
Datenbank Spektrum manuscript No.
(will be inserted by the editor)

Iterative Computation of Connected Graph Components
with MapReduce
Preprint, accepted for publication in “Datenbank-Spektrum”

Lars Kolb · Ziad Sehili · Erhard Rahm

Received: date / Accepted: date

Abstract The use of the MapReduce framework for

iterative graph algorithms is challenging. To achieve

high performance it is critical to limit the amount of

intermediate results as well as the number of neces-

sary iterations. We address these issues for the impor-

tant problem of finding connected components in large

graphs. We analyze an existing MapReduce algorithm,

CC-MR, and present techniques to improve its perfor-

mance including a memory-based connection of sub-

graphs in the map phase. Our evaluation with several

large graph datasets shows that the improvements can

substantially reduce the amount of generated data by

up to a factor of 8.8 and runtime by up to factor of 3.5.

Keywords MapReduce · Hadoop · Connected Graph

Components · Transitive Closure

1 Introduction

Many Big Data applications require the efficient pro-

cessing of very large graphs, e.g., for social networks or

bibliographic datasets. In enterprise applications, there

are also numerous interconnected entities such as cus-

tomers, products, employees and associated business

activities like quotations and invoices that can be repre-

sented in large graphs for improved analysis [17]. Find-

ing connected graph components within such graphs is

Lars Kolb · Ziad Sehili · Erhard Rahm

Institut für Informatik
Universität Leipzig
PF 100920
04009 Leipzig
Germany

E-mail: {kolb,sehili,rahm}@informatik.uni-leipzig.de

A D
F

H I

E

G

B
C

J

L
K

Fig. 1 Example graph with two connected components.

a fundamental step to cluster related entities or to find

new patterns among entities. A connected component

(CC) of an undirected graph is a maximal subgraph in

which any two vertices are interconnected by a path.

Figure 1 shows a graph consisting of two CCs.

Efficiently analyzing large graphs with millions of

vertices and edges requires a parallel processing. Map-

Reduce (MR) is a popular framework for parallel data

processing in cluster environments providing scalability

while largely hiding the complexity of a parallel system.

We study the problem of efficiently computing the CCs

of very large graphs with MR. Finding connected ver-

tices is an inherently iterative process so that a MR-

based implementation results in the repeated execu-

tion of an MR program where the output of an iter-

ation serves as input for the next iteration. Although

the MR framework might not be the best choice for

iterative graph algorithms, the huge popularity of the

freely available Apache Hadoop implementation makes

it important to find efficient MR-based implementa-

tions. We implemented our approaches as part of our

existing MR-based entity resolution framework [14,13].

The computation of the transitive closure of a bi-

nary relation, expressed as a graph, is closely related

to the CC problem. For entity resolution, it is a typical

post-processing step to compute the transitive closure

2 Lars Kolb et al.

of matching entity pairs to find additional, indirectly

matching entities. For an efficient MR-based computa-

tion of the transitive closure it is important to not ex-

plicitly determine all matching pairs which would result

in an enormous amount of intermediate data to store

and exchange between iterations. For instance, the left

CC of Figure 1 with nine entities results in a transitive

closure consisting of 36 pairs (A,B), (B,C), ..., (H, I).

Instead, we only need to determine the set or cluster of

matching entities, i.e. {A,B,C,D,E, F,G,H, I}, which

all individual pairs can be easily derived from, if nec-

essary. Determining these clusters is analogous to de-

termining the CCs with the minimal number of edges,

e.g. by choosing a CC/cluster representative, say A, and

having an edge between A and any other element of the

CC, resulting in the eight pairs (A,B), (A,C), ...(A, I)

for our example. The algorithms we consider determine

such star-like connected components.

For the efficient use of MapReduce for iterative al-

gorithms, it is of critical importance to keep the num-

ber of iterations as small as possible because each it-

eration implies a significant amount of task schedul-

ing and I/O overhead. Second, the amount of gener-

ated (intermediate) data should be minimized to reduce

the I/O overhead per iteration. Furthermore, one may

cache data needed in different iterations (similar to [4]).

To this end, we propose and evaluate several enhance-

ments over previous MR-based algorithms. Our specific

contributions are as follows:

• We review existing approaches to determine the CCs

of an undirected graph (Section 2) and present an

efficient MR-based algorithm, CC-MR, (Section 3) as

a basis for comparison.

• We propose several algorithmic extensions over CC-MR

to reduce the number of iterations, the amount of

intermediate data, and, ultimately, execution time

(Section 4). A major improvement is to connect edges

early during the map phase, so that the remaining

work for the reduce phase and further iterations is

lowered.

• We perform a comprehensive evaluation for several

large datasets to analyze the proposed techniques in

comparison with CC-MR (Section 5).

2 Related work

2.1 Parallel transitive closure computation

An early iterative algorithm, TCPO, to compute the

transitive closure of a binary relation was proposed in

the context of parallel database systems [22]. It relies

on a distributed computation of join and union oper-

ations. An improved version of TCPO proposed in [6]

uses a double hashing technique to reduce the amount

of data repartitioning in each round. Both approaches

are parallel implementations of sequential iterative al-

gorithms [3] which terminate after d iterations where

d is the depth of the graph. The Smart algorithm [11]

improves these sequential approaches by limiting the

number of required iterations to log d + 1. Although

not evaluated, a possible parallel MR implementation

of the Smart algorithm was discussed in [1]. The pro-

posed approach translates each iteration of the Smart
algorithm into multiple MR jobs that must be executed

sequentially. However, because MR relies on material-

izing (intermediate) results, the proposed approach is

not feasible for large graphs.

2.2 Detection of Connected Components

Finding the connected components of a graph is a well

studied problem. Traditional approaches have a linear

runtime complexity and traverse the graph using depth

first (or breadth first) search to discover connected com-

ponents [21]. For the efficient handling of large graphs,

parallel algorithms with logarithmic time complexity

were proposed [10,20,2] (see [9] for a comparison). Those

approaches rely on a shared memory system and are not

applicable for the MR programming model which relies

on shared nothing clusters. The authors of [5] proposed

an algorithm for distributed memory cluster environ-

ments in which nodes communicate with each other to

access remote memory. However, the MR framework is

designed for independent parallel batch processing of
disjoint data partitions.

