of the database. Affinity-based transaction routing is necessary to support this 
requirement. 

Both techniques can be applied at different levels of the object hierarchy, e.g. database files and 
pages or record types and tuples. For instance if a node holds a write (read) authorization for 
an entire file, all (read) lock requests against pages of this file can be locally synchronized. The 
complexity of such a hierarchical scheme, however, is substantially higher compared to the case 
where read optimization and sole interest are restricted to the smallest concurrency control 
granules. Also, for "important" files or record types to which a substantial share of the database 
references is directed, it is generally unlikely that only one node has interest or that only read 
references are issued for longer periods of time. Rather, thrashing-like situations with only 
short-lived assignments and frequent revocations of read/write authorizations may occur that 
cause more additional messages than are saved. 

2.2.2 Primary Copy Locking (PCL) Approach 

In this distributed scheme, the database is divided into logical partitions and each node is as- 
signed the synchronization responsibility (or primary copy authority, PCA) for one partition. 
Lock requests against the local partition can be handled without communication overhead and 
delay, while other requests have to be directed to the authorized processor holding the PCA for 
the respective partition. In order to reduce the number of remote lock requests, the PCA and 
workload allocations should be coordinated such that transaction types are generally allocated 
to the node where most data references can be locally synchronized. In addition, a read opti- 
mization can also be employed for the primary copy scheme where the read authorizations are 
assigned and revoked by the PCA Lock Manager. This permits a local read synchronization of 
objects belonging to the partition of another node. Details of the protocol can be found in 
/Ra86/. 

At first sight, the need to determine a PCA allocation could be considered as a disadvantage of 
PCL compared to the CLM approach. This is not the case, however, since both schemes have 
to coordinate workload allocation and concurrency control to limit the number of remote re- 
quests which is easier achieved for PCL. In the CLM scheme, sole interest assignments are dy- 
namically assigned and revoked if more than one node wants to access a given data object. Thus 
these assignments can be highly unstable (in particular for hot spot objects) making it difficult 
and expensive to determine for an incoming transaction where it can be processed with few re- 
mote lock requests. The PCA allocations, on the other hand, are stable and do not change when 
multiple systems need access to the same data. This makes it easier to achieve an affinity-based 
transaction routing such that the number of remote lock requests can be kept low. tn general, 
it is even possible to use an efficient table-driven approach where the assignment of transaction 
types to processors is determined by a routing table which needs only be adapted after signif- 
icant changes in the toad profile or system state (e.g. processor crash). PCL also has no ana!o- 
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gous disadvantage to the expensive revocations of write authorizations in the CLM scheme. 
Simulation studies have confirmed the problems of the sole interest concept that resulted in in- 
ferior overall performance compared to database sharing systems employing the PCL approach 
/RaSga,b/. 

Given that the PCA allocation is a special form of data allocation, the question arises what ad- 
vantages remain for database sharing with PCL compared to data partitioning. The first point 
is that the PCA allocation is only a logical data assignment (represented by internal control 
structures) which can therefore be more easily adapted to changing workload/system conditions 
than the physical data allocation for data partitioning. Secondly, there is still a high potential 
for load balancing since the PCA allocation only determines the distribution of lock overhead 
while the largest part of a transaction can be processed on any node. In data partitioning sys- 
tems, on the other hand, the data allocation determines where the database operations, typically 
accounting for the largest part of a transaction's path length, have to be processed. (This holds 
at least for the simple operations prevalent in on-line transactions.) Finally, the performance 
of database sharing with PCL depends to a lesser degree on how well the database can be par- 
titioned to reduce the number of remote requests. This is because main memory caching and 
read optimization efficiently support concurrent read accesses to the same data in multiple sys- 
tems. In data partitioning systems, typically all read and write accesses to an object take place 

at the "owner" node. 

2.2.3 Concurrency Control in Existing Database Sharing Systems 

So far the PCL approach and the read optimization (which is essentially applicable to all locking 
protocols for database sharing) have only been implemented in simulation systems, but not in 
prototypes or commercially available database sharing systems. A CLM scheme is used in the 
database sharing system of Computer Console/WlH83/and in the Amoeba prototype/Tr83, 
Sh85/. They rely on a sole interest concept for coarse granules (files, record types) for reducing 
the communication overhead, although the effectiveness of this approach is questionable (see 
above), in particular if no appropriate strategies for affinity-based transaction routing are pro- 
vided. IMS Data Sharing /SUW82/ uses a token ring protocol for lock processing (called 
"pass-the-buck'3 where remote lock requests can be batched together with the token to reduce 
the communication overhead. The protocol has been restricted to two systems since the turn- 
around time per global lock request (token circulation time) grows proportionally with the 

number of nodes. 

A distributed lock protocol is employed in DIGITAL's VaxCluster/KLS86/. It has some simi- 
larities with the PCL approach since for every data object there is a "master" node being re- 
sponsible for synchronization. The mastership, however, is not predetermined like the PCA 
allocation, but is dynamically assigned to the node that issues the first lock request for an object. 
The current mastership distribution is stored in a directory that is partitioned among all systems 
according to a hash function. This indirection results in up to four messages per lock request 
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(two to determine the master node from the directory, and two for the lock request itself), com- 
pared to at most two messages for PCL. 

In addition, mastership assignments are unstable (similar to sole interest assignments) and 
therefore difficult to consider for transaction routing (affinity-based transaction routing is not 
supported in VaxCluster configurations). 

