
263

Trends in Distributed and Cooperative Database Management

K. Kfispert
IBM Heidelberg Scientific Center

Advanced Information Management Dept.
Tiergartenstr. 15

D-6900 Heidelberg, Germany

E. Rahm
University of Kaiserslautern
Dept. of Computer Science

Erwin-Schr6dinger-Str.
D-6750 Kaiserslautern, Germany

I. Introduction

In the past, database management systems (DBMS) coutd roughly be subdivided into two major
classes which one might call PC/workstation DBMS and (centralized) mainframe DBMS.

PC/workstation DBMS provide a set of data management functions in a stand-alone fashion
as a single-user system on a personal computer or workstation. There is no real data exchange
between a PC/workstation DBMS and other data management systems, remote users, or DBMS
at another place. Some PC/workstation DBMS provide limited functions to extract data as a
"snapshot" from a remote database to process these data locally on the PC/workstation; there
is, however, usually no way to propagate changed data back from the PC/workstation to the
remote database at the end. Moreover, PC/workstation DBMS are not able to provide an inte-
grated view of the data in a large organization.

Centralized mainframe DBMS run on a large computer in a multi-user environment and are
usually rather elaborated w.r.t, their functionality (concurrency control, database recovery, au-
thorization, etc.). Data management capabilities are centralized on a single computer, and da-
tabase access is done from "unintelligent" terminals, i.e. from rather simple devices without
much internal computing power of their own. On a mainframe DBMS, data integration and
data exchange between different users is basically no problem since all the data reside in the
same database. On the other hand, the users (sometimes hundreds or thousands) of a mainframe
DBMS strongly depend on the availability of the computer and the related system software and
on the response time of the system which might be rather unpredictable in many cases. It is
therefore quite impossible, for instance, to run a real-time application (CAD application, simu-
lation of a technical process~ etc.) in a multi-user environment on a mainframe DBMS since the
response time will vary drastically depending on the actual system workload. If the applications
(for instance in banking, airline reservation, etc.) get larger and larger and thousands of termi-

264

nals are connected to a single computer system and DBMS, a severe bottleneck might occur
which cannot always be removed just by installing a more powerful computer; in many cases,
the specific installation will already be at the upper end of the scale of available computing
power. Moreover, if the computer system in such an environment is not available for a while,
all users and their applications are directly affected and cannot continue their running oper-
ations. Finally, centralized mainframe DBMS are not able to reflect the organizational structure
of large companies very well: on the one hand, data integration is of course still a must (to en-
force data consistency, etc.) but, on the other hand, the "owners" of the data (divisions, depart-
ments, etc.) might be spread all over the world so that there are good reasons to spread their
data as well instead of having them all on a single centralized site.

To cope with these shortcomings of traditional PC/workstation and centralized mainframe
DBMS, new concepts have been elaborated which go in various directions.

One approach is the idea of database sharing. Database sharing intends to solve the problem of

limited growth in computer performance (no larger single computer available) as well as the
problem of limited availability of a single computer system (in case of a system failure, computer
operation and database access are completely down for some time). In the database sharing
approach, a hardware and operating system environment is set up where several computing
systems (usually mainframe computers) are connected in a way that
6 each of these computer systems runs its own DBMS code and has its own main storage and

database buffers,
6 these computer systems and their DBMS also share the same data set (database files) on

disk,
i they are coupled via some high-speed communication line (such as channel-to-channel) to

ensure fast data exchange between any two systems.

From the database user's point of view, database sharing provides a single system image since
the user needs not be aware of the computer where the database requests are actually processed.
With such an overall system architecture, more computers can easily be added if the computing
power of the existing ones is not sufficient anymore to meet the application demands. Hardware
and software failures of single components (a single computer) do not necessarily affect system
availability since the surviving "n-l" computers can continue their operation and take over the
workload of the system which has failed. Load balancing (transaction scheduling), synchroni-
zation, and recovery are important issues in database sharing and a lot of research has already

been done to come up with suitable solutions.

In a distributed DBMS, each node and each DBMS has its own data on disk; data are parti-
tioned, i.e. there are - in contrast to database sharing - no shared data (files) on disk. The nodes
are usually located at remote sites so that there are also no fast communication lines available
between these nodes. In a distributed DBMS, similar to a database sharing environment, a sin-
gle system image may be provided, i.e. the place (node) where the data are stored may be fully

265

transparent from a user's point of view. Therefore, the data can be stored at a place where they
are most frequently needed (at a specific division or department within a large organization) but

are still accessible from any other place within that organization as well. Data partitioning can
be done in different ways and on different granularities, and data can also be replicated in order
to speed up processing. Prominent problems which must be solved are related to query process-
ing and optimization (how to retrieve the data from these different places in an efficient way,
how to perform join operations efficiently, etc.) and update processing (how to materialize up-
dates at different places (nodes) in a way that the data are still consistent after a system crash
or some other kind of failure).

Workstation-server DBMS are another approach to distributed and cooperative database man-
agement. The basic idea of workstation-server DBMS is the use of many workstations (e.g. in
engineering applications) with local processing power and a local DBMS which are linked to a
server machine (usually a mainframe) with a server DBMS. For the server DBMS, any of the
above implementation concepts may be used (conventional centralized DBMS, database sharing
approach, distributed DBMS). Workstation autonomy and very fast local data processing at the
workstation are important issues in that environment. The data which shall be processed by a
user at a workstation are checked-out from the database server and sent to a workstation where
local processing is done. Local processing may last for days and weeks, for instance if a large
engineering design process must be done. Long locks are set on these data to ensure that the data
integrity cannot be violated by parallel users at other workstations. At the workstation site, there
is a close interaction and very frequent data exchange between the user (his application pro-
gram) and the local DBMS. The local DBMS must be designed in a way to support that kind
of interaction very efficiently. Concepts like an "object cache" are an appropriate solution to

speed up data access from an application program. A workstation-server DBMS must also
support efficient check-in processing to propagate changed data back from the workstation to
the server. Mechanisms which support a tight cooperation between database server and work-
station turned out to be a very practicable solution to achieve that goal.

The main part of this paper is organized as follows: In Section 2, concepts and implementation
of the database sharing approach will be discussed. Section 3 deals with workstation-server da-
tabase management systems, and in Section 4 distributed database management will be ad-
dressed. Finally, Section 5 wilt give a summary and an outlook together with some concluding
remarks.

2. Database Sharing

One approach to overcome the performance and availability limitations of centralized DBMS
is database (data) sharing. In a database sharing system, the transaction workload is processed
on multiple locally coupled computing systems (usually mainframe computers) that have direct
physical access to the entire database on disk (therefore, this approach is also known as "shared
disk'3. Each of the computer systems runs its own copy of the operating system and DBMS,

266

and has its own main memory and database buffers. Communication between different nodes
typically takes place by means of message passing over a high-speed interconnect such as
channel-to-channel adapters. An alternative to such loosely coupled systems is the use of shared
semiconductor stores for data exchange (close coupling) to avoid the communication overhead
associated with message passing.

A main advantage of database sharing compared to other distributed architectures (e.g. data
partitioning, see Section 4) is that there is no need to physically partition and allocate the data-
base among the systems. This results in an increased flexibility for load balancing because every
transaction or database operation can be completely executed at any system since each node can
directly access the entire database. For instance, it is possible to allocate complex ad hoc queries
and short on-line transactions to separate systems to avoid resource contention on CPU and
memory between these conflicting workload types. In a data partitioning system, on the other
hand, a database operation typically has to be executed where the data reside in order to limit

the communication overhead. Thus the workload allocation is mainly determined by the
(physical) data allocation leaving little freedom for dynamic load balancing, e.g. to avoid over-
loading of some processors. Adding a processor in data partitioning systems is also cumbersome
since it requires to reallocate the database in order to utilize all systems. The migration from a
centralized to a multi-system environment Js therefore easier for database sharing since existing

databases need not be changed.