An MR algorithm to detect CC in graphs was pro-

posed in [7]. The main drawback of this algorithm is

that it needs three MapReduce jobs for each iteration.

There are further approaches that strive to minimize

the number of required iterations [12,15]. All approaches

are clearly outperformed by the CC-MR algorithm pro-

posed in [19]. For a graph with depth d, CC-MR requires

d iterations in the worst case but needs in practice only

a logarithmic number of iterations according to [19].

This algorithm will be described in more detail in the

following section. A very similar approach was indepen-

dently proposed at the same time in [18]. The authors

suggest four different algorithms of which the one with

the best performance for large graphs corresponds to

CC-MR.

Recent distributed graph processing frameworks like

Google Pregel [16] rely on the Bulk Synchronous Par-

allel (BSP) paradigm which segments distributed com-

putations into a sequence of supersteps consisting of a

Iterative Computation of Connected Graph Components with MapReduce 3

parallel computation phase followed by a data exchange

phase and a synchronization barrier. BSP algorithms

are generally considered to be more efficient for itera-

tive graph algorithms than MR, mainly due to the sig-

nificantly smaller overhead per iteration. However, [18]

showed that in a congested cluster, MR algorithms can

outperform BSP algorithms for large graphs.

2.3 MapReduce

MapReduce (MR) is a programming model designed

for parallelizing data-intensive computing in clusters

[8]. MR implementations such as Hadoop rely on a dis-

tributed file system (DFS) that can be accessed by all

nodes. Data is represented by key-value pairs and a

computation is expressed employing two user-defined

functions, map and reduce, which are processed by a

fixed number of map and reduce tasks.

map : (keyin, valin)→ list(keytmp, valtmp)

reduce : (keytmp, list(valtmp))→ list(keyout, valout)

For each intermediate key-value pair produced in the

map phase, a target reduce task is determined by apply-

ing a partitioning function that operates on the pair’s

key. The reduce tasks first sort incoming pairs by their

intermediate keys. The sorted pairs are then grouped

and the reduce function is invoked on all adjacent pairs

of the same group. This simple processing model sup-

ports an automatic parallel processing on partitioned

data for many resource-intensive tasks.

3 The CC-MR algorithm

The input of the CC-MR algorithm [19] is a graph (V,E)

with a set of vertices V and a set of edges E ⊆ V × V .

The goal of CC-MR is to transform the input graph into

a set of star-like subgraphs by iteratively assigning each

vertex to its “smallest” neighbor, using a total order-

ing of the vertices such as the lexicographic order of

the vertex labels. During the computation of the CCs,

CC-MR checks for each vertex v and its (current) adja-

cent vertices adj(v) whether v is the smallest of these

vertices. If this is already the case (local max state), all

u ∈ adj(v) are assigned to v. A subgraph in the local

max state does already constitute a CC but there may

be further vertices that belong to this CC but still need

to be discovered. If v ist not smaller than all its adjacent

vertices, then there is a vertex u ∈ adj(v) with u < v.

In this merge case, v and adj(v)\{u} are assigned to u

so that the component of v becomes a component of

u. The described steps are applied iteratively until no

more merges occur.

Algorithm 1: CC-MR (reduce)

1 reduce(Vertex source, Iterator<Vertex> values)
2 locMaxState ← false;
3 first ← values.next();
4 if source.id < first.id then
5 locMaxState ← true;
6 output(source, first); // Forward edge

7 lastId ← first.id;
8 while values.hasNext() do
9 cur ← values.next();

10 if cur.id = lastId then
11 continue ; // Remove duplicates

12 if locMaxState then
13 output(source, cur); // Forward edge

14 else
15 output(first, cur); // Forward edge
16 output(cur, first); // Backward edge

17 lastId ← cur.id;

18 if ¬locMaxState ∧ (source.id < lastId) then
19 output(source, first); // Backward edge

In the following we sketch the MR-based implemen-

tation of this approach. We also discuss CC-MR’s load

balancing to deal with skewed component sizes. Fig-

ure 2 illustrates how CC-MR finds the two CCs for the

graph of Figure 1. There are three iterations necessary

resulting in the two star-like components shown in the

lower right corner of Figure 2 with the component cen-

ters A and J .

3.1 MapReduce processing

An edge v−u of the graph is represented by a key-value

pair (v, u). To decide for each vertex v, whether it is in

local max state or in merge state, v and each u ∈ adj(v)

are redistributed to the same reduce task. As illustrated
in Figure 2, for each edge (v, u) of the input graph,

the map function of the first iteration outputs a key-

value pair (v.u, u) as well as an inversed pair (u.v, v).

The output pairs are redistributed to the reduce tasks

by applying a partitioning function which utilizes only

the first component of the composite map output keys

so that all vertices u that are connected to vertex v

will be sent to the same reduce task and vice versa.

CC-MR makes use of the secondary sorting technique.

The reduce tasks sort the incoming key-value pairs by

the entire key and group adjacent pairs by the first key

component only. A group v : [val1, ..., valn] consists of a

key for vertex v and a sorted list of values val1, ..., valn
corresponding to v′s neighbors adj(v). For example, the

first reduce task in Figure 2 receives group A : [B,C,D]

