
Load Balancing for MapReduce-based
Entity Resolution

Lars Kolb, Andreas Thor, Erhard Rahm

Database Group, University of Leipzig
Leipzig, Germany

{kolb,thor,rahm}@informatik.uni-leipzig.de

Abstract— The effectiveness and scalability of MapReduce-
based implementations of complex data-intensive tasks depend
on an even redistribution of data between map and reduce
tasks. In the presence of skewed data, sophisticated redistribution
approaches thus become necessary to achieve load balancing
among all reduce tasks to be executed in parallel. For the
complex problem of entity resolution, we propose and evaluate
two approaches for such skew handling and load balancing. The
approaches support blocking techniques to reduce the search
space of entity resolution, utilize a preprocessing MapReduce
job to analyze the data distribution, and distribute the entities
of large blocks among multiple reduce tasks. The evaluation on
a real cloud infrastructure shows the value and effectiveness of
the proposed load balancing approaches.

I. INTRODUCTION

Cloud computing has become a popular paradigm for ef-
ficiently processing computationally and data-intensive tasks.
Such tasks can be executed on demand on powerful distributed
hardware and service infrastructures. The parallel execution of
complex tasks is facilitated by different programming models,
in particular the widely available MapReduce (MR) model [1]
supporting the largely transparent use of cloud infrastructures.
However, the (cost-) effectiveness and scalability of MR imple-
mentations depend on effective load balancing approaches to
evenly utilize available nodes. This is particularly challenging
for data-intensive tasks where skewed data redistribution may
cause node-specific bottlenecks and load imbalances.

We study the problem of MR-based load balancing for the
complex problem of entity resolution (ER) (also known as
object matching, deduplication, record linkage, or reference
reconciliation), i.e., the task of identifying entities referring
to the same real-world object [2]. ER is a pervasive problem
and of critical importance for data quality and data integration,
e.g., to find duplicate customers in enterprise databases or to
match product offers for price comparison portals. ER tech-
niques usually compare pairs of entities by evaluating multiple
similarity measures to make effective match decisions. Naı̈ve
approaches examine the complete Cartesian product of n input
entities. However, the resulting quadratic complexity of O(n2)
is inefficient for large datasets even on cloud infrastructures.
The common approach to improve efficiency is to reduce
the search space by adopting so-called blocking techniques
[3]. They utilize a blocking key on the values of one or
several entity attributes to partition the input data into multiple
partitions (called blocks) and restrict the subsequent matching

to entities of the same block. For example, product entities
may be partitioned by manufacturer values such that only
products of the same manufacturer are evaluated to find
matching entity pairs.

Despite the use of blocking, ER remains a costly process
that can take several hours or even days for large datasets
[4]. Entity resolution is thus an ideal problem to be solved in
parallel on cloud infrastructures. The MR model is well suited
to execute blocking-based ER in parallel within several map
and reduce tasks. In particular, several map tasks can read the
input entities in parallel and redistribute them among several
reduce tasks based on the blocking key. This guarantees that
all entities of the same block are assigned to the same reduce
task so that different blocks can be matched in parallel by
multiple reduce tasks.

However, such a basic MR implementation is susceptible
to severe load imbalances due to skewed blocks sizes since
the match work of entire blocks is assigned to a single reduce
task. As a consequence, large blocks (e.g., containing 20%
of all entities) would prevent the utilization of more than
a few nodes. The absence of skew handling mechanisms
can therefore tremendously deteriorate runtime efficiency and
scalability of MR programs. Furthermore, idle but instantiated
nodes may produce unnecessary costs because public cloud
infrastructures (e.g., Amazon EC2) usually charge per utilized
machine hours.

In this paper, we propose and evaluate two effective load
balancing approaches to data skew handling for MR-based
entity resolution. Note that MR’s inherent vulnerability to load
imbalances due to data skew is relevant for all kind of pairwise
similarity computation, e.g., document similarity computation
[5] and set-similarity joins [6]. Such applications can therefore
also benefit from our load balancing approaches though we
study MR-based load balancing in the context of ER only. In
particular, we make the following contributions:
• We introduce a general MR workflow for load-balanced

blocking and entity resolution. It employs a preprocessing
MR job to determine a so-called block distribution matrix
that holds the number of entities per block separated by
input partitions. The matrix is used by both load balancing
schemes to determine fine-tuned entity redistribution for
parallel matching of blocks. (Section III)
• The first load balancing approach, BlockSplit, takes the

size of blocks into account and assigns entire blocks to

reduce tasks if this does not violate load balancing or
memory constraints. Larger blocks are split into smaller
chunks based on the input partitions to enable their parallel
matching within multiple reduce tasks. (Section IV)
• The second load balancing approach, PairRange, adopts an
enumeration scheme for all pairs of entities to evaluate. It
redistributes the entities such that each reduce task computes
about the same number of entity comparisons. (Section V)
• We evaluate our strategies and thereby demonstrate the im-
portance of skew handling for MR-based ER. The evaluation
is done on a real cloud environment, uses real-world data,
and compares the new approaches with each other and the
basic MR strategy. (Section VI)
In the next section we review the general MR program

execution model. Related work is presented in Section VII
before we conclude. Furthermore, we describe an extension
of our strategies for matching two sources in Appendix I.
Appendix II lists the pseudo-code for all proposed algorithms.

