LOAD BALANCING FOR MAPREDUCE-BASED ENTITY RESOLUTION

Lars Kolb, <u>Andreas Thor</u>, Erhard Rahm University of Leipzig

April 3, 2012

http://dbs.uni-leipzig.de

Entity Resolution

2

Identification of semantically equivalent entities (objects)

- within one source or between two sources
- □ to merge them, compare them, improve data quality, etc.

Canon VIXIA HF S10 Camcorder - 1080p - 8.59 MP - 10 x optical zoom Flash card, 32 GB, 1y warranty, F/1.8-3.0 The VIXIA HF S10 delivers brilliant video and photos through a Canon exclusive 8.59 megapixel CMOS image sensor and the latest version of Canon's advanced image processor, ...

Canon (VIXIA) HF S10 iVIS Dual Flash Memory Camcorder

Canon HF S10 iVIS Dual Flash Memory CamcorderSPECIAL SALE PRICE: \$899 Display both English/Japanese + we supplu all English manuals in English as PDF. Add to Shopping List

Canon VIXIA HF S10

Dual Flash Memory High Definition Camcorder The Next Step Forward in HD Video Canon has a well-known and highly-regarded reputation for optical excellence, Add to Shopping List

Canon VIXIA HF S100 Flash Memory Camcorder

***Canon Video HF S100 Instant Rebate Receive \$200 with your purchase of a new Canon VIXIA HF S100 Flash Memory Camcorder. (Price above includes \$200 Add to Shopping List

Canon Vixia Hf S10 Care & Cleaning

Care & Cleaning Digital Camera/Camcorder Deluxe Cleaning Kit with LCD Screen Guard Canon VIXIA HF S10 Camcorders Care & Cleaning. Add to Shopping List **\$899.00** new Made in Japan Online

\$999.00 new Performance Audio <u>2 seller ratings</u>

\$899.95 new Arlingtoncamera.com 5 seller ratings

\$2.99 new shop.com ★★★☆☆ 38 seller ratings

Entity Resolution Problem

Lot of research work

- String similarities, usage of structural information
- Combined use of several matching approaches
- Application of machine learning
- ••••
- Study of real-world match systems/problems [VLDB'10]
 - Effective entity resolution is difficult: F-Measure <75% for product data
 - **\square** Entity resolution is expensive: scalability issues for O(n^2)

[VLDB'10] Koepcke, Thor, Rahm: Evaluation of entity resolution approaches on real-world match problems. VLDB 2010

Outline

Entity Resolution

- Blocking-based Entity Resolution with MapReduce
- Load Balancing
 - Problem
 - Block-Split Approach
- Experimental Results
- Conclusions & Future Work

How to speed up entity matching?

- 5
- Entity matching is expensive (due to pair-wise comparisons)
- Blocking to reduce search space
 - Group similar entities within blocks based on blocking key
 - Restrict matching to entities from the same block

- Parallelization
 - Split match computation in sub-tasks to be executed in parallel
 - Exploitation of cloud infrastructures and frameworks like MapReduce

Blocking + MapReduce: Naïve

Load Balancing: Problem

- Data skew leads to unbalanced workload
 - Large blocks prevent utilization of more than a few nodes
 - Deteriorates scalability and efficiency
 - Unnecessary costs (you also pay for underutilized machines!)

Key ideas for load balancing

- Additional MR job to determine blocking key distribution, i.e., number and size of blocks (per input partition)
- Global load balancing that assigns (nearly) the same number of pairs to reduce tasks

Load Balancing: Approaches

- Two load balancing strategies for parallel entity resolution with general blocking
- BlockSplit: Split large blocks into sub-blocks
- PairRange: Global enumeration and tailored distribution of all pairs
- Variation for Sorted Neighborhood [CSRD'12]

[CSRD'12] Kolb, Thor, Rahm: Multi-pass Sorted Neighborhood Blocking with MapReduce. Computer Science - Research and Development 27(1), 2012

Load Balancing for MR-based Entity Res.

BlockSplit

Large blocks split into m sub-blocks

- according to *m* input partitions
- Iarge if #P_{Block} > #P_{Overall} / #Reducer
- Two types of match tasks
 - Single (small blocks and sub-blocks)
 - Two sub-blocks
- Greedy load balancing
 - Sort match tasks by number of pairs in descending order
 - Assign match task to reducer with lowest number of pairs

Example

- r=3 reduce tasks, split Φ_4 in m=2 sub-blocks
- $\hfill \Phi_4$'s match tasks: $\Phi_{4.1}$, $\Phi_{4.2}$, and $\Phi_{4.1\times 2}$

		Partition		Overall		
			Π_1	Π_2	#E	#P
Blocks	w	Φ_1	2	2	4	6
	У	Φ_2	0	2	2	1
	x	Φ_3	3	0	3	3
	z	Φ_4	2	3	5	10

BlockSplit: MapReduce Dataflow

Evaluation: Data Skew

12

BlockSplit robust against data skew

Evaluation on Amazon EC2; 114.000 product records

Evaluation: Scalability

13

BlockSplit is scalable

Conclusions and Future Work

- Faster entity resolution by
 - Blocking
 - Parallel matching
- Straight-forward utilization of MapReduce possible
 - ... but doing it efficiently requires some work
- Effective load balancing approaches such as Block-Split

Jonkyou

Additional MR job for analysis incurs minimal overhead

Future Work

- Load balancing for other data-intensive tasks
- Analytic model for determining #reduce tasks