The pseudo-code of the reduce function is shown in

Algorithm 1. The reduce function compares each vertex

v, with its smallest neighbor first ∈ adj(v). If v < first

(local max state), then v is already the smallest vertex

in the (sub)component and a key-value pair (v, u) is

4 Lars Kolb et al.

Pa
rt

it
io

n
 b

y
h

as
h

(K
ey

.f
ir

st
)

m
o

d
 2

 /
 G

ro
u

p
 b

y
K

ey
.f

ir
st

Key Value
A.B B
B.A A
A.C C
C.A A
A.D D
D.A A
D.E E
E.D D
D.F F
F.D D

Key Value
D.H H
H.D D
D.I I
I.D D
F.G G
G.F F
J.K K
K.J J
J.L L
L.J J

Map1: Emit (inverted) edges Reduce1: Algorithm 1

Key Value
B.A A
D.A A
D.E E
D.F F
D.H H
D.I I
F.D D
F.G G
H.D D
J.K K
J.L L
L.J J

Key Value
A B
A C
A D
D E
D F

Key Value
D H
D I
F G
J K
J L

Key Value
A.B B
A.C C
A.D D
C.A A
E.D D
G.F F
I.D D
K.J J

Edges
A-B
A-C
A-D

Edges

A-E, E-A
A-F, F-A
A-H, H-A
A-I, I-A
D-A
D-G, G-D
F-D

J-K
J-L

Pa
rt

it
io

n
 b

y
h

as
h

(K
ey

.f
ir

st
)

m
o

d
 2

 /
 G

ro
u

p
 b

y
K

ey
.f

ir
st

Reduce2: Algorithm 1

Key Value
A.B B
A.C C
A.D D
A.E E
A.F F
A.H H
A.I I
E.A A
G.D D
I.A A

Key Value
D.A A
D.G G
F.A A
F.D D
H.A A
J.K K
J.L L

Edges
A-B
A-C
A-D
A-E
A-F
A-H
A-I

Edges
A-G, G-A
D-A
A-D, D-A

J-K
J-L Pa

rt
it

io
n

 b
y

h
as

h
(K

ey
.f

ir
st

)
m

o
d

 2
 /

 G
ro

u
p

 b
y

K
ey

.f
ir

st

Reduce3: Algorithm 1

Key Value
A.B B
A.C C
A.D D
A,D D
A.E E
A.F F
A.H H
A.G G
A.I I

Key Value
D.A A
J.K K
J.L L

Edges
A-B
A-C
A-D
A-E
A-F
A-G
A-H
A-I

Edges

J-K
J-L

C

G

F I

B E

H D

A

C

G

F I

B E

H D

A J

L

K

A D
F

H I

E

G

B
C

J

L K

L

M

M

L

M

M

L
L

L

L

J

L

K
C

G

F I

B E

H D

A J

L

K

Fig. 2 Example dataflow (upper part) of the CC-MR algorithm for the example graph of Figure 1. A red L indicates a local
max state, whereas relevant merge states are indicated by a red M . Newly discovered edges are highlighted in boldface. The
algorithm terminates after three iterations since no new backward edges (italic) are generated. The map phase of each iteration
i > 1 emits each output edge of the previous iteration unchanged and is omitted to save space. The lower part of the figure
shows the resulting graph after each iteration. Red vertices indicate the smallest vertices of the components. Green vertices
are already assigned correctly whereas blue vertices still need to be reassigned.

outputted for each value u ∈ adj(v) (see Lines 4-6 and

12-13 of Algorithm 1). For example in the first iteration

of Figure 2, the (sub)components A : [B,C,D] and J :

[K,L] are in the LocMaxState (marked with an L).

For the merge case, i.e. v > first, all u ∈ adj(v)\
{first} in the value list are assigned to vertex first.

To this end, the reduce function emits a key-value pair

(first, u) for each such vertex u (Line 15). Additionally,

reduce outputs the inverse key-value pair (u, first) for

each such u (Line 16) as well as a final pair (v, first)

if v is not the largest vertex in adj(first) (Line 19).

The latter two kinds of reduce output pairs represent

so-called backward edges that are temporarily added to

the graph. Backward edges serve as bridges to connect

first with further neighbors of u and v (that might

even be smaller than first) in the following iterations.

In the example of Figure 2, relevant merge states

are marked with an M . The reduce input group F :

[D,G] of the first iteration results in a newly discovered

edge (D,G) and backward edges (G,D), (F,D). Group

D : [A,E, F,H, I] also reaches the merge state and gen-

erates (amongst others) the backward edge (D,A). In

the second iteration, the first reduce task extends the

component for vertex A by adding the newly generated

neighbors of A. The second reduce task merges A and

G (for group D : [A,G]) as well as A and D. Note, that

edges might be detected multiple times, e.g. the edge

(A,D) is generated by both reduce tasks in the second

iteration. Such duplicates are removed in the next iter-

ation (by the first reduce task of the third iteration in

the example) according to Line 11 of Algorithm 1.

The output of iteration i serves as input for iter-

ation i + 1. The map phase of the following iterations

outputs each input edge unchanged (aside from the con-

struction of composite keys), i.e., no reverse edges are

generated as in the first iteration. The algorithm ter-

minates when no further backward edges are generated.

This can be determined by a driver program which re-

peatably executes the same MR job by analyzing the

job counter values that are collected by the slave nodes

and are aggregated by the master node at the end of

the job execution. As iteration i > 1 only depends on

the output of iteration i − 1, the driver program can

replace the input directory of iteration i − 1 with the

output directory of iteration i− 1.

Iterative Computation of Connected Graph Components with MapReduce 5

C

G

E I

J D

H F

B

B: [C, D, E, F, G, H, I, J]
 Local max state
 C

G

E I B

J D

H F

B

Reducer1

Reducer2

Output
edges

B-C
B-D
B-E
B-F
B-G
B-H
B-I
B-J

C

G

E I

J D

H F

B A

I B A

I: [A, B]
 Merge state

Output
edges

A-B, B-A

Reducer1

Reducer2

B: [A, C, E, G, I]
 Merge state

A

A

Output
edges

A-C, C-A
A-E, E-A
A-G, G-A
A-I, I-A

B-A

B: [A, D, F, H, I]
 Merge state

Output
edges

A-D, D-A
A-F, F-A
A-H, H-A
A-J, J-A

B-A

map

Split B

Broadcast
B-A

map

Input graph

B: large

Fig. 3 Load balancing mechanism of CC-MR.