II. MAPREDUCE PROGRAM EXECUTION

MapReduce (MR) is a programming model designed for
parallel data-intensive computing in cluster environments with
up to thousands of nodes [1]. Data is represented by key-value
pairs and a computation is expressed with two user defined
functions:

map : (keyin, valuein)→ list(keytmp, valuetmp)

reduce : (keytmp, list(valuetmp))→ list(keyout, valueout)

These functions contain sequential code and can be executed
in parallel on disjoint partitions of the input data. The map
function is called for each input key-value pair whereas reduce
is called for each key keytmp that occurs as map output.
Within the reduce function one can access the list of all
corresponding values list(valuetmp).

Besides map and reduce, a MR dataflow relies on three
further functions. First, the function part partitions the map
output and thereby distributes it to the available reduce tasks.
All keys are then sorted with the help of a comparison function
comp. Finally, each reduce task employs a grouping function
group to determine the data chunks for each reduce function
call. Note that each of these functions only operates on the
key of key-value pairs and does not take the values into
account. Keys can have an arbitrary structure and data type but
need to be comparable. The use of extended (composite) keys
and an appropriate choice of part, comp, and group supports
sophisticated partitioning and grouping behavior and will be
utilized in our load balancing approaches.

For example, the center of Figure 1 shows an example MR
program with two map tasks and three reduce tasks. The map
function is called for each of the four input key-value pairs
(denoted as �) and the map phase emits an overall of 10
key-value pairs using composite keys (Figure 1 only shows
keys for simplicity). Each composite key has a shape (circle or
triangle) and a color (light-gray, dark-gray, or black). Keys are
assigned to three reduce tasks using a partition function that

Fig. 1. Schematic overview of example MR program execution using 1 map
process, m=2 map tasks, 2 reduce processes, and r=3 reduce tasks. In this
example, partitioning is based on the key’s color only and grouping is done
on the entire key.

is only based on a part of the key (“color”). Finally, the group
function employs the entire key so that the reduce function is
called for 5 distinct keys.

The actual execution of an MR program (also known as
job) is realized by an MR framework implementation such as
Hadoop [7]. An MR cluster consists of a set of nodes that
run a fixed number of map and reduce processes. For each
MR job execution, the number of map tasks (m) and reduce
tasks (r) is specified. Note that the partition function part
relies on the number of reduce tasks since it assigns key-value
pairs to the available reduce tasks. Each process can execute
only one task at a time. After a task has finished, another
task is automatically assigned to the released process using a
framework-specific scheduling mechanism. The example MR
program of Figure 1 runs in a cluster with one map and two
reduce processes, i.e., one map task and two reduce tasks can
be processed simultaneously. Hence, the only map process
runs two map tasks and the three reduce tasks are eventually
assigned to two reduce processes.

III. LOAD BALANCING FOR ER

We describe our load balancing approaches for ER for one
data source R. The input is a set of entities and the output
is a match result, i.e., pairs of entities that are considered
to be the same. With respect to blocking, we assume that
all entities have a valid blocking key. The generalization to
consider entities without defined blocking key (e.g. missing
manufacturer information for products) is relatively easy. All
entities R∅ ⊆ R without blocking key need to be matched with
all entities, i.e., the Cartesian product of R×R∅ needs to be
determined which is a special case of ER between two sources.
The Appendix explains how our strategies can be extended for
matching two sources.

As discussed in the introduction, parallel ER using blocking
can be easily implemented with MR. The map function can
be used to determine for every input entity its blocking key
and to output a key-value pair (blocking key, entity). The

Fig. 2. Overview of the MR-based matching process with load balancing.

default partitioning strategy would use the blocking key to
distribute key-value pairs among reduce tasks so that all
entities sharing the same blocking key are assigned to the
same reduce task. Finally, the reduce function is called for
each block and computes the matching entity pairs within its
block. We call this straightforward approach Basic. However,
the Basic strategy is vulnerable to data skew due to blocks
of largely varying size. Therefore the execution time may be
dominated by a single or a few reduce tasks. Processing large
blocks may also lead to serious memory problems because
entity resolution requires that all entities within the same block
are compared with each other. A reduce task must therefore
store all entities passed to a reduce call in main memory – or
must make use of external memory which further deteriorates
execution times.