The TPF (Transaction Processing Facility) operating system kernel supports disk sharing for up 
to eight systems/Sc87, TPF88/. A rudimentary form of locking is performed by the shared disk 
controllers that maintain a lock table in their memory. This approach provides "free" locking 
for objects that have to be read from disk since the lock request can then be combined with the 
disk I/O. For already cached data, however, a separate lock request (I/O command) must be 
sent to the disk controller. The disk controllers only support exclusive locks on a per node basis 
rather than for individual transactions. Their lock table is of fixed size (5t2 entries) so that a 
lock request may be denied if the table is already full. 

2.3 Coherence Control 

Coherence control has to ensure that every transaction sees only up-to-date data despite the fact 
that cached data may be invalidated by update transactions running on other systems, The 
solution of this problem depends on the concurrency control granularity as well as on the strat- 
egy for update propagation to disk: 

Since the data replication in the buffers takes place on page level, concurrency control on 
smaller granules becomes more complex than in centralized DBMS. Record-level concur- 
rency control would permit that different records of the same page are concurrently modi- 
fied in different buffers (systems). As a result, none of the buffers would hold a completely 
up-to-date page and writing out these pages could lead to lost updates. Since merging the 
modifications is expensive (or even impossible), at least writes between different systems 
generally have to be synchronized on page level. Record-level conm,'rrency control may be 
used for read accesses and concurrent read/write accesses within the same system. 

A FORCE scheme/HR83/for  update propagation requires that all modified pages are 
forced to disk before the modifying transaction commits. This approach is often unaccept- 
able for performance reasons since it causes a high I/O overhead and significant response 
time increase for update transactions. Nevertheless, in contrast to centralized DBMS all 
existing database sharing systems still employ the FORCE scheme thus sacrificing per- 
formance for the sake of a simplified crash recovery/Ra89b/ and coherence control (the 
most recent page version can always be found on disk with FORCE). We feel that 
NOFORCE should also be supported for database sharing since the extra problems can be 
solved with reasonable effort. 
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For NOFORCE the permanent database on disk is generally obsolete so that one has to 
keep track of where the most recent version of a modified page can be obtained. Instead of 
reading the page from disk, a page request may have to be sent to the system holding the 
current page version in its buffer. The page can then be returned to the requesting system 
either directly over the communication lines or across the shared disk. With a high-speed 
interconnect, the direct page transmission is faster by at least a factor of 10. 

In the following, we outline the three major approaches to coherence control in database sharing 

systems: 
6 broadcast invalidation, 
6 on-request invalidation, 
6 and avoidance of buffer invalidations by retention locks. 

The first approach is applicable to any concurrency control method, but introduces the greatest 
overhead. On-request invalidation is compatible with the CLM and PCL approaches, while 
retention locks are limited to schemes that apply a sole interest concept, such as the CLM 

scheme. The discussion assumes that locking takes place on page level. 

2.5.1 Broadcast Invalidation 

This simple approach, in combination with FORCE, is used in most existing database sharing 
systems. To detect buffer invalidations, a broadcast message is sent at the end of every update 
transaction indicating which pages have been modified. Invalidated pages can thus immediately 
be removed from the database buffers. On the other hand, the write locks of the update trans- 
action must not be released until all systems have acknowledged that they have processed the 
broadcast message and discarded the invalidated page copies (otherwise, access to obsolete data 
would be possible). Thus, response time is increased as well as a substantial communication 

overhead is introduced that grows with the number of systems. 

NOFORCE requires additional provisions in order to provide a transaction with the most recent 
page copies. For this purpose, a special table can be maintained in every system indicating for 
all (recently) modified pages where the latest modification has been performed and thus from 
where the current page version can be requested. These tables are maintained without extra 
communication overhead by using information from the broadcast messages. By periodically 
broadcasting which modified pages have been written to disk, the number of table entries can 
be limited. These notifications can be piggy-backed to the broadcast invalidation messages. 

2.3,2 Oil-Request Invalidation 

This approach uses extended information in the global lock table which allows the lock manager 
(CLM or PCA Lock Manager) to decide upon the validity of a buffer page together with the 
lock request processing. Since a lock has to be acquired before a (cached) page can be accessed, 
obsolete page copies can be detected without any additional communication, a main advantage 
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compared to broadcast invalidation schemes. The information needed to detect buffer invali- 
dations (e.g. page sequence numbers) is updated for every modification, together with the release 
of the write lock. 

For NOFORCE, it can additionally be recorded in the global lock table from which system the 
current version of a modified" page can be requested. A different approach is possible for PCL 
by always providing the PCA nodes with the most recent version of the pages from its partition 
/Ra86/. No extra communication is necessary for this by sending modified pages to the PCA 
node together with the message required for releasing the write lock. Thus the most recent page 
version can always be obtained from the PCA node (or from disk in the case the page does no 
longer reside in the PCA node's database buffer). This permits a combination of lock requests 
and page requests because the PCA node can use the message to grant a lock to an external 
transaction for transmitting the respective page as well. In this way, extra messages are avoided 
not only for detecting buffer invalidations, but also for exchanging modified pages between dif- 

ferent systems. An added advantage is that buffer invalidations are now only possible for 
cached pages belonging to the partition of another node. Ideally, most modifications are per- 
formed at the PCA node thus limiting the number of buffer invalidations and page transfers. 

An on-request invalidation scheme based on page sequence numbers is used in DIGITAL's  
VaxCluster/KLS86/in combination with FORCE. In/Ra86/,  an alternative is described that 
uses so-called invalidation vectors to detect buffer invalidations so that there is no need to store 
version numbers in every page. 

2.3.3 Avoidance of Buffer Invalidations 

Buffer invalidations are only possible for cached pages that are modified at another system. 
While a cached page is locked by an active transaction, it is protected against remote modifica- 
tions and thus cannot get invalidated. Consequently, buffer invalidations are avoided altogether 
if pages are purged from the database buffer before the lock release at EOT. Such a buffer purge 
approach, however, is of little relevance since it implies a FORCE strategy for modified pages 
and poor hit ratios since inter-transaction locality cannot be utilized anymore. 