3.2 Load balancing

In the basic approach, all vertices of a component are

processed by a single reduce task. This deteriorates the

scalability and runtime efficiency of CC-MR if the graph

has many small but also a few large components con-

taining the majority of all vertices. CC-MR therefore pro-

vides a simple load balancing approach to deal with

large (sub)components. Such components are identified

in the reduce phase by counting the number of neigh-

bors per group. For large groups whose size exceed a

certain threshold, the reduce task records the small-

est group vertex v in a separate output file used by

the map tasks in subsequent iterations. For a forward

edge (v, u) of such large components, the map task now

applies a different redistribution of the generated key-

value pair (v.u, u) by applying the partitioning function

on the second instead of the first part of the key. This

evenly distributes all u ∈ adj(v) across the available

reduce tasks and, thus, achieves load balancing. Back-

ward edges (v, u), with v being the smallest element of

a large component, are broadcast to all reduce tasks

to ensure that all w ∈ adj(v) can be connected to u.

Apart from these modifications, the algorithm remains

unchanged.

The load balancing approach is illustrated in Fig-

ure 3. In the example, the component B : [C,D,E, F,

G,H] is identified as a candidate for load balancing.

In the following map phase, the neighbors of B are

distributed across all (two) reduce tasks based on the

neighbor label. This evenly balances the further pro-

cessing of this large component. The backward edge

(B,A) is broadcast to both reduce tasks and ensures

that all neighbors of B can become A’s neighbors in

merge states of the following iteration.

4 Optimizing CC-MR

Despite its efficiency, CC-MR can be further optimized

to reduce the number of iterations and the amount of

intermediate data. To this end, we present three exten-

sions in this section. First, we propose to select a CC

center based on the number of neighbors rather than

simply choosing the vertex with the smallest label. Sec-

ond, we extend the map phase to already connect ver-

tices there to lower the amount of remaining work for

the reduce phase and further iterations. Finally, we pro-

pose to identify stable components that do not grow

anymore (e.g., J : [K,L] in the example) to avoid their

further processing. The proposed enhancements do not

affect the general complexity of the original algorithm,

CC-MR, so that we further expect a logarithmic number

of iterations w.r.t to the depth of the input graph.

4.1 Selecting CC centers

CC-MR assigns all interconnected vertices to the small-

est vertex of the component, based on the lexical or-

dering of vertex labels. This is a straight-forward and

natural approach that also exploits the built-in sorting

of records in the reduce phase. However, this approach

does not consider the existing graph structure so that

a high number of iterations may become necessary to

find all CCs. For example, consider the left part of the

initial example of Figure 1 in which the five vertices

E,F,G,H, I have to be assigned to vertex A (vertices

B,C,D are already neighbors of A). If we would use

vertex D as the CC center instead, only the three ver-

tices B,C,G need to be reassigned. In the worst case,

the input graph consists of a long chain with a smallest

vertex located at the head of the chain. In this case, a

vertex located in the middle of the chain would be a

better component center.

We propose the use of a simple heuristic called

CC-MR-VD to select the vertex with the highest degree,

i.e. the highest number of direct neighbors, as a compo-

nent center. While this might not be an optimal solu-

tion, it promises to reduce the overall number of vertex

reassignments, and, thus, the number of edges gener-

ated per iteration and possibly the number of required

iterations. If the vertex degrees are known, an addi-

tional optimization can be applied. The output of back-

ward edges (v, u) in the reduce phase can entirely be

saved if v has vertex degree 1 because v has no further

neighbors to be connected with u. This simple idea re-

duces the number of edges to be processed further.

To determine the vertex degree for each graph ver-

tex, CC-MR-VD requires an additional, light-weight MR

job as a pre-processing step. This job exploits Hadoop’s

6 Lars Kolb et al.

Iter
at

CC-MR CC-MR-VD

Forward Backward Forward Backward

Iteration
1 9 7 8 5
2 10 5 8 0
3 8 0

C

H

F A

B E

I G

D J

L

K

J

L

K
C

H

F A

B E

I G

D

Iteration 1 Iteration 2

 Vertex D A F J B C E G H I K L

Degree 5 3 2 2 1 1 1 1 1 1 1 1

Modified sort order

Generated Edges

Fig. 4 Edges generated when taking the vertex degree into
account (lower part) and comparison of the number of gener-
ated edges (upper part).

MapFileOutputFormat to produce indexed files support-

ing an on-disk lookup of the vertex degree for a given

vertex label. The resulting data structure is distributed

to all cluster nodes using Hadoop’s Distributed Cache

mechanism. In the first iteration, the map tasks of the

adapted CC-MR computation look up (and cache) vertex

degrees of their input edges. Throughout the algorithm,

each vertex is then annotated with the vertex degree

and vertices are not solely sorted by their labels but

first by vertex degree in descending order and second

by label in ascending order. The first vertex in this sort

order, thus, becomes the one with the highest vertex

degree.

For the running example, Figure 4 shows the result-

ing graph after each iteration when applying CC-MR-VD.
Based on the changed sort order, we choose vertex D

as the center of the largest component which saves one

iteration. Furthermore, the number of generated edges

is almost reduced by half.

Unfortunately, CC-MR-VD also has some drawbacks.

First, it needs an additional MR job to determine the

vertex degrees. Second, the map and reduce output

records are larger due the augmentation by the ver-

tex degree. Furthermore, the disk-based random access

of vertex degrees in the first map phase introduces ad-

ditional overhead proportional to the graph size. Our

evaluation will show whether the expected savings in

the number of edges and iterations can outweigh these

negative effects.

4.2 Computing local CCs in the map phase

CC-MR applies a stateless processing of the map function

where a map task redistributes each key-value pair (i.e.

A

B

D

E

A
B

C

A

B

map(A,B)

D

E

A

B

C

D
E

min

New Component

Add Vertex

Merge Components

map(D,E)

map(A,C)

map(A,D)

New Component

M
ax

. s
iz

e
 r

e
ac

h
e

d
 o

r
n

o
 m

o
re

 d
at

a

Map
 output pairs

(A.D, D)

(D.A, A)

(A.E, E)

(E.A, A)

(A.C, C)

(C.A, A)

(A.B, B)

(B.A, A)

A B

D E

C A B

A B

D E

D E C A B

Map<Vertex,MinSet<Vertex>>

Fig. 5 Computation of local CCs in the map phase.

edge) of its input partition to one of the reduce tasks.