A domain expert might, of course, adjust the blocking
function so that it returns blocks of similar sizes. However, this
tuning is very difficult because it must ensure that matching
entities still reside in the same block. Furthermore, the block-
ing function needs to be adjusted for every match problem
individually. We therefore propose two general load balancing
approaches that address the mentioned skew and memory
problems by distributing the processing of large blocks among
several reduce tasks. Both approaches are based on a general
ER workflow with two MR jobs that is described next. The
first MR job, described in Section III-B, analyzes the input
data and is the same for both load balancing schemes. The
different load balancing strategies BlockSplit and PairRange
are described in the following sections IV and V, respectively.

A. General ER Workflow for Load Balancing

To realize our load balancing strategies, we perform ER
processing within two MR jobs as illustrated in Figure 2.
Both jobs are based on the same number of map tasks and
the same partitioning of the input data (see Appendix II for
details). The first job calculates a so-called block distribution
matrix (BDM) that specifies the number of entities per block
separated by input partitions. The matrix is used by the load
balancing strategies (in the second MR job) to tailor entity
redistribution for parallel matching of blocks of different size.

Load balancing is mainly realized within the map phase

Fig. 3. The example data consists of 14 entities A-O that are divided into
two partitions Π0 and Π1.

of the second MR job. Both strategies follow the idea that
map generates a carefully constructed composite key that
(together with associated partition and group functions) allows
a balanced load distribution. The composite key thereby com-
bines information about the target reduce task(s), the block
of the entity, and the entity itself. While the MR partitioning
may only use part of the map output key for routing, it still
groups together key-value pairs with the same blocking key
component of the composite key and, thus, makes sure that
only entities of the same block are compared within the reduce
phase. As we will see, the map function may generate multiple
keys per entity if this entity is supposed to be processed by
multiple reduce tasks for load balancing. Finally, the reduce
phase performs the actual ER and computes match similarities
between entities of the same block. Since the reduce phase
consumes the vast majority of the overall runtime (more
than 95% in our experiments), our load balancing strategies
solely focus on data redistribution for reduce tasks. Other
MR-specific performance factors are therefore not considered.
For example, consideration of data locality (see, e.g., [8])
would have only limited impact and would require additional
modification of the MR framework.

B. Block Distribution Matrix

The block distribution matrix (BDM) is a b×m matrix that
specifies the number of entities of b blocks across m input par-
titions. The BDM computation using MR is straightforward.
The map function determines the blocking key for each entity
and outputs a key-value pair with a composite map output key
(blocking key � partition index) and a corresponding value of
1 for each entity1. The key-value pairs are partitioned based
on the blocking key component to ensure that all data for
a specific block is processed in the same reduce task. The
reduce task’s key-value pairs are sorted and grouped by the
entire key and reduce counts the number of blocking keys
(i.e., entities per block) per partition and outputs triples of the
form (blocking key, partition index, number of entities).

For illustration purposes, we use a running example with 14
entities and 4 blocking keys as shown in Figure 3. Figure 4
illustrates the computation of the BDM for this example data.
So the map output key of M is z.1 because M ’s blocking
key equals z and M appears in the second partition (partition
index=1). This key is assigned to the last reduce task that
outputs [z, 1, 3] because there are 3 entities in the second
partition for blocking key z. The combined reduce outputs
correspond to a row-wise enumeration of non-zero matrix

1A combine function that aggregates the frequencies of the blocking keys
per map task might be employed as an optimization.

Fig. 4. Example dataflow for computation of the block distribution matrix
(MR Job1 of Figure 2) using the example data of Figure 3.

cells. To assign block keys to rows of the BDM, we use the
(arbitrary) order of the blocks from the reduce output, i.e., we
assign the first block (key w) to block index position 0, etc.
The block sizes in the example vary between 2 and 5 entities.
The match work to compare all entities per block with each
other thus ranges from 1 to 10 pair comparisons; the largest
block with key z entails 50% of all comparisons although it
contains only 35% (5 of 14) of all entities.

As illustrated in Figure 2, map produces an additional output
Π′i per partition that contains the original entities annotated
with their blocking keys. This output is not shown in Figure 4
to save space but used as input in the second MR job (see
Figures 5 and 7).

IV. BLOCK-BASED LOAD BALANCING

The first strategy, called BlockSplit, has already been in-
troduced in poster paper [9]. It generates one or several so-
called match tasks per block and distributes match tasks among
reduce tasks. Furthermore, it uses the following two ideas:
• BlockSplit processes small blocks within a single match
tasks similar to the basic MR implementation. Large blocks
are split according to the m input partitions into m sub-
blocks. The resulting sub-blocks are then processed using
match tasks of two types. Each sub-block is (like any unsplit
block) processed by a single match task. Furthermore, pairs
of sub-blocks are processed by match tasks that evaluate the
Cartesian product of two sub-blocks. This ensures that all
comparisons of the original block will be computed in the
reduce phase.
• BlockSplit determines the number of comparisons per
match task and assigns match tasks in descending size
among reduce tasks. This implements a greedy load bal-
ancing heuristic ensuring that the largest match tasks are
processed first to make it unlikely that they dominate or
increase the overall execution time.