A better approach is to retain the pages in main memory but to protect them from invalidation 

by special retention locks. This approach is particularly attractive for the CLM scheme since 
it can be combined with the realization of a sole interest concept and read optimization on page 
level. In this case, we have two types of retention locks represented by a sole interest (SI) as- 
signment or a read authorization (RA). The use of these locks can be characterized as follows: 

6 For every cached page either a retention lock or a regular transaction lock must be held at 
the respective node. 

6 For modified pages not currently locked by an active transaction, a SI retention lock must 
be held guaranteeing that no other system holds a lock or retention lock (copy) for that 
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page. This exclusive retention lock permits a local synchronization of read and write locks 
(write authorization). 

Unmodified pages are protected by an RA retention lock which can be held by multiple 
systems concurrently. In addition, RA guarantees that no system holds a write lock or SI 
retention lock thus permitting a local synchronization of read accesses (read authorization). 

If a lock request has to be be processed by the CLM, it may be necessary to revoke incom- 
patible retention locks before the lock can be granted. Before a retention lock is released, 
the corresponding page is purged from the buffer to avoid its invalidation. A modified page 
(SI revocation) is either written to disk or directly transferred to the requesting system if it 
is going to obtain a sole interest assignment. In the latter case, a separate page request is 
avoided since the page exchange is combined with the SI revocation. 

If a page is replaced from the database buffer due to normal replacement decisions, this 
indicates that it has not been referenced for some time. In this case, the associated retention 

lock should voluntarily be released to limit the number of revocations and lock table entries. 

Although we cannot go into further details, it should have become clear that this approach 
avoids buffer invalidations without introducing extra messages in addition to the ones needed 

for revocation of read and write authorization. 

2.4 Use of Shared Semiconductor Stores 

A prime objective in the design of a loosely coupled database sharing system is to reduce the 
number of remote requests for transaction processing. This is because the communication 
overhead associated with message passing reduces the effective CPU utilization and thus the 
achievable transaction rates. In addition, response times and thus data contention are increased. 
Data contention may become a performance bottleneck if lock conflicts prevent full utilization 
of all processors. This danger grows with the CPU speed and the number of CPU's as higher 
multiprogramming levels have to be applied to fully utilize the added capacity. 

Closely coupled systems aim at a more efficient cooperation between systems, e.g. by utilizing 
shared semiconductor stores. In contrast to tightly coupled multiprocessors with shared main 
memory, however, the computers connected to the shared store are autonomous (i.e. they have 
their own main memory and copy of operating system and DBMS) to improve failure isolation. 
Still, access to such a store should be very fast (e.g. a few microseconds) to permit a synchronous 
access, i.e. without releasing the CPU to avoid a process switch (overhead). This is in contrast 
to disk caches or solid-state disks that offer a disk-oriented interface (channel commands) with 

access times of about 2 ms per page. 

A so-called extended storage appears to be more appropriate. In current mainframes (e.g. IBM 
3090), it is used as a fast paging device which is controlled by the operating system. Access 
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times in the order of 50-100 microseconds per page permit a synchronous access. Although the 

extended storage is currently volatile and cannot be shared by multiple systems, we expect that 
these limitations can be resolved in the near future. Providing non-volatility is comparatively 
easy, e.g. with a battery backup or uninterruptible power supply. More critical is the design of 
the access interface and the controllers of a shared store. Providing a tow-level interface, as in 
the current extended storage, simplifies the hardware and facilitates fast access times. In this 
case, use and administration of the shared data is mainly up to the software (operating system, 
DBMS) in the accessing systems. On the other hand, putting more functionality (e.g. global lock 
management) into the storage controllers makes the hardware more complex and error-prone 
and limits the usefulness of the shared store to special applications. In addition, access times 
are higher and waiting times at the controller may no longer permit a synchronous access. 
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Figure 2.1: Database Sharing System with Global Extended Memory 

In/BHR90/,  a special store called global extended memory (GEM) has been investigated for use 
in database sharing systems. This shared store (Figure 2.1) is assumed to be non-volatile and 
offers a simple interface with fast, synchronous access. To enhance fault isolation, data in the 
GEM cannot directly be manipulated by the accessing systems but has to be read into main 
memory and written back after modification. The access granules are either entire pages or 
smaller units (entries) which may be used to realize simple data structures. Besides of reading 
and writing these granules, hardware instructions like compare&swap are supported to syn- 
chronize concurrent GEM accesses. To deal with GEM failures, duplicate data storage in in- 
dependent GEM storage units is possible (analogous to disk mirroring). 

Despite the simple access interface, GEM can be utilized in database sharing systems for various 
tasks. One possibility is to store a global lock table in GEM to permit every node to decide upon 
whether or not a lock request can be granted. With appropriate design of the lock protocol (e.g. 
only a reduced lock/coherence information on a per-system basis needs to be maintained in 
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GEM), locks may be granted in a few microseconds so that negligible overhead is introduced for 
global concurrency control. The non-volatility of GEM significantly speeds up write I/O's for 
database and log pages. By maintaining a global database buffer as well as local and global log 
files in GEM, a dramatic reduction in I/O delays and I/O overhead can be expected. The most 
general application of GEM, not limited to database sharing, is to use it for inter-system com- 
munication such that all messages are exchanged across the GEM. For this purpose, a "mes- 
sage" first has to be written to GEM and the destination system is notified by an interrupt 
indicating the GEM location of the message. The message is then read by the destination system 
from the specified address. This message exchange may incur substantially less overhead than 
traditional message passing over communication lines, provided the interrupt handling can be 
kept inexpensive. 