2.1 Technical Problems

To take full advantage of the database sharing architecture, a number of technical problems
have to be solved, notably in the areas of concurrency and coherence control/Ra88b/, workload

allocation, and recovery:

In loosely coupled database sharing systems, inter-node communication is required for
concurrency and coherence control. Concurrency control is needed to synchronize the ac-
cesses to the shared database and to enforce global seriatizability. Coherence control has
to deal with the so-called buffer invalidation problem. This problem arises since every sys-
tem caches pages from the shared database in its database buffer to limit the number of disk
I/O's. The resulting replication of pages in main memory also permits multiple systems to
read the same data concurrently. On the other hand, modification of a page in one database
buffer makes all copies of that page in other buffers (and on disk) obsolete. Coherence
control has to make sure that these buffer invafidations are either avoided or detected and
that all transactions get access to the current versions of database objects. The number of
messages for concurrency and coherence control has to be kept as low as possible to reduce
the communication overhead and to limit transaction deactivations due to remote requests.

Workload allocation is responsible for distributing the transaction workload among the
processors. This transaction routing should not be statically determined by a fixed allo-

267

cation of terminals and/or programs to nodes, but should be automatic and adaptive with
respect to changing conditions in the system (e.g. overload situations, node crashes, etc.).
Effective workload allocation schemes do not only aim at achieving toad balancing to limit
resource (CPU) contention, but also at supporting efficient transaction processing with a
minimum of inter-system communication er I/O delays. For this purpose, so-called
affinity-based routing schemes should be employed that assign transactions with affinity to
the same database portions to the same node. (For typical on-line transaction types, the
database reference pattern is generally known from previous executions.) This results in
improved locality of reference that can be utilized by suitable concurrency control schemes
to reduce the number of synchronization messages (see Section 2.2). Furthermore, hit ratios
are improved and the frequency of buffer invalidations can be limited.

Crash recovery and media recovery are the major recovery forms that require new solutions
for database sharing. Crash recovery for a failed node has to be performed by the surviving
nodes in order to provide high availability. In general, lost effects of transactions committed
at the failed node have to be redone (REDO recovery) while modifications of in-progress
(failed) transactions may have to be undone. Special recovery actions may be necessary to
properly continue concurrency and coherence control, e.g. reconstruction of lost control in-
formation. Media recovery may require the construction of a global log where the modifi-
cations of all nodes are recorded in chronological order.

These problems have been addressed in several existing database (disk) sharing systems (e.g.
IMS Data Sharing, DIGITAL's VaxCluster, and Computer Console's Power System) and vari-
ous research projects. In the next two subsections (2.2 and 2.3), we review the major solutions
for concurrency and coherence control in loosely coupled database sharing systems. In Section
2.4, we then discuss the realization of a closely coupled system that utilizes a shared and non-
volatile semiconductor store to improve performance. A detailed treatment of workload allo-
cation and recovery is beyond the scope of this paper, but can be found in two recent reports
by one of the authors/Ra89a,b/.

2.2 Concurrency Control

Various locking schemes and optimistic concurrency control (OCC) methods have been pro-
posed or implemented for synchronization in database sharing systems. The appeal of OCC is
that only one remote request per transaction may be needed for concurrency control, namely for
validation at the transaction's end. On the other hand, the amount of wasted work due to
transaction restarts (required to resolve concurrency conflicts) can be excessive for transaction
workloads of moderate or high conflict probability. This basic trade-off could be confirmed in
detailed, trace-driven simulations of various central and distributed OCC protocols with differ-
ent conflict resolution strategies/Ra88a,b/. It turned out that locking schemes (described below)
could obtain comparable performance for read-intensive workloads, but were clearly superior
with a higher share of update transactions and in the presence of hot spots. Since locking is also

268

the method of choice in all commercially available DBMS, we exclude OCC from further con-
sideration in this paper. Rather, we are going to describe a central and a distributed locking
approach together with applicable optimizations to reduce the number of remote (global) lock
requests. Finally, we briefly discuss the concurrency control methods employed in existing da-

tabase sharing systems.

2.2.1 Central Lock Manager (CLM)

In the central locking protocol, global locks are processed by a CLM running on a designated
node. In the simplest form, every lock request and release is forwarded to the CLM node. This
results in two messages per lock request which is not acceptable for high performance trans-
action processing. Batching of messages reduces the communication overhead, but at the ex-
pense of increased delays for the synchronous lock requests and thus increased response times.
(increased response time implies longer lock holding time and thus higher lock contention.) To
make the CLM approach more viable, two other techniques can be incorporated that utilize lo-
cality of reference and are able to reduce both the communication overhead and response times:

6 So-called read optimization /Ra86, Ra88a,b/ allows multiple nodes at the same time to
grant and release read locks for a database object locally without contacting the CLM. The
first read access to an object O in a node has to be granted by the CLM. If no write lock
request is known at the CLM at this point in time, the CLM assigns a so-called read au-
thorization for O to the requesting node. This read authorization gives the node the per-

mission to process all further read lock requests and releases for O locally, thus reducing the
number of synchronization messages and response time delays. To make full use of this
idea, read authorizations generally are held beyond the transaction's end (in contrast to
regular read locks) to allow other transactions to read the respective objects without lock
delay. Thus, the effectiveness of this technique increases with increasing locality of read ac-
cesses. Write accesses, however, may suffer from this technique since a write lock cannot

be granted until the CLM has revoked all read authorizations.

* A similar concept, called sole interest, can be applied to grant an authorization for a local
synchronization of read and write requests (write authorization). Such an authorization is
assigned to a node when it requests a lock at the CLM and no other node has issued a lock
request for the same page ('sole interest'). Of course, a write authorization can be assigned
only to one node at a time, and has to be revoked by the CLM as soon as any other node
requests a read or write lock for the same object. If a read request causes the sole interest
revocation, the write authorization is degraded into a read authorization. Otherwise the
write authorization of the current owner is given up, and assigned to the requesting node (if

there are no waiting requests from other nodes).
The sole interest concept pays off only if more lock requests can be locally satisfied than sole
interest revocations occur. This is because four messages are required for a lock request
causing a sole interest revocation, compared to two messages without sole interest concept.
In contrast to the read optimization, the effectiveness of sole interest depends on the amount

269

of node-specific locality of reference requiring that different node~ should reference differ-
ent portions of the database. Affinity-based transaction routing is necessary to support this
requirement.

Both techniques can be applied at different levels of the object hierarchy, e.g. database files and
pages or record types and tuples. For instance if a node holds a write (read) authorization for
an entire file, all (read) lock requests against pages of this file can be locally synchronized. The
complexity of such a hierarchical scheme, however, is substantially higher compared to the case
where read optimization and sole interest are restricted to the smallest concurrency control
granules. Also, for "important" files or record types to which a substantial share of the database
references is directed, it is generally unlikely that only one node has interest or that only read
references are issued for longer periods of time. Rather, thrashing-like situations with only
short-lived assignments and frequent revocations of read/write authorizations may occur that
cause more additional messages than are saved.

2.2.2 Primary Copy Locking (PCL) Approach

In this distributed scheme, the database is divided into logical partitions and each node is as-
signed the synchronization responsibility (or primary copy authority, PCA) for one partition.
Lock requests against the local partition can be handled without communication overhead and
delay, while other requests have to be directed to the authorized processor holding the PCA for
the respective partition. In order to reduce the number of remote lock requests, the PCA and
workload allocations should be coordinated such that transaction types are generally allocated
to the node where most data references can be locally synchronized. In addition, a read opti-
mization can also be employed for the primary copy scheme where the read authorizations are
assigned and revoked by the PCA Lock Manager. This permits a local read synchronization of
objects belonging to the partition of another node. Details of the protocol can be found in
/Ra86/.

At first sight, the need to determine a PCA allocation could be considered as a disadvantage of
PCL compared to the CLM approach. This is not the case, however, since both schemes have
to coordinate workload allocation and concurrency control to limit the number of remote re-
quests which is easier achieved for PCL. In the CLM scheme, sole interest assignments are dy-
namically assigned and revoked if more than one node wants to access a given data object. Thus
these assignments can be highly unstable (in particular for hot spot objects) making it difficult
and expensive to determine for an incoming transaction where it can be processed with few re-
mote lock requests. The PCA allocations, on the other hand, are stable and do not change when
multiple systems need access to the same data. This makes it easier to achieve an affinity-based
transaction routing such that the number of remote lock requests can be kept low. tn general,
it is even possible to use an efficient table-driven approach where the assignment of transaction
types to processors is determined by a routing table which needs only be adapted after signif-
icant changes in the toad profile or system state (e.g. processor crash). PCL also has no ana!o-

270

gous disadvantage to the expensive revocations of write authorizations in the CLM scheme.
Simulation studies have confirmed the problems of the sole interest concept that resulted in in-
ferior overall performance compared to database sharing systems employing the PCL approach
/RaSga,b/.