The realization of BlockSplit makes use of the BDM as well
as of composite map output keys. The map phase outputs key-
value pairs with key=(reduce index � block index � split) and
value=(entity). The reduce task index is a value between 0 and
r − 1 is used by the partition function to realize the desired
assignment to reduce tasks. The grouping is done on the entire
key and – since the block index is part of the key – ensures
that each reduce function only receives entities of the same
block. The split value indicates what match task has to be
performed by the reduce function, i.e., whether a complete
block or sub-blocks need to be processed. In the following,
we describe map key generation in detail.

During the initialization, each of the m map tasks reads
the BDM and computes the number of comparison per block
and the total number of comparisons P over all b blocks Φk:
P = 1

2 ·Σ
b−1
k=0|Φk|·(|Φk|−1). For each block Φk, it also checks

if the number of comparisons is above the average reduce task
workload, i.e., if 1

2 · |Φk| · (|Φk| − 1) > P/r.
If the block Φk is not above the average workload it can be

processed within a single match task (this is denoted as k.∗ in
the block index and split components of the map output key).
Otherwise it is split into m sub-blocks based on the m input
partitions2 leading to the following 1

2 ·m · (m− 1) +m match
tasks:
• m match tasks, denoted with key components k.i, for the

individual processing of the ith sub-block for i ∈ [0,m− 1]
• 1

2 ·m · (m− 1) match tasks, denoted with key components
k.i×j with i, j ∈ [0,m− 1] and i < j, for the computation
of the Cartesian product of sub-blocks i and j

Utilizing the existing input partitioning and splitting into m
sub-blocks is motivated by the assumption that m typically
grows with the input size thereby providing increased load
balancing flexibility for larger inputs. Furthermore, increasing
m also reduces main memory consumption since it leads to a
higher number of match tasks and, thus, decreases the number
of entities per reduce call.

To determine the reduce task for each match task, all match
tasks are first sorted in descending order of their number of
comparisons. Match tasks are then assigned to reduce tasks
in this order so that the current match task is assigned to the
reduce task with the lowest number of already assigned pairs.
In the following, we denote the reduce task index for match
task k.x with R(k.x).

After the described initialization phase, the map function is
called for each input entity. If the entity belongs to a block
Φk that has not to be split, map outputs one key-value pair
with composite key=R(k.*).k.*. Otherwise, map outputs m
key-value pairs for the entity. The key R(k.i).k.i represents the
individual sub-block i of block Φk and the remaining m− 1
keys R(k.i).k.i×j (for j ∈ [0,m−1] and j 6= i) represent all
combinations with the other m− 1 sub-blocks. This indicates

2Note that the BDM holds the number of entities per (block, partition) pair
and map can therefore determine which input partitions contain entities of
Φk . However, in favor of readability we assume that all m input partitions
contain at least one entity. Our implementation, of course, ignores unnecessary
partitions.

Fig. 5. Example dataflow for the load balancing strategy BlockSplit.

that entities of split blocks are replicated m times to support
load balancing. The map function emits the entity as value of
the key-value pair; for split blocks we annotate entities with
the partition index for use in the reduce phase.

In our running example, only block Φ3 (blocking key z)
is subject to splitting into m=2 sub-blocks. The BDM (see
Figure 4) indicates for block Φ3 that Π0 and Π1 contain 2
and 3 entities, respectively. The resulting sub-blocks Φ3.0 and
Φ3.1 lead to the three match tasks 3.0, 3.0×1, and 3.1 that
account for 1, 6, and 3 comparisons, respectively. The resulting
ordering of match tasks by size (0.*, 3.0×1, 2.*, 3.1, 1.*, and
3.0) leads for three reduce tasks to the distribution shown in
Figure 5. The replication of the five entities for the split block
leads to 19 key-value pairs for the 14 input entities. Each
reduce task has to process between six and seven comparisons
indicating a good load balancing for the example.

V. PAIR-BASED LOAD BALANCING

The block-based strategy BlockSplit splits large blocks ac-
cording to the input partitions. This approach may still lead to
unbalanced reduce task workloads due to differently-sized sub-
blocks. We therefore propose a more sophisticated pair-based
load balancing strategy PairRange that targets at a uniform
number of pairs for all reduce tasks. It uses the following two
ideas:
• PairRange implements a virtual enumeration of all entities
and relevant comparisons (pairs) based on the BDM. The
enumeration scheme is used to sent entities to one or more
reduce tasks and to define the pairs that are processed by
each reduce tasks.
• For load balancing, PairRange splits the range of all
relevant pairs into r (almost) equally sized pair ranges and
assigns the kth range <k to the kth reduce task.