A preliminary performance evaluation of GEM usage is reported in /BHR90/. A simulation 
study has been conducted that compares the performance of loosely coupled database sharing 
systems with closely coupled configurations using GEM. In both cases, the PCL protocol has 
been employed for concurrency/coherence control, but with a message exchange via GEM in the 
closely coupled configurations. In addition, it was assumed that the entire database and all log 
files are GEM-resident. The GEM configurations achieved significantly better response times 
since i/O and communication delays were largely eliminated. In addition, the CPU's could be 
utilized at very low multiprogramming levels since very few transaction delays had to be over- 
lapped. As a consequence, lock contention was almost negligible in contrast to the loosely cou- 
pled configurations where much higher concurrency levels had to be applied. The reduced lock 
contention decreases the need for fine-granularity locking and facilitates vertical growth (faster 
CPU's) as well as horizontal growth (scalability). Horizontal growth is also supported by the 
reduced communication overhead compared to the loosely coupled configurations. 

2.5 Summary 

Database sharing is a locally distributed architecture that offers a high potential for achieving 
high transaction rates, high availability, and horizontal growth. Although existing database 
sharing systems still fall short to fully utilize this potential, the techniques for better solutions 
are available. Key factors in the design of high performance database sharing systems include 
the use of a NOFORCE strategy for update propagation to disk, affinity-based transaction 
routing, integrated solutions to concurrency and coherence control, and the use of a fast com- 
munication system. For loosely coupled configurations, we recommend the primary copy locking 
scheme together with on-request invalidation for coherence control. The central Lock Manager 
approach (using retention locks to avoid buffer invalidations) may be appropriate in closely 
coupled database sharing systems where the global lock table is maintained in a shared semi- 
conductor store. Shared, non-volatile semiconductor stores like a GEM promise a significant 
reduction in I/O and communication delays and can thus facilitate vertical and horizontal 
growth. We expect such stores to be used for high-volume transaction processing in centralized 

and closely coupled systems during this decade. 
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3. Workstation-Server Database Management 

In the following, we will explain why workstation-server database management is a logical con- 

sequence of  the shortcomings of fully centralized database management I on the one hand (e.g. 
"pure" mainframe DBMS) and fully decentralized database management (PC/workstation 
DBMS) on the other hand (Section 3.1). We will then address the requirements of "non- 

standard" database management applications w.r.t, the integration of workstations into the 
overall system scenario (Section 3.2). The essential properties of a workstation-server DBMS 

will be explained, and the characteristics and implementation of a specific prototype system - the 

Advanced Information Management Prototype (AIM-P)/DAB6, Pi87, DL89/-  will be discussed 
(Section 3.3). Finally, Section 3.4 will give a short summary. 

3.1 Why Workstation-Server Database Management? 

Traditionally, database management has been done in a (logically) centralized fashion: The 

DBMS was located on a large mainframe computer 2, and data access was done by the users 
from numerous "unintelligent" terminals without much processing power of their own. This sce- 
nario can also be called a server- or host-based solution for database management (Figure 3.1). 
The user in that scenario is fully dependent on the availability and response time of the DBMS 
and the underlying hardware and system software. 

/ 
Figure 3.1: Server-Based Solution for Database Management 

To gain more independence from a centralized system with its overloading and casual failures 
affecting all users, a workstation-based solution was often seen as an alternative (Figure 3.2): 
The user has all his data locally on the workstation. He does not depend anymore on the avail- 
ability and response time of a remote system with hundreds or thousands of users. For a high 

The term "centralized database management" stands for a logically centralized system, i.e. a single 
system image. We do not necessarily mean physical centralization (one computer). 

2 ... or on several mainframe computers in case of database sharing or distributed DBMS, 
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performance computer graphics application or a computer simulation, for instance in engineer- 
ing, such a local DBMS may provide a proper basis for data management with reasonable per- 
formance. A disadvantage of a fully decentralized environment, even if the workstations are 
linked via a network, is that data integrity cannot be easily enforced, that inconsistent and in- 
compatible database schemes and data instances may occur, and that integrated data evaluation 
cannot be accomplished anymore. 

Figure 3.2: Workstation-Based Solution (Network of Workstations) 

As a consequence, techniques have been investigated to find a solution so that data integrity can 
still be enforced by a centralized system with powerful data management capabilities based on 
a mainframe computer and actual data processing can be done locally and rather autonomously 
on a workstation in order to meet ambitious performance and availability requirements. Such a 
workstation-server-based solution may encompass different levels of centralization and inte- 
gration: A group of workstations may be integrated, for instance, via a departmental computer. 
All departmental computers, in turn, may be further integrated via a large mainframe computer. 

This scenario is shown in Figure 3.3. 

] [~177773  

Figure 3.3: Workstation-Server-Based Solution 
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Workstations may of course also be directly linked to a server without a departmental  computer 

in between. Long term data  management is done on the server (server database) 3 whereas short 

term data  management is done on the workstations (workstation database).  

Data which shall be processed on a workstation are extracted from the server database and 

transferred to the workstation where they are put  into the workstation database.  The work- 

station database now contains a local copy of selected data  items from the server database. The 

local da ta  may be kept on the workstation for days or weeks, depending on the application 

characteristics. The data are changed locally and the changes are kept as "private data" on the 

workstation as long as the data are still inconsistent and should not be shown to other users 

(uncommitted data).  Finally, when a new logically consistent state of the data  has been reached, 

the changed da ta  are transferred back into the server database where the changes become visible 

for other users as well. This is a typical scenario for database usage in a workstation-server en- 

vironment. 