Given that the PCA allocation is a special form of data allocation, the question arises what ad-
vantages remain for database sharing with PCL compared to data partitioning. The first point
is that the PCA allocation is only a logical data assignment (represented by internal control
structures) which can therefore be more easily adapted to changing workload/system conditions
than the physical data allocation for data partitioning. Secondly, there is still a high potential
for load balancing since the PCA allocation only determines the distribution of lock overhead
while the largest part of a transaction can be processed on any node. In data partitioning sys-
tems, on the other hand, the data allocation determines where the database operations, typically
accounting for the largest part of a transaction's path length, have to be processed. (This holds
at least for the simple operations prevalent in on-line transactions.) Finally, the performance
of database sharing with PCL depends to a lesser degree on how well the database can be par-
titioned to reduce the number of remote requests. This is because main memory caching and
read optimization efficiently support concurrent read accesses to the same data in multiple sys-
tems. In data partitioning systems, typically all read and write accesses to an object take place

at the "owner" node.

2.2.3 Concurrency Control in Existing Database Sharing Systems

So far the PCL approach and the read optimization (which is essentially applicable to all locking
protocols for database sharing) have only been implemented in simulation systems, but not in
prototypes or commercially available database sharing systems. A CLM scheme is used in the
database sharing system of Computer Console/WlH83/and in the Amoeba prototype/Tr83,
Sh85/. They rely on a sole interest concept for coarse granules (files, record types) for reducing
the communication overhead, although the effectiveness of this approach is questionable (see
above), in particular if no appropriate strategies for affinity-based transaction routing are pro-
vided. IMS Data Sharing /SUW82/ uses a token ring protocol for lock processing (called
"pass-the-buck'3 where remote lock requests can be batched together with the token to reduce
the communication overhead. The protocol has been restricted to two systems since the turn-
around time per global lock request (token circulation time) grows proportionally with the

number of nodes.

A distributed lock protocol is employed in DIGITAL's VaxCluster/KLS86/. It has some simi-
larities with the PCL approach since for every data object there is a "master" node being re-
sponsible for synchronization. The mastership, however, is not predetermined like the PCA
allocation, but is dynamically assigned to the node that issues the first lock request for an object.
The current mastership distribution is stored in a directory that is partitioned among all systems
according to a hash function. This indirection results in up to four messages per lock request

271

(two to determine the master node from the directory, and two for the lock request itself), com-
pared to at most two messages for PCL.

In addition, mastership assignments are unstable (similar to sole interest assignments) and
therefore difficult to consider for transaction routing (affinity-based transaction routing is not
supported in VaxCluster configurations).

The TPF (Transaction Processing Facility) operating system kernel supports disk sharing for up
to eight systems/Sc87, TPF88/. A rudimentary form of locking is performed by the shared disk
controllers that maintain a lock table in their memory. This approach provides "free" locking
for objects that have to be read from disk since the lock request can then be combined with the
disk I/O. For already cached data, however, a separate lock request (I/O command) must be
sent to the disk controller. The disk controllers only support exclusive locks on a per node basis
rather than for individual transactions. Their lock table is of fixed size (5t2 entries) so that a
lock request may be denied if the table is already full.

2.3 Coherence Control

Coherence control has to ensure that every transaction sees only up-to-date data despite the fact
that cached data may be invalidated by update transactions running on other systems, The
solution of this problem depends on the concurrency control granularity as well as on the strat-
egy for update propagation to disk:

Since the data replication in the buffers takes place on page level, concurrency control on
smaller granules becomes more complex than in centralized DBMS. Record-level concur-
rency control would permit that different records of the same page are concurrently modi-
fied in different buffers (systems). As a result, none of the buffers would hold a completely
up-to-date page and writing out these pages could lead to lost updates. Since merging the
modifications is expensive (or even impossible), at least writes between different systems
generally have to be synchronized on page level. Record-level conm,'rrency control may be
used for read accesses and concurrent read/write accesses within the same system.

A FORCE scheme/HR83/for update propagation requires that all modified pages are
forced to disk before the modifying transaction commits. This approach is often unaccept-
able for performance reasons since it causes a high I/O overhead and significant response
time increase for update transactions. Nevertheless, in contrast to centralized DBMS all
existing database sharing systems still employ the FORCE scheme thus sacrificing per-
formance for the sake of a simplified crash recovery/Ra89b/ and coherence control (the
most recent page version can always be found on disk with FORCE). We feel that
NOFORCE should also be supported for database sharing since the extra problems can be
solved with reasonable effort.

272

For NOFORCE the permanent database on disk is generally obsolete so that one has to
keep track of where the most recent version of a modified page can be obtained. Instead of
reading the page from disk, a page request may have to be sent to the system holding the
current page version in its buffer. The page can then be returned to the requesting system
either directly over the communication lines or across the shared disk. With a high-speed
interconnect, the direct page transmission is faster by at least a factor of 10.

In the following, we outline the three major approaches to coherence control in database sharing

systems:
6 broadcast invalidation,
6 on-request invalidation,
6 and avoidance of buffer invalidations by retention locks.

The first approach is applicable to any concurrency control method, but introduces the greatest
overhead. On-request invalidation is compatible with the CLM and PCL approaches, while
retention locks are limited to schemes that apply a sole interest concept, such as the CLM

scheme. The discussion assumes that locking takes place on page level.

2.5.1 Broadcast Invalidation

This simple approach, in combination with FORCE, is used in most existing database sharing
systems. To detect buffer invalidations, a broadcast message is sent at the end of every update
transaction indicating which pages have been modified. Invalidated pages can thus immediately
be removed from the database buffers. On the other hand, the write locks of the update trans-
action must not be released until all systems have acknowledged that they have processed the
broadcast message and discarded the invalidated page copies (otherwise, access to obsolete data
would be possible). Thus, response time is increased as well as a substantial communication

overhead is introduced that grows with the number of systems.

NOFORCE requires additional provisions in order to provide a transaction with the most recent
page copies. For this purpose, a special table can be maintained in every system indicating for
all (recently) modified pages where the latest modification has been performed and thus from
where the current page version can be requested. These tables are maintained without extra
communication overhead by using information from the broadcast messages. By periodically
broadcasting which modified pages have been written to disk, the number of table entries can
be limited. These notifications can be piggy-backed to the broadcast invalidation messages.

2.3,2 Oil-Request Invalidation

This approach uses extended information in the global lock table which allows the lock manager
(CLM or PCA Lock Manager) to decide upon the validity of a buffer page together with the
lock request processing. Since a lock has to be acquired before a (cached) page can be accessed,
obsolete page copies can be detected without any additional communication, a main advantage

273

compared to broadcast invalidation schemes. The information needed to detect buffer invali-
dations (e.g. page sequence numbers) is updated for every modification, together with the release
of the write lock.

For NOFORCE, it can additionally be recorded in the global lock table from which system the
current version of a modified" page can be requested. A different approach is possible for PCL
by always providing the PCA nodes with the most recent version of the pages from its partition
/Ra86/. No extra communication is necessary for this by sending modified pages to the PCA
node together with the message required for releasing the write lock. Thus the most recent page
version can always be obtained from the PCA node (or from disk in the case the page does no
longer reside in the PCA node's database buffer). This permits a combination of lock requests
and page requests because the PCA node can use the message to grant a lock to an external
transaction for transmitting the respective page as well. In this way, extra messages are avoided
not only for detecting buffer invalidations, but also for exchanging modified pages between dif-

ferent systems. An added advantage is that buffer invalidations are now only possible for
cached pages belonging to the partition of another node. Ideally, most modifications are per-
formed at the PCA node thus limiting the number of buffer invalidations and page transfers.

An on-request invalidation scheme based on page sequence numbers is used in DIGITAL's
VaxCluster/KLS86/in combination with FORCE. In/Ra86/, an alternative is described that
uses so-called invalidation vectors to detect buffer invalidations so that there is no need to store
version numbers in every page.