Fig. 6. Global enumeration of all pairs for the running example. The three
different shades indicate how the PairRange strategy assigns pairs to 3 reduce
tasks.

Each map task processes its input partition row-by-row
and can therefore enumerate entities per partition and block.
Although entities are processed independently in different
partitions, the BDM permits to compute the global block-
specific entity index locally within the map phase. Given a
partition Πi and a block Φk, the overall number of entities of
Φk in all preceding partitions Π0 through Πi−1 has just to be
added as offset. For example, entity M is the first entity of
block Φ3 in partition Π1. Since the BDM indicates that there
are two other entities in Φ3 in the preceding partition Π0, M
is the third entity of Φ3 and is thus assigned entity index 2.
Figure 6 shows block-wise the resulting index values for all
entities of the running example (white numbers).

Enumeration of entities allows for an effective enumeration
of all pairs to compare. An entity pair (x, y) with entity
indexes x and y is only enumerated if x < y. We thereby
avoid unnecessary computation, i.e., pairs of the same entity
(x, x) are not considered as well as pairs (y, x) if (x, y)
has already been considered. Pair enumeration employs a
column-wise continuous enumeration across all blocks based
on information of the BDM. The pair index pi(x, y) of
two entities with indexes x and y (x < y) in block Φi

is defined as follows: pi(x, y) = c(x, y, |Φi|) + o(i) with
c(x, y,N) = x

2 (2 ·N − x− 3) + y − 1 and o(i) = 1
2 ·

Σi−1
k=0 (|Φk| · (|Φk| − 1)). Here c(x, y,N) is the index of the

cell (x, y) in an N × N matrix and o(i) is the offset and
equals the overall number of pairs in all preceding blocks Φ0

through Φi−1. The number of entities in block Φi is denoted as
|Φi|. Figure 6 illustrates the pair enumeration for the running
example. The pair index of pair pi(x, y) can be found in the
column x and row y of block Φi. For example, the index for
pair (2, 3) of block Φ0 equals 5.

PairRange splits the range of all pairs into r almost equally-
sized pair ranges and assigns the kth range <k to the kth reduce
task. k is therefore both, the reduce task index and the range
index. Given a total of P pairs and r ranges, a pair with index
0 ≤ p < P falls in <k if

p ∈ <k ⇔ k = br · p
P
c (1)

The first r − 1 reduce tasks processes dPr e pairs each
whereas the last reduce task is responsible for the remaining
P − (r − 1) · dPr e pairs. In the example of Figure 6, we
have P = 20 pairs, so that for r = 3 we obtain the ranges
<0 = [0, 6], <1 = [7, 13], and <2 = [14, 19] (illustrated by

Fig. 7. Example dataflow for the load balancing strategy PairRange.

different shades). Since the number of reduce tasks r controls
the size of the ranges, it can be used to limit the number of
entities per reduce tasks and thus the required main memory.

During the initialization, each of the m map tasks reads
the BDM, computes the total number of comparisons P , and
determines the r pair ranges. Afterwards, the map function
is called for each entity e and determines e’s entity index
x as well as all relevant ranges, i.e., all ranges that contain
at least one pair where e is participating. The identification
of relevant ranges does not require the examination of the
possibly large number of all pairs but can be mostly realized
by processing two pairs. Let N be the size of e’s block,
entity e with index x takes part in the pairs (0, x), . . . , (x −
1, x), (x, x+1), . . . , (x,N−1). The enumeration scheme thus
allows for a quick identification of pmin and pmax, i.e., e’s
pairs with the smallest and highest pair index. For example,
M has an entity index of 2 within a block of size |Φ3| = 5
and the two pairs are therefore pmin = p3(0, 2) = 11 and
pmax = p3(2, 4) = 18. All relevant ranges of e are between
<min 3 pmin and <max 3 pmax because the range index is
monotonically increasing with the pair index (see formula (1)).
Entity M is thus only needed for the second and third pair
range (reduce task).

Finally, map emits a key-value pair with key= (range index
� block index� entity index) and value=entity for each relevant
range. The MR partitioning is based on the range index only
for routing all data of range <k to the reduce task with index
k. The sorting is done based on the entire key whereas the
grouping is done by range index and block index. The reduce
task does not necessarily receive all entities of a block but
only those entities that are relevant for the reduce task’s pair
range. The reduce function generates all pairs (x, y) with

Fig. 8. Datasets used for evaluation

entity indexes x < y, checks if the pair index falls into the
reduce task’s pair range, and – if this is the case – computes the
matching for this pair. To this end, map additionally annotates
each entity with its entity index so that the pair index can be
easily computed by the reduce function.