We propose an extension CC-MR-Mem where a map task

buffers a predetermined number of input edges in mem-

ory to find already (sub)components among the buffered

edges. The determination of such local components uses

the same “assign-to-smallest-vertex” strategy as in the

reduce tasks. The generated edges are emitted and the

buffer is cleared for the next set of input records. Over-

lapping local CCs that are computed in different rounds

or by different map tasks are merged in the reduce

phase, as before.

An important aspect of CC-MR-Mem is an efficient

computation of local components. We organize sets of

connected vertices as hash tables and maintain the small-

est vertex per set. Each vertex is mapped to the com-

ponent set it belongs to as illustrated in Figure 5. A

set and its minimal vertex are updated when a new

vertex is added or a merge with another set (compo-

nent) occurs. In the example of Figure 5, the first two

edges result in different sets (components) while the

third edge (A,C) leads to the addition of vertex C to

the first set. The fourth edge (A,D) connects the two

components so that the sets are merged. Merging is re-

alized by adding the elements of the smaller set to the

larger set and updating the pointers of the vertices of

the smaller set to the larger set. Once all edges in the

input buffer are processed, the determined sets are used

to generate the output pairs for distribution among the

reduce tasks (see right part of Figure 5).

CC-MR-Mem thus finds already some components in

the map phase so that the amount of work for the re-

duce tasks is reduced. Furthermore, the amount of in-

termediate data (number of edges) to be exchanged via

the distributed file system as well as the required num-

ber of iterations can be reduced. This comes at the cost

of increased memory and processing requirements in the

Iterative Computation of Connected Graph Components with MapReduce 7

Algorithm 2: CC-MR-Mem (map phase)

1 map configure(JobConf job)
2 max ← job.getBufferSize();
3 components ← new HashMap<Vertex,MinSet>(max);

4 map(Vertex u, Vertex v)
5 if components.size() ≥ max then
6 generateOutput();

7 comp1 ← components.get(u);
8 comp2 ← components.get(v);
9 if (comp1 6=null) ∧ (comp2 6=null) then

10 if comp1 6=comp2 then // Merge
11 if comp1.size() ≥ comp2.size() then
12 comp1.addAll(comp2);
13 foreach Vertex v ∈ comp2 do
14 components.put(v, comp1);

15 else
16 comp2.addAll(comp1);
17 foreach Vertex v ∈ comp1 do
18 components.put(v, comp2);

19 else if comp1 6=null then // Add Vertex
20 comp1.add(v);
21 components.put(v, comp1);

22 else if comp2 6=null then // Add Vertex
23 comp2.add(u);
24 components.put(u, comp2);

25 else // New component
26 MinSet component= new MinSet(u, v);
27 components.put(u, component);
28 components.put(v, component);

29 map close()
30 generateOutput();

31 generateOutput()
32 foreach component ∈ components.values() do
33 if ¬component.isMarkedAsProcessed() then
34 component.markAsProcessed();
35 min ← component.min;
36 foreach Vertex v ∈ component do
37 if v6=min then
38 output(min.v, v); // Forward edge
39 output(v.min, min); // Backward edge

40 components.clear();

map phase. The size of the map input buffer is a con-

figuration parameter that allows tuning the trade-off

between additional map overhead and achievable sav-

ings. CC-MR-Mem can be combined with the CC-MR-VD

approach.

Algorithm 2 shows the pseudo-code of the map func-

tion of CC-MR-Mem. Input edges are added to the com-
ponents map as described above. If its size exceeds a

threshold or if there are no further input edges in the

map task’s input partition, the computed local CCs will

be outputted as follows. For each vertex v 6= c.min of

a local CC c, two key-value pairs (min.v, v) (forward

edge) and (v.min,min) (backward edge) are emitted.

The partitioning, sorting, and grouping behavior as well

as the reduce function is the same as as in Algorithm 1.

The only exception is that no backward edges need to

be generated by the reduce function, since this is al-

Key Values State
Outputted

Forward Edges

A [B, C, D] LocMax A-B, A-C, A-D
D [A, E, F, H, I] Merge A-Ee, A-F, A-H, A-I
J [K, L] LocMax J-K, J-L
… … Merge

A has grown

Iteration 1

Key Values State
Outputted

Forward Edges

A [B, C, D, Ee,
 F, H, I]

LocMax A-B, A-C, A-D, A-E,
A-F, A-H, A-I

D [A, G] Merge A-Ge
F [A, D] Merge A-D
J [K,L] LocMax J-K, J-Ls

… … Merge

Iteration 2

Expanded edge found  A not yet stable

A has grown

Do not mark A as grown twice

No expanded edge found  J is stable

Key Values State
Outputted

Forward Edges

A [B, C, D, E,
 F, Ge, H, I]

LocMax A-B, A-C, A-D, A-E,
A-F, A-G, A-H, A-I

J [Ls, K] LocMax J-L, J-K
… … Merge

First edge is stable edge  Separate J

Iteration 3

Expanded edge found  A not yet stable

Fig. 6 Detection and separation of stable components in the
reduce phase of the CC-MR algorithm.

ready done in the map phase. Therefore, Lines 16 and

19 of Algorithm 1 are omitted. As for CC-MR, backward

edges of large components are broadcast to all reduce

tasks to achieve load balancing.

4.3 Separation of stable components

Large graphs can be composed of many CCs of largely

varying sizes. Typically, small and medium-sized CCs

are completely discovered much earlier than large com-

ponents. When a CC does neither disappear (due to a

merge with another component) nor grows during an

iteration, it will not grow any further and, thus, can be
considered as stable. For example, component J : [K,L]

is identified during the first iteration of CC-MR and does

not change in the second iteration so that no further

edges are generated. Hence, this component remains

stable until the algorithm terminates. We efficiently

want to identify such stable components and separate

them from unstable components to avoid their unneces-

sary processing in further iterations. Stable components

are written to different output files which are not read

by map tasks of the following iterations.