2.3.3 Avoidance of Buffer Invalidations

Buffer invalidations are only possible for cached pages that are modified at another system.
While a cached page is locked by an active transaction, it is protected against remote modifica-
tions and thus cannot get invalidated. Consequently, buffer invalidations are avoided altogether
if pages are purged from the database buffer before the lock release at EOT. Such a buffer purge
approach, however, is of little relevance since it implies a FORCE strategy for modified pages
and poor hit ratios since inter-transaction locality cannot be utilized anymore.

A better approach is to retain the pages in main memory but to protect them from invalidation

by special retention locks. This approach is particularly attractive for the CLM scheme since
it can be combined with the realization of a sole interest concept and read optimization on page
level. In this case, we have two types of retention locks represented by a sole interest (SI) as-
signment or a read authorization (RA). The use of these locks can be characterized as follows:

6 For every cached page either a retention lock or a regular transaction lock must be held at
the respective node.

6 For modified pages not currently locked by an active transaction, a SI retention lock must
be held guaranteeing that no other system holds a lock or retention lock (copy) for that

274

page. This exclusive retention lock permits a local synchronization of read and write locks
(write authorization).

Unmodified pages are protected by an RA retention lock which can be held by multiple
systems concurrently. In addition, RA guarantees that no system holds a write lock or SI
retention lock thus permitting a local synchronization of read accesses (read authorization).

If a lock request has to be be processed by the CLM, it may be necessary to revoke incom-
patible retention locks before the lock can be granted. Before a retention lock is released,
the corresponding page is purged from the buffer to avoid its invalidation. A modified page
(SI revocation) is either written to disk or directly transferred to the requesting system if it
is going to obtain a sole interest assignment. In the latter case, a separate page request is
avoided since the page exchange is combined with the SI revocation.

If a page is replaced from the database buffer due to normal replacement decisions, this
indicates that it has not been referenced for some time. In this case, the associated retention

lock should voluntarily be released to limit the number of revocations and lock table entries.

Although we cannot go into further details, it should have become clear that this approach
avoids buffer invalidations without introducing extra messages in addition to the ones needed

for revocation of read and write authorization.

2.4 Use of Shared Semiconductor Stores

A prime objective in the design of a loosely coupled database sharing system is to reduce the
number of remote requests for transaction processing. This is because the communication
overhead associated with message passing reduces the effective CPU utilization and thus the
achievable transaction rates. In addition, response times and thus data contention are increased.
Data contention may become a performance bottleneck if lock conflicts prevent full utilization
of all processors. This danger grows with the CPU speed and the number of CPU's as higher
multiprogramming levels have to be applied to fully utilize the added capacity.

Closely coupled systems aim at a more efficient cooperation between systems, e.g. by utilizing
shared semiconductor stores. In contrast to tightly coupled multiprocessors with shared main
memory, however, the computers connected to the shared store are autonomous (i.e. they have
their own main memory and copy of operating system and DBMS) to improve failure isolation.
Still, access to such a store should be very fast (e.g. a few microseconds) to permit a synchronous
access, i.e. without releasing the CPU to avoid a process switch (overhead). This is in contrast
to disk caches or solid-state disks that offer a disk-oriented interface (channel commands) with

access times of about 2 ms per page.

A so-called extended storage appears to be more appropriate. In current mainframes (e.g. IBM
3090), it is used as a fast paging device which is controlled by the operating system. Access

275

times in the order of 50-100 microseconds per page permit a synchronous access. Although the

extended storage is currently volatile and cannot be shared by multiple systems, we expect that
these limitations can be resolved in the near future. Providing non-volatility is comparatively
easy, e.g. with a battery backup or uninterruptible power supply. More critical is the design of
the access interface and the controllers of a shared store. Providing a tow-level interface, as in
the current extended storage, simplifies the hardware and facilitates fast access times. In this
case, use and administration of the shared data is mainly up to the software (operating system,
DBMS) in the accessing systems. On the other hand, putting more functionality (e.g. global lock
management) into the storage controllers makes the hardware more complex and error-prone
and limits the usefulness of the shared store to special applications. In addition, access times
are higher and waiting times at the controller may no longer permit a synchronous access.

CM 1
,,,,, I

1
I

L@...ej
log-files

I

I
I

t

GEM

I

• M N

I
le . . .61

c o m m o n DB

Figure 2.1: Database Sharing System with Global Extended Memory

In/BHR90/, a special store called global extended memory (GEM) has been investigated for use
in database sharing systems. This shared store (Figure 2.1) is assumed to be non-volatile and
offers a simple interface with fast, synchronous access. To enhance fault isolation, data in the
GEM cannot directly be manipulated by the accessing systems but has to be read into main
memory and written back after modification. The access granules are either entire pages or
smaller units (entries) which may be used to realize simple data structures. Besides of reading
and writing these granules, hardware instructions like compare&swap are supported to syn-
chronize concurrent GEM accesses. To deal with GEM failures, duplicate data storage in in-
dependent GEM storage units is possible (analogous to disk mirroring).

Despite the simple access interface, GEM can be utilized in database sharing systems for various
tasks. One possibility is to store a global lock table in GEM to permit every node to decide upon
whether or not a lock request can be granted. With appropriate design of the lock protocol (e.g.
only a reduced lock/coherence information on a per-system basis needs to be maintained in

276

GEM), locks may be granted in a few microseconds so that negligible overhead is introduced for
global concurrency control. The non-volatility of GEM significantly speeds up write I/O's for
database and log pages. By maintaining a global database buffer as well as local and global log
files in GEM, a dramatic reduction in I/O delays and I/O overhead can be expected. The most
general application of GEM, not limited to database sharing, is to use it for inter-system com-
munication such that all messages are exchanged across the GEM. For this purpose, a "mes-
sage" first has to be written to GEM and the destination system is notified by an interrupt
indicating the GEM location of the message. The message is then read by the destination system
from the specified address. This message exchange may incur substantially less overhead than
traditional message passing over communication lines, provided the interrupt handling can be
kept inexpensive.

A preliminary performance evaluation of GEM usage is reported in /BHR90/. A simulation
study has been conducted that compares the performance of loosely coupled database sharing
systems with closely coupled configurations using GEM. In both cases, the PCL protocol has
been employed for concurrency/coherence control, but with a message exchange via GEM in the
closely coupled configurations. In addition, it was assumed that the entire database and all log
files are GEM-resident. The GEM configurations achieved significantly better response times
since i/O and communication delays were largely eliminated. In addition, the CPU's could be
utilized at very low multiprogramming levels since very few transaction delays had to be over-
lapped. As a consequence, lock contention was almost negligible in contrast to the loosely cou-
pled configurations where much higher concurrency levels had to be applied. The reduced lock
contention decreases the need for fine-granularity locking and facilitates vertical growth (faster
CPU's) as well as horizontal growth (scalability). Horizontal growth is also supported by the
reduced communication overhead compared to the loosely coupled configurations.

2.5 Summary

Database sharing is a locally distributed architecture that offers a high potential for achieving
high transaction rates, high availability, and horizontal growth. Although existing database
sharing systems still fall short to fully utilize this potential, the techniques for better solutions
are available. Key factors in the design of high performance database sharing systems include
the use of a NOFORCE strategy for update propagation to disk, affinity-based transaction
routing, integrated solutions to concurrency and coherence control, and the use of a fast com-
munication system. For loosely coupled configurations, we recommend the primary copy locking
scheme together with on-request invalidation for coherence control. The central Lock Manager
approach (using retention locks to avoid buffer invalidations) may be appropriate in closely
coupled database sharing systems where the global lock table is maintained in a shared semi-
conductor store. Shared, non-volatile semiconductor stores like a GEM promise a significant
reduction in I/O and communication delays and can thus facilitate vertical and horizontal
growth. We expect such stores to be used for high-volume transaction processing in centralized

and closely coupled systems during this decade.