A workstation-server DBMS cannot be implemented just by taking a client-server DBMS or 

coupling some existing DBMS to run on the server and on the workstation, respectively. Rather, 

a tight cooperation between the server DI3MS and the workstation DBMS is a must to achieve 

acceptable performance and to provide the expected functionality, These requirements, which 

come from the special needs of "non-standard" database applications w.r.t, workstation-server 

integration, will now be discussed in more detail. 

3.2 Workstation-Server DBMS: Requirements and Solutions 

On a more technical level, the following list of requirements can now be defined for a 

workstation-server DBMS. To make things more clear, we also sketch the solutions to some ex- 

tent. 

3.2.1 Efficient Check-Out and Check-in Processing 

Data which shall be processed on a workstation are extracted from the server database and 

transferred to the workstation. The data  thereby become "private data" of the user at the 

workstation (check-out processing). These data must therefore be locked in the server database 

appropriately (see also Section 3.2.2 below). The check-out specification (which da ta  shall be 

extracted and transferred) can be done via normal database query statements, for instance in 

SQL. These query statements are embedded in an application program on the workstation and 

are sent to the server via services of the Application Program Interface (APt). Since the work- 

station user is usually not a database expert, ad hoc queries from the screen (i.e. via an On-line 

The server database may be a physically centralized, a distributed, or a shared one. The term 
"mainframe" or "server" therefore denotes a logically centralized system which may consist of several 
computers. 
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Interface) are of minor interest in a workstation-server scenario. The requested data (may be a 

large set of tuples) are sent to the workstation where they are stored in a local database table. 

Since a single check-out may often affect a large amount of  data (e.g. if a large engineering ob- 
ject shall be extracted), data transfer to the workstation should be set-oriented on a suitable data 

granule (set of tuples, set of  database pages .... ) to minimize the number of interactions between 
server and workstation. 

When the requested data are on the workstation, further processing can be done rather 

autonomously, i.e. the user may continue his work locally even if the server or the communi- 
cation line are not available for a certain period of time because of a failure or system shutdown. 

Autonomy is one of the essential properties and benefits of workstation-server database man- 

agement. 

When a logical unit of work, like a non-trivial modification of an engineering object, has been 
finished and the data are logically consistent again, check-in can be done to transfer the private 
data back into the server database. These private data will then become public data again. 

Data check-out and check-in can be done on different levels within the system hierarchy of a 
DBMS. We will here only explain the "extreme cases" of these levels of check-out and check-in 

processing; more details on that can be found in/De86/.  

Let us assume that complex objects are checked-out and checked-in. These complex objects may 

consist of data which are stored in different database tables with some interrelationship between 

these tables, like referential integrity constraints. A scheme for complex object data exchange on 

SQL command level is shown in Figure 3.4. 

The check-out request is done via SQL commands. Database objects (tuples from the query re- 

suit) are sent from the server to the workstation where local modifications are done on these data 

(insertions, updates, and deletions). Finally, when all modifications have been performed, these 
local modifications are materialized in the server database via another series of SQL commands 
which are sent from the workstation back to the server. A consequence is that the same amount 
of  work (SQL statements) which has been performed on the workstation (SQL command exe- 

cution) must be done once again during check-in processing. This is in fact a duplication of  work 

which makes check-in processing very expensive. 

For that reason, to save time during check-in, data exchange on page level can be seen as an- 

other (extreme) alternative (Figure 3.5). 

During check-out, a set of database pages covering all the selected data is extracted (on SQL 
request) and transferred to the workstation - instead of individual tuples in result table format, 
as we discussed it before (Figure 3.4). The extracted database pages are modified on the work- 
station (direct update of the page contents) and are transferred back into the server database 
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Figure 3.4: Data Exchange on SQL Command Level 

at check-in time. Check-out on page level may be more efficient than on tupte level, depending, 
however, on the actual data distribution (number of selected tuples per database page, etc.). 
Check-in on page level will usually be more efficient than on SQL level since data are now 
checked-in on a "very physical level" (pages with all the materialized changes) rather than on a 
logical level (SQL commands to be executed on the server database). Moreover, a single (modi- 
fied) database page may contain a large number of changed tuples which had to be modified 
step by step in case of SQL command level check-in processing. The "delta symbol" }n Figure 
3.5 (~ )  shall indicate that only the "deltas" (i.e. the changed pages) are sent back to the server 
for check-in processing whereas the unchanged pages can be discarded on the workstation. 

There are many more alternatives (and related problems) for check-out and check-in processing 
which cannot be discussed here in full detail. Especially the implementation of check-in proc- 
essing is not an easy task if it shall be done on a physical level (tuple, page) rather than on an 
SQL command level. Since check-in on a physical level more or less "circumvents" normal SQL 
services, the implementer will have to cope with problems of (logical) integrity enforcement, in- 
dex update, catalog (schema) changes, and proper locking granularity. If pages are checked-in 
via DBMS Buffer or Segment Manager services, logical integrity can of course not be enforced 
by mechanisms and system components which are located on a higher level in the DBMS hier- 
archy (Access Path Manager, Record Manager, etc.). The implementer of the check-in mech- 
anism must therefore find a solution to take care of data integrity. One (partial) solution is to 
separate check-out and check-in of "normal" data (primary data) and secondary data like cata- 
logs, access path data, etc. Primary data are then checked-in on page level whereas (changed) 
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Figure 3.5: Data Exchange on Page Level 

catalog and access path data are checked-in on a higher level as catalog or access path update 
commands. This, however, makes check-out and check-in processing still more complicated since 

more kinds of data exist and must be distinguished/DO87/. 