Figure 7 illustrates the PairRange strategy for our running
example. Entity M belongs to block Φ3, has an entity index
of 2, and takes part in 4 pairs with pair indexes 11, 14, 17,
and 18, respectively. Given the three ranges [0, 6], [7, 13], and
[14, 19], entity M has to be sent to the second reduce task
(index=1) for pair #11 and the third reduce task (index=2) for
the other pairs. map therefore outputs two tuples (1.3.2,M)
and (2.3.2,M). The second reduce task not only receives M
but all entities of Φ3 (F , G, M , N , and O). However, due
to its assigned pair range [7, 13], it only processes pairs with
indexes 10 through 13 of Φ3 (and, of course, 7 through 9 of
Φ2). The remaining pairs of Φ3 are processed by the third
reduce task which receives all entities of Φ3 but F because
the latter does not take part in any of the pairs with index 14
through 19 (see Figure 6).

VI. EVALUATION

We evaluate our BlockSplit and PairRange strategies re-
garding three performance-critical factors: the degree of data
skew (Section VI-A), the number of configured map (m) and
reduce (r) tasks (Section VI-B), and the number of available
nodes (n) in the cloud environment (Section VI-C). In each
experiment we examine a reasonable range of values for one of
the three factors while holding constant the other two factors.
We thereby broadly evaluate our algorithms and investigate
to what degree they are robust against data skew, can benefit
from many reduce tasks, and can scale with the number of
nodes.

We ran our experiments on Amazon EC2 (Hadoop 0.20.2,
100 c1.medium instances, configuration according to [6]). Each
node runs at most two map and reduce tasks in parallel.

We utilized two real-world datasets (see Figure 8). The first
dataset DS1 contains about 114,000 product descriptions. The
second dataset, DS2 (CiteseerX from [6]), is by an order of
magnitude larger and contains about 1.4 million publication
records. For both datasets, the first three letters of the product
or publication title, respectively, form the default blocking
key (in the robustness experiment, we vary the blocking to
study skew effects). The resulting number of blocks as well
as the relative size of the respective largest block are given in
Figure 8. Note that the blocking attributes were not chosen to
artificially generate data skew but rather reflect a reasonable
way to group together similar entities. Two entities were
compared by computing the edit distance of their title. Two
entities with a similarity ≥ 0.8 were regarded as matches.

Fig. 9. Execution times for different data skews (n=10).

A. Robustness: Degree of data skew

We first evaluate the robustness of our load balancing strate-
gies against data skew. To this end, we control the degree of
data skew by modifying the blocking function and generating
block distributions that follow an exponential distribution.
Given a fixed number of blocks b=100, the number of entities
in the kth block is proportional to e−s·k. The skew factor
s ≥ 0 thereby describes the degree of data skew. Note that
the data skew, i.e., the distribution of entities over all blocks,
determines the overall number of entity pairs. For example,
two blocks with 25 entities each lead to 2 · 25 · 24/2 = 600
pairs. If the 50 entities are split 45 vs. 5 the number of pairs
equals already 45 · 44/2 + 5 · 4/2 = 1, 000. We are therefore
interested in the average execution time per entity pair when
comparing load balancing strategies for different data skews.

Figure 9 shows the average execution time per 104 pairs for
different data skews of DS1 (n = 10, m = 20, r = 100). The
Basic strategy explained in Section III is not robust against
data skew because a higher data skew increases the number
of pairs of the largest block. For example, for s=1 Basic
needs 225 ms per 104 comparisons which is more than 12
times slower than BlockSplit and PairRange. However, the
Basic strategy is the fastest for a uniform block distribution
(s=0) because it does not suffer from the additional BDM
computation and load balancing overhead. The BDM influence
becomes insignificant for higher data skews because the data
skew does not affect the time for BDM computation but
the number of pairs. This is why the execution time per
pair is reduced for increasing s. In general, both BlockSplit
and PairRange are stable across all data skews with a small
advantage for PairRange due to its somewhat more uniform
workload distribution.

B. Number of reduce tasks

In our next experiment, we study the influence of the
number r of reduce tasks in a fixed cloud environment of 10
nodes. We vary r from 20 to 160 but let the number of map
tasks constant (m = 20). The resulting execution times for
DS1 are shown in Figure 10. Execution times from PairRange
and BlockSplit include the relatively small overhead for BDM

Fig. 10. Execution times for all strategies using DS1 (n=10).

computation (35s; distributed equally across map and reduce
phase).

We observe that both BlockSplit and PairRange significantly
outperform the Basic strategy. For example, for r=160 they
improve execution times by a factor of 6 compared to Basic.