277

3. Workstation-Server Database Management

In the following, we will explain why workstation-server database management is a logical con-

sequence of the shortcomings of fully centralized database management I on the one hand (e.g.
"pure" mainframe DBMS) and fully decentralized database management (PC/workstation
DBMS) on the other hand (Section 3.1). We will then address the requirements of "non-

standard" database management applications w.r.t, the integration of workstations into the
overall system scenario (Section 3.2). The essential properties of a workstation-server DBMS

will be explained, and the characteristics and implementation of a specific prototype system - the

Advanced Information Management Prototype (AIM-P)/DAB6, Pi87, DL89/- will be discussed
(Section 3.3). Finally, Section 3.4 will give a short summary.

3.1 Why Workstation-Server Database Management?

Traditionally, database management has been done in a (logically) centralized fashion: The

DBMS was located on a large mainframe computer 2, and data access was done by the users
from numerous "unintelligent" terminals without much processing power of their own. This sce-
nario can also be called a server- or host-based solution for database management (Figure 3.1).
The user in that scenario is fully dependent on the availability and response time of the DBMS
and the underlying hardware and system software.

/
Figure 3.1: Server-Based Solution for Database Management

To gain more independence from a centralized system with its overloading and casual failures
affecting all users, a workstation-based solution was often seen as an alternative (Figure 3.2):
The user has all his data locally on the workstation. He does not depend anymore on the avail-
ability and response time of a remote system with hundreds or thousands of users. For a high

The term "centralized database management" stands for a logically centralized system, i.e. a single
system image. We do not necessarily mean physical centralization (one computer).

2 ... or on several mainframe computers in case of database sharing or distributed DBMS,

278

performance computer graphics application or a computer simulation, for instance in engineer-
ing, such a local DBMS may provide a proper basis for data management with reasonable per-
formance. A disadvantage of a fully decentralized environment, even if the workstations are
linked via a network, is that data integrity cannot be easily enforced, that inconsistent and in-
compatible database schemes and data instances may occur, and that integrated data evaluation
cannot be accomplished anymore.

Figure 3.2: Workstation-Based Solution (Network of Workstations)

As a consequence, techniques have been investigated to find a solution so that data integrity can
still be enforced by a centralized system with powerful data management capabilities based on
a mainframe computer and actual data processing can be done locally and rather autonomously
on a workstation in order to meet ambitious performance and availability requirements. Such a
workstation-server-based solution may encompass different levels of centralization and inte-
gration: A group of workstations may be integrated, for instance, via a departmental computer.
All departmental computers, in turn, may be further integrated via a large mainframe computer.

This scenario is shown in Figure 3.3.

] [~177773

Figure 3.3: Workstation-Server-Based Solution

279

Workstations may of course also be directly linked to a server without a departmental computer

in between. Long term data management is done on the server (server database) 3 whereas short

term data management is done on the workstations (workstation database).

Data which shall be processed on a workstation are extracted from the server database and

transferred to the workstation where they are put into the workstation database. The work-

station database now contains a local copy of selected data items from the server database. The

local da ta may be kept on the workstation for days or weeks, depending on the application

characteristics. The data are changed locally and the changes are kept as "private data" on the

workstation as long as the data are still inconsistent and should not be shown to other users

(uncommitted data). Finally, when a new logically consistent state of the data has been reached,

the changed da ta are transferred back into the server database where the changes become visible

for other users as well. This is a typical scenario for database usage in a workstation-server en-

vironment.

A workstation-server DBMS cannot be implemented just by taking a client-server DBMS or

coupling some existing DBMS to run on the server and on the workstation, respectively. Rather,

a tight cooperation between the server DI3MS and the workstation DBMS is a must to achieve

acceptable performance and to provide the expected functionality, These requirements, which

come from the special needs of "non-standard" database applications w.r.t, workstation-server

integration, will now be discussed in more detail.

3.2 Workstation-Server DBMS: Requirements and Solutions

On a more technical level, the following list of requirements can now be defined for a

workstation-server DBMS. To make things more clear, we also sketch the solutions to some ex-

tent.

3.2.1 Efficient Check-Out and Check-in Processing

Data which shall be processed on a workstation are extracted from the server database and

transferred to the workstation. The data thereby become "private data" of the user at the

workstation (check-out processing). These data must therefore be locked in the server database

appropriately (see also Section 3.2.2 below). The check-out specification (which da ta shall be

extracted and transferred) can be done via normal database query statements, for instance in

SQL. These query statements are embedded in an application program on the workstation and

are sent to the server via services of the Application Program Interface (APt). Since the work-

station user is usually not a database expert, ad hoc queries from the screen (i.e. via an On-line

The server database may be a physically centralized, a distributed, or a shared one. The term
"mainframe" or "server" therefore denotes a logically centralized system which may consist of several
computers.

280

Interface) are of minor interest in a workstation-server scenario. The requested data (may be a

large set of tuples) are sent to the workstation where they are stored in a local database table.

Since a single check-out may often affect a large amount of data (e.g. if a large engineering ob-
ject shall be extracted), data transfer to the workstation should be set-oriented on a suitable data

granule (set of tuples, set of database pages) to minimize the number of interactions between
server and workstation.

When the requested data are on the workstation, further processing can be done rather

autonomously, i.e. the user may continue his work locally even if the server or the communi-
cation line are not available for a certain period of time because of a failure or system shutdown.

Autonomy is one of the essential properties and benefits of workstation-server database man-

agement.

When a logical unit of work, like a non-trivial modification of an engineering object, has been
finished and the data are logically consistent again, check-in can be done to transfer the private
data back into the server database. These private data will then become public data again.

Data check-out and check-in can be done on different levels within the system hierarchy of a
DBMS. We will here only explain the "extreme cases" of these levels of check-out and check-in

processing; more details on that can be found in/De86/.

Let us assume that complex objects are checked-out and checked-in. These complex objects may

consist of data which are stored in different database tables with some interrelationship between

these tables, like referential integrity constraints. A scheme for complex object data exchange on

SQL command level is shown in Figure 3.4.

The check-out request is done via SQL commands. Database objects (tuples from the query re-

suit) are sent from the server to the workstation where local modifications are done on these data

(insertions, updates, and deletions). Finally, when all modifications have been performed, these
local modifications are materialized in the server database via another series of SQL commands
which are sent from the workstation back to the server. A consequence is that the same amount
of work (SQL statements) which has been performed on the workstation (SQL command exe-

cution) must be done once again during check-in processing. This is in fact a duplication of work

which makes check-in processing very expensive.

For that reason, to save time during check-in, data exchange on page level can be seen as an-

other (extreme) alternative (Figure 3.5).

During check-out, a set of database pages covering all the selected data is extracted (on SQL
request) and transferred to the workstation - instead of individual tuples in result table format,
as we discussed it before (Figure 3.4). The extracted database pages are modified on the work-
station (direct update of the page contents) and are transferred back into the server database

281

before change;

after change:

Works¢ation Hosf

N|NNWN
llm mN mN

,/ : ¢ t

Figure 3.4: Data Exchange on SQL Command Level

at check-in time. Check-out on page level may be more efficient than on tupte level, depending,
however, on the actual data distribution (number of selected tuples per database page, etc.).
Check-in on page level will usually be more efficient than on SQL level since data are now
checked-in on a "very physical level" (pages with all the materialized changes) rather than on a
logical level (SQL commands to be executed on the server database). Moreover, a single (modi-
fied) database page may contain a large number of changed tuples which had to be modified
step by step in case of SQL command level check-in processing. The "delta symbol" }n Figure
3.5 (~) shall indicate that only the "deltas" (i.e. the changed pages) are sent back to the server
for check-in processing whereas the unchanged pages can be discarded on the workstation.

There are many more alternatives (and related problems) for check-out and check-in processing
which cannot be discussed here in full detail. Especially the implementation of check-in proc-
essing is not an easy task if it shall be done on a physical level (tuple, page) rather than on an
SQL command level. Since check-in on a physical level more or less "circumvents" normal SQL
services, the implementer will have to cope with problems of (logical) integrity enforcement, in-
dex update, catalog (schema) changes, and proper locking granularity. If pages are checked-in
via DBMS Buffer or Segment Manager services, logical integrity can of course not be enforced
by mechanisms and system components which are located on a higher level in the DBMS hier-
archy (Access Path Manager, Record Manager, etc.). The implementer of the check-in mech-
anism must therefore find a solution to take care of data integrity. One (partial) solution is to
separate check-out and check-in of "normal" data (primary data) and secondary data like cata-
logs, access path data, etc. Primary data are then checked-in on page level whereas (changed)

282

Workstation

I I I I I I

C h e c k o u |

SELECT .. .
FROM . . .