3.2.2 Long Transactions and Long Locks 

Long locks are needed to protect private data on a workstation for an arbitrary (application- 
dependent) period of time, i.e. for the duration of a long transaction. Data are considered as 

private data after check-out processing when they have been transferred from the server to the 

Data which are checked-out and transferred to a workstation are of course not physically removed 
from the server database, i.e. they can, in principle, still be accessed by other (parallel) users, trans- 
actions, and workstations. Therefore, some protection (such as appropriate locking) is required to 
avoid problems of lost updates and other inconsistencies in the server database. 
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workstation. It should be up to the user - and not up to the DBMS - when these private data 
become public again. A complex engineering design process on a workstation may keep the af- 

fected data privately for days or weeks. During the time between check-out and check-in proc- 
essing, the related "master copy" of the data on the server must be protected from being changed 
or deleted by other users? 

Traditional transaction management and locking in DBMS are not sufficient to support these 

long transactions. Traditionally, locks are always "short" and transactions are aborted in case 
of a system failure or normal shutdown. Short locks are kept in a lock table in (virtual) memory 
and the lock table contents is lost when the system restarts after a failure or normal shutdown. 

In fact, there is even no need to write that lock table to non-volatile storage for normal short 

transactions. Long transactions, on the other hand, must not be aborted in case of a failure or 
normal shutdown: their locks must rather be held over any number of  system failures or shut- 

downs. Therefore, to protect the private data appropriately and to shield the users from each 

other, long transactions require long locks without any fixed upper bound regarding duration. 

The implementation of these long locks and short locks must be rather different from each other: 

Because of the requirement of durability, long locks must be written to non-volatile storage (on 

the server side), for instance into a database lock table on disk. 

Transaction management must now distinguish between long transactions and short trans- 
actions, and different lock tables and lock modes must also be handled. Both long locks and 

short locks must be observed by parallel users and their transactions. The kind of action to be 
performed when a lock is encountered must be different, however, for short and long locks and 

their transactions: If a transaction t I encounters a short lock held by another transaction t 2, tl 
will usually be blocked and put into a wait state. It will be resumed when the lock has been re- 
leased. In case of  a long lock, however, blocking t~ and putting it into a wait state does not make 

much sense since waiting for hours, days, or weeks is usually not acceptable. Therefore, if a re- 
quested object is currently not accessible because of a long lock, the requesting transaction must 

be informed rather than being blocked. It is then up to the requesting user or application pro- 

gram how to react (try again later, access other data, check who is the owner of the locked data, 
etc.). 

3.2.3 Separation of Recovery Unit and Isolation Unit 

Traditionally, a database transaction serves both as recovery unit and isolation unit: Isolation 
unit means that parallel users and transactions are fully isolated from each other; database 

modifications made by a running transaction are not visible to other (parallel) users before end 
of transaction (EOT). This is usually achieved via locks. Recovery unit means that the trans- 
action is the unit of U N D O  or REDO processing in case of a failure/Re81/. 

In a workstation-server environment a long transaction will act as an isolation unit but cannot 
act as a recovery unit, since the work of days or weeks within a long transaction' cannot simply 
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be aborted in case of a failure. Therefore, in addition to long transactions, short transactions 
("normal" database transactions) are still needed as a basis for recovery processing on the server 

(during check-out and check-in processing) and on the workstation (for local UNDO or REDO 

processing after a failure). 

3.2.4 Fast Processing of Database Objects on the Workstation 

The fact that there are usually no parallel users or other ~resource consumers" on a workstation 
is an important reason for establishing a workstation-server configuration. Obviously, data ex- 
change with a local workstation DBMS in single-user mode can be much faster than with a re- 
mote DBMS in a multi-user environment. Any data exchange with any DBMS, however, is 
more or less time consuming since the enhanced functionality of a DBMS is always expensive 
in usage of system resources. Since many kinds of workstation applications, like computer-based 
simulation, CAD, etc., are operating under very tight response time restrictions, suitable mech- 
anisms are required to exploit all the functionality of a powerful workstation DBMS and to al- 

leviate the performance implications. 

At some level of abstraction, a workstation database can be seen as a large local buffer (on 
non-volatile storage) for data which should not be retrieved from and written back to the server 
database every time. If the workstation DBMS is now augmented by an object cache in virtual 
memory, another stage of buffering has been introduced and can be used for further perform- 

ance optimization. 

The object cache resides between the. application program and the workstation DBMS. Data are 
loaded on application request (object fetch) from the workstation database into the object cache. 
To save processing time and DBMS calls, data (object) loading into the cache should be done 
on a set-oriented basis. The data are thereby automatically transformed from the database for- 
mat (tuple format) into an application-oriented (programming language) format. The data in the 
object cache can then be directly processed with "normal" programming language statements 
without further DBMS interaction. Processing of data in the programming language is of course 
much faster than any DBMS call, be it a local (workstation DBMS) or a remote one (server 
DBMS). This is especially important for database applications with a large number and high 
frequency of data fetch operations: Once the data resides in the object cache, numerous DBMS 
calls with expensive parameter passing and checking, tong instruction paths, etc. can be avoided 

and replaced by simple in-core data addressing. 

Object cache management, however, is only simple as long as retrieval operations are considered. 
If the object cache shall be used for data modifications as well and if data modifications shall 
be done in the cache via normal programming language statements, the problem of update 
materialization must be solved: If updates are done in the object cache without any DBMS 
interaction or notification, it is quite hard - or might even be impossible - for the DBMS to find 
out at the end which data have actually been changed and must therefore be written to the da- 
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tabase. One approach to support that kind of "change detection" could be to force the applica- 
tion program to flag all changes appropriately so that the DBMS must only scan the data and 
look for the flags in order to find out what to do. This, however, burdens the application pro- 
gram with the additional task of "flag management" and substantially complicates the pro- 
gramming task. it is therefore still under discussion how object caching can also be efficiently 
used in a scenario where data are read and changed via an object cache/Ke89/. 