Obviously, the Basic approach fails to efficiently leverage
many reduce tasks because of its inability to distribute the
matching of large blocks to multiple reduce tasks. Conse-
quently, the required time to process the largest block (that
accounts for more than 70% of all pairs, see Figure 8) forms
a lower boundary of the overall execution time. Since the
partitioning is done without consideration of the block size,
an increasing number of reduce tasks may even increase the
execution time if two or more large blocks are assigned to the
same reduce task as can be seen by the peaks in Figure 10.

On the other hand, both BlockSplit and PairRange take
advantage of an increasing number of reduce tasks. BlockSplit
provides relatively stable execution times over the entire range
of reduce tasks underlining its load balancing effectiveness.
PairRange gains more from a larger number of reduce tasks
and eventually outperforms BlockSplit by 7%.

However, even though PairRange always generates a uni-
form workload for all reduce tasks, it may be slower than
BlockSplit for small r. This is due to the fact that the execution
time is also influenced by other effects. Firstly, the execution
time of a reduce task may differ due to heterogeneous hard-
ware and matching attribute values of different length. This
computational skew diminishes for larger r values because of
a smaller number of pairs per reduce task. Secondly, slightly
unbalanced reduce task workloads can be counterbalanced by
a favorable mapping to processes.

As we have shown in Section VI-A both strategies are not
vulnerable to data skew but BlockSplit’s load balancing strategy
depends on the input (map) partitioning. To this end we have
sorted DS1 by title and Figure 11 compares the execution times
of for the unsorted (i.e., arbitrary order) and sorted dataset.
Since the blocking key is the first three letters of the title, a
sorted input dataset is likely to group together large blocks into
the same map partition. This limits BlockSplit’s ability to split
large blocks and deteriorates its execution time by 80%. This
effect can be diminished by a higher number of map tasks.

Fig. 11. Execution times for BlockSplit and PairRange using DS1 (un-
sorted/sorted by blocking key, n=10).

Fig. 12. Number of generated key-value pairs by map for DS1.

Figure 12 shows the number of emitted key-value pairs
during the map phase for all strategies. The map output for
Basic always equals the number of input entities because Basic
does not send an entity to more than one task and, thus, does
not replicate any input data. The BlockSplit strategy shows a
step-function-like behavior because the number of reduce tasks
determines what blocks will be split but do not influence the
split method itself which is solely based on the input partitions.
As a consequence, BlockSplit generates the largest map output
for a small number of reduce tasks. However, an increasing
number of reduce tasks increases the map output only to
limited extent because large blocks that have already been
split are not affected by additional reduce tasks. In contrast,
the PairRange strategy is independent from the blocks but only
considers pair ranges. Even though the number of relevant
entities per pair range may vary (see, e.g., Figure 7) the
overall number of emitted key-value pairs increases almost
linearly with increasing number of ranges/ reduce tasks. For a
large number of reduce tasks PairRange therefore produces the
largest map output. The associated overhead (additional data
transfer, sorting larger partitions) did not significantly impact
the execution times up to a moderate size of the utilized cloud
infrastructure due to the fact that the matching in the reduce
phase is by far the dominant factor of the overall runtime. We
will investigate the scalability of our strategies for large cloud
infrastructures in our last experiment.

C. Scalability: Number of nodes

Scalability in the cloud is not only important for fast
computation but also for financial reasons. The number of
nodes should be carefully selected because cloud infrastructure
vendors usually charge per employed machine even if they are
underutilized. To analyze the scalability of Basic, BlockSplit,

Fig. 13. Execution times and speedup for all strategies using DS1.

and PairRange, we vary the number of nodes from 1 up to 100.
For n nodes, the number of map tasks is set to m = 2 ·n and
the number of reduce tasks is set to r = 10·n, i.e., adding new
nodes leads to additional map and reduce tasks. The resulting
execution times and speedup values are shown in Figure 13
(DS1) and Figure 14 (DS2).

As expected, Basic does not scale for more than two nodes
due to the limitation that all entities of a block are compared
within a single reduce task. The execution time is therefore
dominated by the reduce task that has to process the largest
block and, thus, about 70% of all pairs. An increasing number
of nodes only slightly decreases the execution time because
the increasing number of reduce tasks reduces the additional
workload of the reduce task that handles the largest block.

By contrast, both BlockSplit and PairRange show their
ability to evenly distribute the workload across reduce tasks
and nodes. They scale almost linearly up to 10 nodes for the
smaller dataset DS1 and up to 40 nodes for the larger dataset
DS2, respectively. For large n we observe significantly better
speedup values for DS2 than for DS1 due to the reasonable
workload per reduce task that is crucial for efficient utilization
of available cores. BlockSplit outperforms PairRange for DS1
and n=100 nodes. The resulting large number of reduce tasks
leads (in conjunction with the comparatively small data size)
to a comparatively small average number of comparisons
per reduce task. Therefore PairRange’s additional overhead
(see Figure 12) deteriorates the overall execution time. This
overhead becomes insignificant for the larger dataset DS2.
The average number of comparisons is more than 2,000 times
higher than for DS1 (see Figure 8) and, thus, the benefit
of optimally balanced reduce tasks outweighs the additional
overhead of handling more key-value pairs. In general, Block-
Split is preferable for smaller (splittable) datasets under the
assumption that the dataset’s data order is not dependent
from the blocking key; otherwise PairRange has a better
performance.