First, we describe the approach for the original

CC-MR (and CC-MR-VD) algorithm. Figure 6 illustrates

the approach for the running example. A component

with the smallest vertex v grows if there is at least one

merge case u : [v, w, ...] with v < u. In this case, the re-

duce function generates new forward edges (v, w), ... as

well as corresponding backward edges (w, v), Due to

the latter ones, the component may grow in the next it-

eration. To notify for the next iteration that the compo-

nent with center v is not yet stable, we augment its first

8 Lars Kolb et al.

forward edge with a special expanded flag, e.g. (v, we).

In Figure 6, we, thus, augment the first forward edge for

the merge case D : [A,E, F,H, I] (resulting in a com-

ponent with the smallest vertex A) with an expanded

flag (edge (A,Ee)). If there are several merge cases in

a reduce task with the same smallest vertex, we set the

expanded flag only for one to limit the further overhead

for processing components marked as expanded. For ex-

ample, in the second iteration of Figure 6 there are two

merge states D : [A,G] and F : [A,D] processed by the

same reduce task (see Figure 2) but only edge (A,Ge)

is flagged.

In the reduce function of iteration i > 1, we check

for each component in local max state whether it has

some expanded vertex we indicating that some ver-

tex was newly assigned in the previous iteration. If

such a vertex is not found, we consider the component

as stable. In the second iteration of Figure 6, the ex-

panded vertex Ee is found and, thus, A can not be

separated. Determining whether a component is stable

is only known after the last edge for the component has

been processed. Since components can be very large, it

is generally not possible to keep all its edges in memory

at a reduce task. Therefore, the reduce tasks continu-

ously generate the output edges as usual but augment

the last output edge with a stable flag, e.g. (v, zs), if v

did not grow.

A stable component is then separated in the follow-

ing iteration. When a map task of the following iter-

ation reads a stable edge (v, zs), it outputs a (v.⊥, zs)
instead of a (v.z, zs) pair (alternatively the empty string

or Int.MinValue could be used instead of⊥). This causes

zs to be the first vertex in the list of v’s reduce input

values and, thus, the stable component can be found

immediately and separated from the regular reduce out-

put. The final result of the algorithm consists of the reg-

ular output files generated in the final iteration and the

additional stable files of each iteration. The described

approach introduces nearly no additional overhead in

terms of data volume and memory requirements.

In Figure 6, there are no expanded vertices for com-

ponent J : [K,L] in the second iteration so that this

component is identified as stable. The last output edge,

i.e. J − Ls, is, thus, augmented by a stable flag. Com-

ponent J is then separated during the third iteration

(which is the last one for our small example).

For large components that are split across several

reduce tasks for load balancing reasons, expanded and

stable edges need to be broadcast to all reduce tasks.

To avoid duplicates in the final output, expanded and

stable edges of large components in the local max state

are outputted only by one reduce task, e.g. the reduce

task with index zero.

The described approach can also be used for

CC-MR-Mem. If a component is known to be stable, the

output of backward edges in Line 39 of Algorithm 2 can

be saved. An important difference is that components

can grow in the map phase as well so that expanded

edges (v.w,we map) are also generated in this phase. In

reduce, a component in local max state is considered as

stable if there is neither a vertex we nor a vertex wemap

in the value list. Furthermore, in contrast to expanded

edges generated in the reduce phase of the previous it-

eration, expanded edges that were generated in the map

phase of the current iteration need to be forwarded to

the next iteration.

5 Evaluation

5.1 Experimental setup

In our first experiment, we compare the original CC-MR

algorithm with our extensions for the first three graph

datasets1 shown in Figure 7(a). The Google Web dataset

is the smallest graph containing hyperlinks between web

pages. The Patent citations dataset is four times larger

and contains citations between granted patents. The

Live Journal graph represents friendship relationships be-

tween users of an online community. It has a simi-

lar number of vertices but about four times as many

edges than the Patent graph. The experiments are con-

ducted on Amazon EC2 using 20 worker instances of

type c1.medium (providing two virtual cores) and a

dedicated master instance of type m1.small. Each node

is set up with Hadoop 0.20.2 and a capacity of two map

and reduce tasks. The overall number of reduce tasks

scheduled per iteration is set to 40.

In a second experiment, we evaluate the effect of

the early separation of stable components. For this pur-

pose, we use a fourth graph from the Memetracker data-

set which tracks web documents (along with their link

structure) containing certain frequent quotes or phrases.

In contrast to the first three graphs, the Memetracker

graph is a sparse graph containing many small CCs

and isolated vertices. Due to the large size of the input

graph, we increase the cluster size to 40 EC2 worker

instances of type m1.xlarge which again can run two

map and reduce tasks in parallel.

The third experiment analyzes the scalability of the

CC-MR and CC-MR-Mem algorithms for cluster sizes of

up to 100 nodes. For this experiment, we again use

the Memetracker dataset and EC2 worker nodes of type

m1.xlarge. Again each node runs at most two map and

reduce tasks in parallel. Thus, for n nodes, the cluster’s

1 http://snap.stanford.edu/data/

http://snap.stanford.edu/data/

Iterative Computation of Connected Graph Components with MapReduce 9

Dataset Nodes Input edges #CCs

Google Web 875,713 5,105,039 2,746
Patent citations 3,774,768 16,518,948 3,627

Live Journal 4,847,571 68.993.773 1,876
Memetracker 185,050,250 453,192,771 47,021,622

(a) Datasets used for the evaluation. (b) Overall execution times for the three different data-
sets.

CC-MR CC-MR-VD CC-MR-MEM

Iterations Overall
edges

HDFS Out
(GB)

Time
(min)

Iterations Overall
edges

HDFS Out
(GB)

Time
(min)

Iterations Overall
edges

HDFS Out
(GB)

Time
(min)

Google Web 8 ≈41⋅106 0.64 4.6 7 ≈27⋅106 0.78 4.2 6 ≈9⋅106 0.12 4.0

Patent Citations 8 ≈648⋅106 11.25 12.1 8 ≈311⋅106 8.98 8.3 6 ≈112⋅106 1.87 4.9

Live Journal 6 ≈640.106 9.97 13.8 6 ≈441⋅106 12.33 14.1 4 ≈87⋅106 1.13 4.3

(c) Summary of results regarding different criteria.