3.2.5 Some Open Issues 

The above list of requirements (and possible solutions) for a workstation-server database man- 
agement system is of course still incomplete and there are also still some open issues w.r.t, the 
functionality of such a system. 

One of these issues deals with transaction management on the workstation: What do workstation 
users actually expect from a workstation DBMS w.r.t, recovery management? If the different 
kinds of log data needed for local transaction management are only kept on the workstation, 
these data may easily be affected by some kind of major "disaster" (complete toss of data) since 
an office is usually not a computing center w.r.t data protection and security. In some cases, this 
could mean that the work of days or weeks gets lost because of some kind of failure. Moving 
certain tog related data (archive copies of the workstation database and/or log files) back to the 
server may provide a better basis to recover from these kinds of failures. This could be done, for 
instance, once per day to provide a "safepoint" on the server for recovery processing after a 
failure. 

Another open issue deals with the required query processing capabilities on the workstation. The 
question is whether the full power of SQL should also be available for local processing on the 

workstation (and not only for check-out processing on the server). As an alternative, an Appli- 
cation Program Interface (API) with restricted processing capabilities on the workstation (just 
navigation on the data, etc.) might be sufficient for a large class of applications. Answers to 
these - and other - questions, however, can only be given if there is more experience with 
worlcstation-server database management systems in practice. 

3.3 Workstation-Server Database Management in A I M - P  

The Advanced Information Management Prototype (AIM-P) is a prototype DBMS which has 
been developed at the IBM Heidelberg Scientific Center/Da86, Li88, DL89/. From the very 
beginning, AIM-P has been designed with workstation-server processing in mind. AIM-P sup- 
ports an extended NF 2 (Non First Normal Form) data model with an upward-compatible SQL 
dialect, called HDBL (Heidelberg DataBase Language), that is able to handle complex and 
"flat" database objects in a uniform way. AIM-P is an extensible database management system: 
The user may define his own (complex) data types and his own functions based on these types. 
User defined data types and functions are an integral part of the AIM-P data model and lan- 
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guage interface (HDBL). The AIM-P data model, its language, and its extensibility mechanisms 

have already been described elsewhere/PT85, PA86, Li88/; these discussions shall not be re- 

peated here. Rather, we wilt concentrate on the overall AIM-P system architecture and on 

workstation-server related aspects. 
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Figure 3.6: AIM-P System Architecture 

Figure 3.6 shows the AIM-P system architecture in a workstation-server environment. AIM-P 

does not offer full SQL (or HDBL) functionality for local database processing on the work- 

station. There is also no Query Processor for HDBL processing on the workstation (upper left 

part of Figure 3.6). The workstation DBMS owns a subset of functions of the server DBMS with 

some additional services which do not exist in the server DBMS. The API Runtime System, for 

instance, which is based on the Result Walk Manager, is a specific component of the workstation 

DBMS without a related server component. The API Runtime System, together with the API 
Preprocessor, implements a cursor interface which is to be used by the Applications on top. In 

contrast to the principles of SQL, the cursor concept of AIM-P is a hierarchical one, i.e. cursor 

hierarchies are used to process complex objects of the extended NF 2 data model/ES88/. 

Retrieval and update processing of database objects on the workstation is done via the following 

steps (for a more detailed discussion see/KDG87, KG89/): 
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Complex objects which shall be processed on a workstation are selected from the server da- 

tabase via an HDBL query statement. The query statement, which is embedded in an ap- 

plication program on the workstation, is sent to the server DBMS and the requested data 

are extracted from the server database. 

The server DBMS writes these "query result data" into a so-called query result table. This 
is a temporary database table on disk in a special data transfer format/KDG87,  GM90/. 
This data transfer format can then directly be used for sending the data to the workstation 
(next step) without any additional data conversion. 

The result table is sent to the workstation where it is written to disk by the workstation 

DBMS. It is now seen as a "local database table" as part of the workstation database. 

The result table (still in the data transfer format) can now be processed by the application 

program on the workstation. This is done via cursor-based operations. Complex objects can 
be transferred from the result table into the application program (and vice versa), can be 

modified, and can be deleted. New complex objects can be created in virtual memory (in the 

object cache) and can then be written into the result table on disk. Most of these operations 
can be performed in different modes with or without set orientation and with or without 
complex object orientation. By combination of complex object and set orientation, a large set 

of complex objects can be transferred from the result table to the application program (and 
vice versa) via a single DBMS call. This is a very efficient means for data exchange between 
the database and the application program/ES88/. 

The AtM-P API is currently available for two programming languages, PASCAL /ES88/ 

and APL2/RKP90/. PASCAL type declarations, which may be embedded in an application 
program, can automatically be derived from AIM-P database type definitions /DAB8/. 
These type declarations and the related PASCAL program variables are the program 
counterpart for AIM-P database objects of any size and complexity. 