WHERE ..,

Hosl

I / • I I] I I I

ob~ee~ o r i e n t e d e d ~ / ~ s ~ ~pcaoe
(ob [ec t bu*fer)

I I

Workstation Host

1/ ' / 'n

4)
~ | I

C h e c k l n
I ',~',~1 I

Figure 3.5: Data Exchange on Page Level

catalog and access path data are checked-in on a higher level as catalog or access path update
commands. This, however, makes check-out and check-in processing still more complicated since

more kinds of data exist and must be distinguished/DO87/.

3.2.2 Long Transactions and Long Locks

Long locks are needed to protect private data on a workstation for an arbitrary (application-
dependent) period of time, i.e. for the duration of a long transaction. Data are considered as

private data after check-out processing when they have been transferred from the server to the

Data which are checked-out and transferred to a workstation are of course not physically removed
from the server database, i.e. they can, in principle, still be accessed by other (parallel) users, trans-
actions, and workstations. Therefore, some protection (such as appropriate locking) is required to
avoid problems of lost updates and other inconsistencies in the server database.

283

workstation. It should be up to the user - and not up to the DBMS - when these private data
become public again. A complex engineering design process on a workstation may keep the af-

fected data privately for days or weeks. During the time between check-out and check-in proc-
essing, the related "master copy" of the data on the server must be protected from being changed
or deleted by other users?

Traditional transaction management and locking in DBMS are not sufficient to support these

long transactions. Traditionally, locks are always "short" and transactions are aborted in case
of a system failure or normal shutdown. Short locks are kept in a lock table in (virtual) memory
and the lock table contents is lost when the system restarts after a failure or normal shutdown.

In fact, there is even no need to write that lock table to non-volatile storage for normal short

transactions. Long transactions, on the other hand, must not be aborted in case of a failure or
normal shutdown: their locks must rather be held over any number of system failures or shut-

downs. Therefore, to protect the private data appropriately and to shield the users from each

other, long transactions require long locks without any fixed upper bound regarding duration.

The implementation of these long locks and short locks must be rather different from each other:

Because of the requirement of durability, long locks must be written to non-volatile storage (on

the server side), for instance into a database lock table on disk.

Transaction management must now distinguish between long transactions and short trans-
actions, and different lock tables and lock modes must also be handled. Both long locks and

short locks must be observed by parallel users and their transactions. The kind of action to be
performed when a lock is encountered must be different, however, for short and long locks and

their transactions: If a transaction t I encounters a short lock held by another transaction t 2, tl
will usually be blocked and put into a wait state. It will be resumed when the lock has been re-
leased. In case of a long lock, however, blocking t~ and putting it into a wait state does not make

much sense since waiting for hours, days, or weeks is usually not acceptable. Therefore, if a re-
quested object is currently not accessible because of a long lock, the requesting transaction must

be informed rather than being blocked. It is then up to the requesting user or application pro-

gram how to react (try again later, access other data, check who is the owner of the locked data,
etc.).

3.2.3 Separation of Recovery Unit and Isolation Unit

Traditionally, a database transaction serves both as recovery unit and isolation unit: Isolation
unit means that parallel users and transactions are fully isolated from each other; database

modifications made by a running transaction are not visible to other (parallel) users before end
of transaction (EOT). This is usually achieved via locks. Recovery unit means that the trans-
action is the unit of U N D O or REDO processing in case of a failure/Re81/.

In a workstation-server environment a long transaction will act as an isolation unit but cannot
act as a recovery unit, since the work of days or weeks within a long transaction' cannot simply

284

be aborted in case of a failure. Therefore, in addition to long transactions, short transactions
("normal" database transactions) are still needed as a basis for recovery processing on the server

(during check-out and check-in processing) and on the workstation (for local UNDO or REDO

processing after a failure).

3.2.4 Fast Processing of Database Objects on the Workstation

The fact that there are usually no parallel users or other ~resource consumers" on a workstation
is an important reason for establishing a workstation-server configuration. Obviously, data ex-
change with a local workstation DBMS in single-user mode can be much faster than with a re-
mote DBMS in a multi-user environment. Any data exchange with any DBMS, however, is
more or less time consuming since the enhanced functionality of a DBMS is always expensive
in usage of system resources. Since many kinds of workstation applications, like computer-based
simulation, CAD, etc., are operating under very tight response time restrictions, suitable mech-
anisms are required to exploit all the functionality of a powerful workstation DBMS and to al-

leviate the performance implications.

At some level of abstraction, a workstation database can be seen as a large local buffer (on
non-volatile storage) for data which should not be retrieved from and written back to the server
database every time. If the workstation DBMS is now augmented by an object cache in virtual
memory, another stage of buffering has been introduced and can be used for further perform-

ance optimization.

The object cache resides between the. application program and the workstation DBMS. Data are
loaded on application request (object fetch) from the workstation database into the object cache.
To save processing time and DBMS calls, data (object) loading into the cache should be done
on a set-oriented basis. The data are thereby automatically transformed from the database for-
mat (tuple format) into an application-oriented (programming language) format. The data in the
object cache can then be directly processed with "normal" programming language statements
without further DBMS interaction. Processing of data in the programming language is of course
much faster than any DBMS call, be it a local (workstation DBMS) or a remote one (server
DBMS). This is especially important for database applications with a large number and high
frequency of data fetch operations: Once the data resides in the object cache, numerous DBMS
calls with expensive parameter passing and checking, tong instruction paths, etc. can be avoided

and replaced by simple in-core data addressing.

Object cache management, however, is only simple as long as retrieval operations are considered.
If the object cache shall be used for data modifications as well and if data modifications shall
be done in the cache via normal programming language statements, the problem of update
materialization must be solved: If updates are done in the object cache without any DBMS
interaction or notification, it is quite hard - or might even be impossible - for the DBMS to find
out at the end which data have actually been changed and must therefore be written to the da-

285

tabase. One approach to support that kind of "change detection" could be to force the applica-
tion program to flag all changes appropriately so that the DBMS must only scan the data and
look for the flags in order to find out what to do. This, however, burdens the application pro-
gram with the additional task of "flag management" and substantially complicates the pro-
gramming task. it is therefore still under discussion how object caching can also be efficiently
used in a scenario where data are read and changed via an object cache/Ke89/.

3.2.5 Some Open Issues

The above list of requirements (and possible solutions) for a workstation-server database man-
agement system is of course still incomplete and there are also still some open issues w.r.t, the
functionality of such a system.

One of these issues deals with transaction management on the workstation: What do workstation
users actually expect from a workstation DBMS w.r.t, recovery management? If the different
kinds of log data needed for local transaction management are only kept on the workstation,
these data may easily be affected by some kind of major "disaster" (complete toss of data) since
an office is usually not a computing center w.r.t data protection and security. In some cases, this
could mean that the work of days or weeks gets lost because of some kind of failure. Moving
certain tog related data (archive copies of the workstation database and/or log files) back to the
server may provide a better basis to recover from these kinds of failures. This could be done, for
instance, once per day to provide a "safepoint" on the server for recovery processing after a
failure.

Another open issue deals with the required query processing capabilities on the workstation. The
question is whether the full power of SQL should also be available for local processing on the

workstation (and not only for check-out processing on the server). As an alternative, an Appli-
cation Program Interface (API) with restricted processing capabilities on the workstation (just
navigation on the data, etc.) might be sufficient for a large class of applications. Answers to
these - and other - questions, however, can only be given if there is more experience with
worlcstation-server database management systems in practice.

3.3 Workstation-Server Database Management in A I M - P

The Advanced Information Management Prototype (AIM-P) is a prototype DBMS which has
been developed at the IBM Heidelberg Scientific Center/Da86, Li88, DL89/. From the very
beginning, AIM-P has been designed with workstation-server processing in mind. AIM-P sup-
ports an extended NF 2 (Non First Normal Form) data model with an upward-compatible SQL
dialect, called HDBL (Heidelberg DataBase Language), that is able to handle complex and
"flat" database objects in a uniform way. AIM-P is an extensible database management system:
The user may define his own (complex) data types and his own functions based on these types.
User defined data types and functions are an integral part of the AIM-P data model and lan-

286

guage interface (HDBL). The AIM-P data model, its language, and its extensibility mechanisms

have already been described elsewhere/PT85, PA86, Li88/; these discussions shall not be re-

peated here. Rather, we wilt concentrate on the overall AIM-P system architecture and on

workstation-server related aspects.