Fig. 7 Comparison of CC-MR, CC-MR-VD, and CC-MR-Mem for the Google Web, Patent Citations, and Live Journal datasets. The execution
times and DFS output volumes of CC-MR-VD include the additional overhead of the vertex degree computation.

map and reduce task capacity is 2 · n, i.e. adding new

nodes leads to additional map and reduce tasks.

All experiments are conducted with load balancing

turned on. As in [19], we consider a component as large

if its size exceeds a threshold of 1% of the number of

forward edges generated in the previous iteration. For

CC-MR-Mem, the maximum number of vertices that are

buffered in memory is set to 20, 000.

5.2 Comparison with CC-MR

We first evaluate the three algorithms CC-MR, CC-MR-VD

(consideration of vertex degrees) and CC-MR-Mem (com-

putation of local CCs in the map phase) for the first

three datasets. We consider the following four criteria:

number of iterations, execution time, overall number of

edges written to the DFS (across all iterations) as well

as the corresponding overall data volume. The results

are listed in Figure 7(c) and illustrated in Figure 7(b).

The results show that CC-MR-Mem outperforms

CC-MR for all cases. The improvements in execution

time increase with larger datasets up to a factor of 3.2

for the Live Journal graph. Furthermore, CC-MR-Mem sig-

nificantly reduces the overall amount of data written

to the DFS by up to a factor of 8.8 for Live Journal. It

strongly profits from the density of the input graphs and

is able to already connect overlapping subcomponents

in the map input partitions of each iteration that oth-

erwise would have been connected in the reduce phase

of later iterations. This causes fewer generated forward

and backward edges in the reduce phase which increases

the probability of an earlier termination of the compu-

tation. For each dataset, CC-MR-Mem needs two itera-

tions less than CC-MR.

For all datasets, CC-MR-VD’s consideration of ver-

tex degrees leads to a significant reduction in the num-

ber of generated edges (at the cost of an additional

analysis job). The number of merge cases could be re-

duced which in turn led to improved execution times for

Google Web and the Patent Citations graph. However, the

resulting data volume is mostly larger than for CC-MR

since all vertices (which are represented by an integer

in the datasets) are augmented with their vertex de-

gree (an additional integer). Note, that for larger vertex

representations (e.g. string-valued URLs of websites)

this might not hold. For the large Live Journal graph,

CC-MR-VD suffered from the overhead of pre-computing

the vertex degrees before and reading them from the

distributed cache during the first iteration, which is its

main drawback for large graphs. Hence, CC-MR-VD is in

its current form not a viable extension for large graphs.

10 Lars Kolb et al.

CC-MR CC-MR-Mem

regular stable regular stable

Iterations 11 11 9 8
Overall Edges ≈4.71⋅109 ≈4.15⋅109 ≈1.87 ⋅109 ≈1.30 ⋅109

HDFS out (GB) 552.4 467.3 212.0 133.7
Time (min) 74.7 71.6 28.8 21.6

Fig. 8 Results of CC-MR and CC-MR-Mem for the Memetracker

dataset with and without separation of stable components.

5.3 Separation of stable components

In our second experiment, we study the effects of the

early separation of stable components that do not grow

further in the following iterations. To this end, we uti-

lized a graph derived from the Memetracker dataset which

has a significantly lower degree of connectivity com-

pared to the other datasets. Without separating stable

components, the execution time of CC-MR-Mem to find

all CCs is by a factor of 2.6 lower than for CC-MR (Fig-

ure 8).

With separation turned on, we observe only a small

improvement of 4% of the execution time for CC-MR.

Apparently, due to the MR overhead for job and task

submission, the amount of 85GB which is saved across

11 iterations has only a small influence on the over-

all runtime for a cluster consisting of 40 nodes. How-

ever, CC-MR-Mem strongly benefits from the separation

of stable components which leads to an improvement

of 25%. Compared to the regular CC-MR algorithm, the

execution time is improved by a factor of 3.5 (21.6 vs

74.7 minutes). An interesting observation is that the

number of iterations could be reduced from 9 to 8 for

CC-MR-Mem. This is caused by the fact that due to the

separation of stable components from the regular re-

duce output, the input data of a map task does no

longer contain stable components. This in turn leads to

a higher probability that two components that would be

separated by a stable components otherwise are merged

in the map phase already. Compared to the regular

CC-MR-Mem, the amount of data written to HDFS could

be reduced by 37% which improved the execution time

by 25%.

5.4 Scalability

The third experiment focuses on the scalability of the

CC-MR algorithm and the CC-MR-Mem extension. We

therefore use the large Memetracker dataset and vary the

cluster size n from 1 up to 100 nodes. Figure 9 shows

the resulting execution times and speedup values.

The execution of the CC-MR algorithm did not suc-

ceed for n = 1. This is because in some iteration, the

sizes of the input graph, the output of the previous iter-

Fig. 9 Execution times and speedup values using CC-MR and
CC-MR-Mem for the Memetracker dataset (without separation of
stable components).

ation, the map output (containing replicated backward

edges for load balancing purposes), and the reduce out-

put exceeded the available disk capacity. To this end,

CC-MR’s execution time for n = 1 was estimated as

twice as long as for n = 2. By contrast, due to its re-

duced amount of generated data, CC-MR-Mem was able

to compute all CCs of the input graph on a single node

and did even complete earlier than CC-MR running on

two nodes.

Overall, CC-MR-Mem clearly outperformed CC-MR for

all cluster sizes. The super-linear speedup values in Fig-

ure 9 are caused by the execution times of the single

node case with only two parallel map and reduce tasks.