If the contents of the result table on the workstation has been changed by the application 

program (via insertions, updates, or deletions), these changes must finally be propagated 

back into the server database. This is done at check-in time. Change propagation is per- 
formed on a "per complex object basis", i.e. the changed parts (only the changed parts!) of 

a complex object are sent back to the server for materialization in the server database. In 
case of an object deletion, this means that just a "delete command" is sent back without any 
related data. In case of an object insertion, an insert command and the new data must be 

sent to the server. The more interesting - and also more challenging - case is a mixture of 

insertions, updates, and deletions within one complex object. Specific mechanisms like delta 
propagation (propagate only the changed data back to the server) and multi-levelflagging 
(set flags to simplify change detection in a complex object) are used to minimize the amount 
of data which must be sent back to the server and to make change detection and 
materialization on the server an easy task/KDG87/. 
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As a starting point for system usage and evaluation, the AIM-P workstation-server architecture 
has been implemented on a single mainframe computer in a VM/CMS operating system envi- 

ronment. Workstation and server are virtual machines on the same computer. This is of course 
not yet the final workstation-server scenario. Porting to an AIX environment on RS/6000 

hardware is currently under way. The ultimate goal wilt be to have a workstation DBMS on 
RS/6000 AIX and a server DBMS on VM/CMS (both may be AIM-P components). In such a 
non-homogeneous environment with data exchange between different hardware and software 

platforms, with different character sets and encoding rules, etc., the problem of a neutral and 
system independent data exchange format for complex object transfer must be solved. Some 

conceptual work and implementation in that direction has already been done/GM90/ .  

3.4 Summary 

Workstation-server database management seems to be a very promising approach for many 

"non-standard" database application areas, especially in engineering/CAD. The engineering re- 

quirements w.r.t, performance, availability, and functionality of the DBMS (data modelling, 

query capabilities, version management, etc.) can be met - to a large extent - by a workstation- 

server DBMS. Currently, most workstation-server DBMS are still in the prototype stage, and 

there are still many problems to be solved in the implementation of efficient mechanisms for 

workstation-server cooperation. Especially, as it was shown in Section 3.2, algorithms for a tight 
cooperation between server and workstation DBMS are rather "tricky" in design and imple- 

mentation. Nevertheless, we are optimistic that workstation-server cooperation with quite good 

solutions for these problems will be available in many DBMS products in the early '90s. 

4. Distributed Database Management 

Distributed file management and data exchange based on files are well-known techniques since 

many years. Distributed database management also has a longer tradition than database sharing 

or workstation-server database management. Distributed database management intends to pro- 

vide a single system image of the data even if they are located on different computers at different 
locations. The users need not be aware of the place where the data are actually stored within a 

computer network. There is a (local) DBMS on each computer within the network as part of the 

(global) distributed DBMS. In contrast to database sharing, these local DBMS do not share any 
data, neither on disk nor in the system buffers; in contrast to workstation-server database man- 
agement, there is no check-out and check-in processing and there are no long locks or long 
transactions for engineering applications in a distributed database management system.S 

5 However, the concepts of distributed database management and workstation-server database man- 
agement can be integrated into a single system (see also remarks in Section 5). 
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Distributed database management reflects the fact that large organizations are usually not fully 

centralized; rather, data and applications very often reside on different computers at different 
locations because of application and organizational demands. Since distributed database man- 

agement is already a well-established discipline and rather well-understood in computer 
science6, we will not go into the details as we did it for database sharing (Section 2) and 
workstation-server database management (Section 3). Rather, we will shortly explain how dis- 

tributed database management evolved from distributed file management and file transfer and 

we will then address some of the major problems encountered in the implementation of distrib- 

uted database management systems. 

File transfer is probably the oldest (and still flourishing) form of "data distribution": Data are 
written to file at one location, and the file is sent to another location for further processing. 

There is usually a lot of manual interaction in such a scenario, and the user himself must take 
care that the right data are at the right place when they are to be processed. Besides file transfer, 

where a file is actually sent to another location, remotefi le access is another means to access and 
manipulate data from a file which is stored at another location. Such as traditional file man- 
agement is the predecessor of (centralized) database management, file transfer and remote file 
access can be seen as predecessors of distributed database management. 

An excellent overview on distributed database management is given, for instance, in /Mo86/. 

That paper also gives a good overview on some major distributed database management systems 
which are either still in the prototype stage or are already commercially available as products 
on the market. From/Mo86/i t  becomes also quite obvious that the major problems in current 

distributed database management technology are distributed query processing and optimization 

and transaction management. Most of the products which claim to be a distributed DBMS are 

either weak in optimization (if one query affects database tables on different locations) or in 

transaction management (if one transaction affects data on different locations). However, most 

of these more technical problems have already been solved in research to some extent and these 
solutions will show up in products very soon. 

5. Conclusions and Outlook 

In this paper, an overview was given on three major directions of distributed and cooperative 
database management: 

6 database sharing, 

i workstation-server database management, 
6 and distributed database management. 

Since distributed database management is already quite well-known in research and practice 
since several years (in contrast to database sharing and workstation-server database manage- 

See/CP87, Br82, OV89, Ro80, Mo86/and many other text books and publications on that subject. 
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ment), it was only shortly addressed in the paper. There are also some excellent text books on 
that subject /CP87, Br82, OV89/ whereas similar compendia on database sharing and 
workstation-server database management do not yet exist. Moreover, quite a number of dis- 
tributed database management products are commercially available now whereas full-scale da- 
tabase sharing and workstation-server DBMS products are still rare. 

All these approaches to distributed and cooperative database management will find their market 
in the future, and there will also be combinations of some of these concepts: The server DBMS 
in a workstation-server environment, for instance, may be a distributed one or a database shar- 
ing system, and each node of a distributed DBMS may be a database sharing system again. 

In order not to "overload" the paper, we decided to concentrate on these three directions of dis- 
tributed and cooperative database management; some other aspects of distributed and cooper- 
ative database management could therefore not be addressed. One such aspect, for instance, 

deals with remote database access (RDA) /ECMA86/ .  In RDA a protocol is defined that ena- 
bles application programs to access data of a remote database in a system independent way. 
More details about RDA and other approaches are given in the literature. 
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