COMMUNICATION FACILITY

\

Worksfation

other wotk~tat~on~

Central Database Server

Figure 3.6: AIM-P System Architecture

Figure 3.6 shows the AIM-P system architecture in a workstation-server environment. AIM-P

does not offer full SQL (or HDBL) functionality for local database processing on the work-

station. There is also no Query Processor for HDBL processing on the workstation (upper left

part of Figure 3.6). The workstation DBMS owns a subset of functions of the server DBMS with

some additional services which do not exist in the server DBMS. The API Runtime System, for

instance, which is based on the Result Walk Manager, is a specific component of the workstation

DBMS without a related server component. The API Runtime System, together with the API
Preprocessor, implements a cursor interface which is to be used by the Applications on top. In

contrast to the principles of SQL, the cursor concept of AIM-P is a hierarchical one, i.e. cursor

hierarchies are used to process complex objects of the extended NF 2 data model/ES88/.

Retrieval and update processing of database objects on the workstation is done via the following

steps (for a more detailed discussion see/KDG87, KG89/):

287

.

2,

3.

.

.

Complex objects which shall be processed on a workstation are selected from the server da-

tabase via an HDBL query statement. The query statement, which is embedded in an ap-

plication program on the workstation, is sent to the server DBMS and the requested data

are extracted from the server database.

The server DBMS writes these "query result data" into a so-called query result table. This
is a temporary database table on disk in a special data transfer format/KDG87, GM90/.
This data transfer format can then directly be used for sending the data to the workstation
(next step) without any additional data conversion.

The result table is sent to the workstation where it is written to disk by the workstation

DBMS. It is now seen as a "local database table" as part of the workstation database.

The result table (still in the data transfer format) can now be processed by the application

program on the workstation. This is done via cursor-based operations. Complex objects can
be transferred from the result table into the application program (and vice versa), can be

modified, and can be deleted. New complex objects can be created in virtual memory (in the

object cache) and can then be written into the result table on disk. Most of these operations
can be performed in different modes with or without set orientation and with or without
complex object orientation. By combination of complex object and set orientation, a large set

of complex objects can be transferred from the result table to the application program (and
vice versa) via a single DBMS call. This is a very efficient means for data exchange between
the database and the application program/ES88/.

The AtM-P API is currently available for two programming languages, PASCAL /ES88/

and APL2/RKP90/. PASCAL type declarations, which may be embedded in an application
program, can automatically be derived from AIM-P database type definitions /DAB8/.
These type declarations and the related PASCAL program variables are the program
counterpart for AIM-P database objects of any size and complexity.

If the contents of the result table on the workstation has been changed by the application

program (via insertions, updates, or deletions), these changes must finally be propagated

back into the server database. This is done at check-in time. Change propagation is per-
formed on a "per complex object basis", i.e. the changed parts (only the changed parts!) of

a complex object are sent back to the server for materialization in the server database. In
case of an object deletion, this means that just a "delete command" is sent back without any
related data. In case of an object insertion, an insert command and the new data must be

sent to the server. The more interesting - and also more challenging - case is a mixture of

insertions, updates, and deletions within one complex object. Specific mechanisms like delta
propagation (propagate only the changed data back to the server) and multi-levelflagging
(set flags to simplify change detection in a complex object) are used to minimize the amount
of data which must be sent back to the server and to make change detection and
materialization on the server an easy task/KDG87/.

288

As a starting point for system usage and evaluation, the AIM-P workstation-server architecture
has been implemented on a single mainframe computer in a VM/CMS operating system envi-

ronment. Workstation and server are virtual machines on the same computer. This is of course
not yet the final workstation-server scenario. Porting to an AIX environment on RS/6000

hardware is currently under way. The ultimate goal wilt be to have a workstation DBMS on
RS/6000 AIX and a server DBMS on VM/CMS (both may be AIM-P components). In such a
non-homogeneous environment with data exchange between different hardware and software

platforms, with different character sets and encoding rules, etc., the problem of a neutral and
system independent data exchange format for complex object transfer must be solved. Some

conceptual work and implementation in that direction has already been done/GM90/ .

3.4 Summary

Workstation-server database management seems to be a very promising approach for many

"non-standard" database application areas, especially in engineering/CAD. The engineering re-

quirements w.r.t, performance, availability, and functionality of the DBMS (data modelling,

query capabilities, version management, etc.) can be met - to a large extent - by a workstation-

server DBMS. Currently, most workstation-server DBMS are still in the prototype stage, and

there are still many problems to be solved in the implementation of efficient mechanisms for

workstation-server cooperation. Especially, as it was shown in Section 3.2, algorithms for a tight
cooperation between server and workstation DBMS are rather "tricky" in design and imple-

mentation. Nevertheless, we are optimistic that workstation-server cooperation with quite good

solutions for these problems will be available in many DBMS products in the early '90s.

4. Distributed Database Management

Distributed file management and data exchange based on files are well-known techniques since

many years. Distributed database management also has a longer tradition than database sharing

or workstation-server database management. Distributed database management intends to pro-

vide a single system image of the data even if they are located on different computers at different
locations. The users need not be aware of the place where the data are actually stored within a

computer network. There is a (local) DBMS on each computer within the network as part of the

(global) distributed DBMS. In contrast to database sharing, these local DBMS do not share any
data, neither on disk nor in the system buffers; in contrast to workstation-server database man-
agement, there is no check-out and check-in processing and there are no long locks or long
transactions for engineering applications in a distributed database management system.S

5 However, the concepts of distributed database management and workstation-server database man-
agement can be integrated into a single system (see also remarks in Section 5).

289

Distributed database management reflects the fact that large organizations are usually not fully

centralized; rather, data and applications very often reside on different computers at different
locations because of application and organizational demands. Since distributed database man-

agement is already a well-established discipline and rather well-understood in computer
science6, we will not go into the details as we did it for database sharing (Section 2) and
workstation-server database management (Section 3). Rather, we will shortly explain how dis-

tributed database management evolved from distributed file management and file transfer and

we will then address some of the major problems encountered in the implementation of distrib-

uted database management systems.

File transfer is probably the oldest (and still flourishing) form of "data distribution": Data are
written to file at one location, and the file is sent to another location for further processing.

There is usually a lot of manual interaction in such a scenario, and the user himself must take
care that the right data are at the right place when they are to be processed. Besides file transfer,

where a file is actually sent to another location, remotefi le access is another means to access and
manipulate data from a file which is stored at another location. Such as traditional file man-
agement is the predecessor of (centralized) database management, file transfer and remote file
access can be seen as predecessors of distributed database management.

An excellent overview on distributed database management is given, for instance, in /Mo86/.

That paper also gives a good overview on some major distributed database management systems
which are either still in the prototype stage or are already commercially available as products
on the market. From/Mo86/i t becomes also quite obvious that the major problems in current

distributed database management technology are distributed query processing and optimization

and transaction management. Most of the products which claim to be a distributed DBMS are

either weak in optimization (if one query affects database tables on different locations) or in

transaction management (if one transaction affects data on different locations). However, most

of these more technical problems have already been solved in research to some extent and these
solutions will show up in products very soon.

5. Conclusions and Outlook

In this paper, an overview was given on three major directions of distributed and cooperative
database management:

6 database sharing,

i workstation-server database management,
6 and distributed database management.

Since distributed database management is already quite well-known in research and practice
since several years (in contrast to database sharing and workstation-server database manage-

See/CP87, Br82, OV89, Ro80, Mo86/and many other text books and publications on that subject.

290

ment), it was only shortly addressed in the paper. There are also some excellent text books on
that subject /CP87, Br82, OV89/ whereas similar compendia on database sharing and
workstation-server database management do not yet exist. Moreover, quite a number of dis-
tributed database management products are commercially available now whereas full-scale da-
tabase sharing and workstation-server DBMS products are still rare.