Here, both approaches heavily suffer from load balanc-

ing problems in early iterations. These load balancing

issues are resolved with larger configurations leading

to a better utilization of the available nodes. Up to 60

nodes, the execution time for CC-MR-Mem was a factor

of 2 to 4 better than with CC-MR. For example, an ex-

ecution time of 100 minutes is achieved with ten nodes

for CC-MR-Mem vs. about 30 nodes for CC-MR. The re-

sults show that CC-MR-Mem keeps its effectiveness even

for an increasing number of map tasks which in prin-

ciple reduces the local optimization potential per map

task. This is influenced by the fact, that CC-MR-Mem de-

termines local components within fixed-sized (20.000)

groups of edges and not within whole map input parti-

tions. Still, the relative improvement of CC-MR-Mem over

CC-MR decreases somewhat when increasing the number

of nodes beyond a certain level. In our experiment, the

relative improvement was a factor of 2 for 60 nodes and

a factor of 1.7 for 100 nodes (14.9 vs. 25.2 minutes).

Iterative Computation of Connected Graph Components with MapReduce 11

6 Summary

The computation of connected components (CC) for

large graphs requires a parallel processing, e.g. on the

popular Hadoop platform. We proposed and evaluated

three extensions over the previously proposed Map-

Reduce-based implementation CC-MR to reduce both,

the amount of intermediate data and the number of

required iterations. The best results are achieved by

CC-MR-Mem which connects sub-components in both the

reduce and in the map phase of each iteration. The

evaluation showed that CC-MR-Mem significantly out-

performs CC-MR for all considered graph datasets, es-

pecially for larger graphs. Furthermore, we proposed

a strategy to early separate stable components from

further processing. This approach introduces nearly no

additional overhead but can significantly improve the

performance of CC-MR-Mem for sparse graphs.

References

1. Afrati, F.N., Borkar, V.R., Carey, M.J., Polyzotis, N.,
Ullman, J.D.: Map-Reduce Extensions and Recursive
Queries. In: Proc. of Intl. Conference on Extending
Database Technology, pp. 1–8 (2011)

2. Awerbuch, B., Shiloach, Y.: New Connectivity and MSF
Algorithms for Shuffle-Exchange Network and PRAM.
IEEE Transactions on Computers 36(10), 1258–1263
(1987)

3. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic
Sets and Other Strange Ways to Implement Logic Pro-
grams. In: Proc. of Symposium on Principles of Database
Systems, pp. 1–15 (1986)

4. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: The
HaLoop approach to large-scale iterative data analysis.
VLDB Journal 21(2), 169–190 (2012)

5. Bus, L., Tvrd́ık, P.: A Parallel Algorithm for Connected
Components on Distributed Memory Machines. In: Proc.
of European PVM/MPI Users’ Group Meeting, pp. 280–
287 (2001)

6. Cheiney, J.P., de Maindreville, C.: A Parallel Transi-
tive Closure Algorithm Using Hash-Based Clustering. In:
Proc. of Intl. Workshop on Database Machines, pp. 301–
316 (1989)

7. Cohen, J.: Graph Twiddling in a MapReduce World.
Computing in Science and Engineering 11(4), 29–41
(2009)

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data
Processing on Large Clusters. In: Proc. of Symposium
on Operating System Design and Implementation, pp.
137–150 (2004)

9. Greiner, J.: A Comparison of Parallel Algorithms for
Connected Components. In: Proc. of Symposium on
Parallelism in Algorithms and Architectures, pp. 16–25
(1994)

10. Hirschberg, D.S., Chandra, A.K., Sarwate, D.V.: Com-
puting Connected Components on Parallel Computers.
Communications of the ACM 22(8), 461–464 (1979)

11. Ioannidis, Y.E.: On the Computation of the Transitive
Closure of Relational Operators. In: Proc. of Intl. Con-
ference on Very Large Databases, pp. 403–411 (1986)

12. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS:
A Peta-Scale Graph Mining System. In: Proc. of Intl.
Conference on Data Mining, pp. 229–238 (2009)

13. Kolb, L., Rahm, E.: Parallel Entity Resolution with De-
doop. Datenbank-Spektrum 13(1), 23–32 (2013)

14. Kolb, L., Thor, A., Rahm, E.: Dedoop: Efficient Dedupli-
cation with Hadoop. Proceedings of the VLDB Endow-
ment 5(12), 1878–1881 (2012)

15. Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Fil-
tering: A Method for Solving Graph Problems in Map-
Reduce. In: Proc. of Symposium on Parallelism in Algo-
rithms and Architectures, pp. 85–94 (2011)

16. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C.,
Horn, I., Leiser, N., Czajkowski, G.: Pregel: A System
for Large-Scale Graph Processing. In: Proc. of the Intl.
Conference on Management of Data, pp. 135–146 (2010)

17. Petermann, A., Junghanns, M., Mueller, R., Rahm, E.:
BIIIG: Enabling Business Intelligence with Integrated In-
stance Graphs. In: Proc. of Intl. Workshop on Graph
Data Management (GDM) (2014)

18. Rastogi, V., Machanavajjhala, A., Chitnis, L., Sarma,
A.D.: Finding connected components in map-reduce in
logarithmic rounds. In: Proc. of Intl. Conference on Data
Engineering, pp. 50–61 (2013)

19. Seidl, T., Boden, B., Fries, S.: CC-MR - Finding Con-
nected Components in Huge Graphs with MapReduce.
In: Proc. of Machine Learning and Knowledge Discovery
in Databases, pp. 458–473 (2012)

20. Shiloach, Y., Vishkin, U.: An O(log n) Parallel Connec-
tivity Algorithm. J. Algorithms 3(1), 57–67 (1982)

21. Tarjan, R.E.: Depth-First Search and Linear Graph Al-
gorithms. SIAM Journal on Computing 1(2), 146–160
(1972)

22. Valduriez, P., Khoshafian, S.: Parallel Evaluation of the
Transitive Closure of a Database Relation. Intl. Journal
of Parallel Programming 17(1), 19–37 (1988)

	Introduction
	Related work
	The CC-MR algorithm
	Optimizing CC-MR
	Evaluation
	Summary
	References