All these approaches to distributed and cooperative database management will find their market
in the future, and there will also be combinations of some of these concepts: The server DBMS
in a workstation-server environment, for instance, may be a distributed one or a database shar-
ing system, and each node of a distributed DBMS may be a database sharing system again.

In order not to "overload" the paper, we decided to concentrate on these three directions of dis-
tributed and cooperative database management; some other aspects of distributed and cooper-
ative database management could therefore not be addressed. One such aspect, for instance,

deals with remote database access (RDA) /ECMA86/ . In RDA a protocol is defined that ena-
bles application programs to access data of a remote database in a system independent way.
More details about RDA and other approaches are given in the literature.

Acknowledgements
Some of the figures in Section 3 were taken from previous work done by P. Dadam.

References

BHR90

Br82

CP87

Da86

Da88

V. Bohn, T. Hiirder, E. Rahm: Extended Memory Support for High Performance
Transaction Processing. Technical Report, Univ. of Kaiserslautern, Dept. of Com-
puter Science, 1990

O.H. Bray: Distributed Database Management Systems. Lexington Books, D.C.

Heath and Company, 1982

S. Ceri, G. Pelagatti: Distributed Databases - Principles and Systems. McGraw-Hill,

1987

P. Dadam, K. Kiispert, F. Andersen, H. Blanken, R. Erbe, J. Gfinauer, V. Lum, P.
Pistor, G. Walch: A DBMS Prototype to Support Extended NF 2 Relations: An Inte-
grated View on Flat Tables and Hierarchies. Proc. ACM SIGMOD Int. Conf. on
Management of Data, Washington, D.C., 1986, pp. 356-367

P. Dadam, K. Kfispert, N. Sfidkamp, R. Erbe, V. Linnemann, P. Pistor, G. Walch:
Managing Complex Objects in R2D 2. Proc. HECTOR Congress, Vol. II: Basic
Projects, Karlsruhe, 1988, Springer-Verlag, pp. 304-331

291

De86

DL89

DO87

ECMA86

ES88

GM90

HR83

KDG87

Ke89

KG89

KLS86

Li88

U. Deppisch, J. Gfinauer, K. Kfispert, V. Obermeit, G. Walch: Considerations on
Database Cooperation between Server and Workstations (in German). Proc. Gt An-
nual Conf., Berlin, 1986, Springer-Verlag, Informatik-Fachberichte 126, pp. 565-580

P. Dadam, V. Linnemann: Advanced Information Management (AIM): Advanced
Database Technology for Integrated Applications. IBM Systems Journal, VoI. 28,
No. 4, 1989, pp. 661-681

U. Deppisch, V. Obermeit: Tight Database Cooperation in a Server Workstation
Environment. Proc. 7th Int. Conf. on Distributed Computing Systems, Berlin, 1987

ECMA: Remote Database Access, Second Working Draft for a Standard, 1986

R. Erbe, N. S/idkamp: An Application Program Interface for a Complex Object Da-
tabase. Proc. 3rd Int. Conf. on Data and Knowledge Bases, Jerusalem, 1988, pp.
211-226

J. Gfinauer, W. Manus: Exchange of Complex Data Objects in a Heterogeneous
Workstation-Server Environment (in German). IBM Heidelberg Scientific Center,
1990

T. H/irder, A. Reuter: Principles of Transaction-Oriented Database Recovery. ACM
Computing Surveys, Vol. 15, No. 4, 1983, pp. 287-317

K. K/Jspert, P. Dadam, J. G/Jnauer: Cooperative Object Buffer Management in the
Advanced Information Management Prototype. Proc. 13th Int. Conf. on VLDB,
Brighton, U.K., 1987, pp. 483-492

A. Kemper, M. Wallrath, M. Dfirr, K. Kfispert, V. Linnemann: An Object Cache
Interface for Complex Object Engineering Databases. Technical Report TR
89.03.005, IBM Heidelberg Scientific Center, 1989

K. Kfispert, J. Gfinauer: Workstation-Server Database Systems for Engineering Ap-
plications: Requirements, Problems, and Solutions (in German). Proc. GI Annual
Conf., Munich, 1989, Springer-Verlag, Informatik-Fachberichte 222, pp. 274-286

N.P. Kronenberg, H.M. Levy, W.D. Strecker: VAX Clusters: A Closely Coupled
Distributed System. ACM Transactions on Computer Systems, Vol. 4, No. 2, 1986,
pp. 130-146

V. Linnemann, K. Kfispert, P. Dadam, P, Pistor, R. Erbe, A. Kemper, N. S/idkamp,
G. Walch, M. WaUrath: Design and Implementation of an Extensible Database
Management System Supporting User Defined Data Types and Functions. Proc.
14th Int. Conf. on VLDB, Los Angeles, Cal., 1988, pp. 294-305

Mo86

0V89

PA86

Pi87

PT85

Ra86

Ra88a

Ra88b

Ra89a

Ra89b

ReS1

RKP90

Ro80

Sc87

292

C. Mohan: Recent and Future Trends in Distributed Database Management. In:
New Directions for Database Systems (G. Ariav, J. Clifford, eds.), Ablex Publishing
Corporation, 1986, pp. 35-50

T. Ozsu, P. Valduriez: Principles of Distributed Database Systems. Prentice-Hall,
1989

P. Pistor, F. Andersen: Designing a Generalized NF 2 Data Model with an SQL-Type
Language Interface. Proc. 12th Int. Conf. on VLDB, Kyoto, 1986, pp. 278-288

P. Pistor: The Advanced Information Management Prototype: Architecture and
Language Interface Overview. Proc. 3. Journees Bases de Donnees Avancees, Port-
Camargue, France, 1987, pp. 1-20

P. Pistor, R. Traunmfiller: A Database Language for Sets, Lists, and Tables. Tech-
nical Report TR 85.10.004, IBM Heidelberg Scientific Center, 1985

E. Rahm: Primary Copy Synchronization for DB Sharing. Information Systems,
Vol. 11, No. 4, 1986, pp. 275-286

E. Rahm: Concurrency Control in Multiprocessor Database Systems:
Implementation, and Quantitative Evaluation. Springer-Verlag,
Fachberichte 186, 1988

Concepts,
Informatik-

E. Rahm: Design and Evaluation of Concurrency and Coherency Control Tech-
niques for Database Sharing Systems. Technical Report 182/88, Univ. of
Kaiserslautern, Dept. of Computer Science, 1988

E. Rahm: A Framework for Workload Allocation in Distributed Transaction Sys-
tems. Technical Report (ZRI-Bericht 13/89), Univ. of Kaiserslautern, Dept. of

Computer Science, 1989

E. Rahm: Recovery Concepts for Data Sharing Systems. Technical Report
(ZRl-Bericht 14/89), Univ. of Kaiserslautern, Dept. of Computer Science, 1989

A. Reuter: Database Recovery (in German). Carl Hanser Verlag, 1981

M. R6sner, K. K/ispert, P. Pistor: An APL2 Programming Interface for a Database
System Supporting Extended NF 2 Relations. IBM Heidelberg Scientific Center, 1990

J.B. Rothnie: Introduction to a System for Distributed Databases. ACM Trans-
actions on Database Systems, Vol. 5, No. 1, 1980, pp. 1-17

T.W. Scrutchin, Jr.: TPF: Performance, Capacity, Availability. Proc. IEEE Spring

CompCon, 1987, pp. 158-160

Sh85

SUW82

TPF88

Tr83

WIH83

293

K. Shoens et al.: The Amoeba Project. Proc. IEEE Spring CompCon, 1985, pp.
102-105

J. Strickland, P. Uhrowczik, V. Watts: IMS/VS: An Evolving System. IBM Systems
Journal, Vol. 21, No. 4, 1982, pp. 490-510

Transaction Processing Facility, Version 2 (TPF2). General Information Manual,
Release 4.0, IBM Order No. GH20-7450, 1988

I. Traiger: Trends in Systems Aspects of Database Management. Proc. 2nd Int.
Conf. on Databases, 1983, pp. 1-20

J.C. West, M.A. Isman, S.G. Hannaford: PERPOS Fault-Tolerant Transaction
Processing. Proc. 3rd IEEE SyInposium on Reliability in Distributed Software and
Database Systems, 1983, pp. 189-194