We finally evaluate the ratio of the execution times of
the map and reduce phase. For PairRange and n=10 nodes
the ratio is approx. 1:66 and 1:1200 for DS1 and DS2,
respectively, i.e., the overall execution times is dominated
by the computational expensive reduce phase. For a higher

Fig. 14. Execution times and speedup for BlockSplit and PairRange (DS2).

number of nodes (n=100) these ratios change to 1:4 (DS1)
and 1:50 (DS2). We observe similar results for BlockSplit.
Obviously the reduce phase benefits considerably more than
the map phase from a higher number of nodes. In fact, the time
for the map phase even increases for more nodes. This is due
to the fact that data is physically stored in a fixed number of
chunks as defined by Hadoop’s DFS chunk size and replication
factor as well as the size of the data set. In particular the
number of chunks is independent from the cluster size n, i.e.,
newly added nodes do not store a chunk locally. Map tasks
running on those nodes are therefore required to read data
from other nodes through the network which deteriorates the
runtime.

VII. RELATED WORK

Load balancing and skew handling are well-known data
management problems and MR has been criticized for having
overlooked the skew issue [10]. Parallel database systems al-
ready implement skew handling mechanisms, e.g., for parallel
hash join processing [11] that share many similarities with
our problem. However, we have to deal with the implications
of the MR paradigm limiting the possibilities for “injecting”
skew handling into user-defined functions (map, reduce, part,
and group). Furthermore, our work does not rely on a central
coordinator for skew handling but realizes a distributed skew
handling involving all nodes.

A theoretical skew analysis for MR is given in [12] but
focuses on linear processing of entities in the reduce phase. It
disregards the N-squared complexity of comparing all entities
with each other. [13] reports that the reduce runtime for
scientific tasks does not only depend on the assigned workload
(e.g., number of pairs) but also on the data to process.
The authors propose a framework for automatic extraction of
signatures to reduce the computational skew. This approach is
orthogonal to ours: it addresses computational skew and does
not consider effective handling of present data skew.

A fairness-aware key partitioning approach for MR that
targets locality-aware scheduling of reduce tasks is proposed
in [8]. The key idea is to assign map output to reduce tasks
that eventually run on nodes that already hold a major part of
the corresponding data. This is achieved by a modification of

the MR framework implementation to control the scheduling
of reduce tasks. Similar to our BDM, this approach determines
the key distribution to optimize the partitioning. However, it
does not split large blocks but still processes all data sharing
the same key at the same reduce task which may lead to
unbalanced reduce workloads.

MR has already been employed for ER (e.g., [14]) but we
are only aware of one load balancing mechanism for MR-
based ER. [15] studies load balancing for Sorted Neighbor-
hood (SN). However, SN follows a different blocking approach
that is by design less vulnerable to skewed data.

MR’s inherent vulnerability to data skew is relevant for all
kind of pairwise similarity computation. Example applications
include pairwise document similarity [5] to identify similar
documents, set-similarity joins [6] for efficient string similarity
computation in databases, pairwise distance computation [16]
for clustering complex objects, and all-pairs matrix compu-
tation [17] for scientific computing. All approaches follow
a similar idea like ER using blocking: One or more signa-
tures (e.g., tokens or terms) are generated per object (e.g.,
document) to avoid the computation of the Cartesian product.
MR groups together objects sharing (at least) one signature
and performs similarity computation within the reduce phase.
Simple approaches like [5] create many signatures per object
which leads to unnecessary computation because similar ob-
jects are likely to have more than one signature in common
and are thus compared multiple times. Advanced approaches
such as [6] reduce unnecessary computation by employing
filters (e.g., based on token frequencies) that still guarantee
that similar object pairs share at least one signature.

A more general case is the computation of theta-joins
with MapReduce [18]. Static load balancing mechanisms are
not suitable due to arbitray join condititions. Similar to our
approach [18] employs a pre-analysis phase to determine the
datasets’ characteristics (using sampling) and thereby avoids
the evaluation of the Cartesian product. This approach is more
coarse-grained when compared to our strategies.

VIII. SUMMARY AND OUTLOOK

We proposed two load balancing approaches, BlockSplit and
PairRange, for parallelizing blocking-based entity resolution
using the widely available MapReduce framework. Both ap-
proaches are capable to deal with skewed data (blocking key)
distributions and effectively distribute the workload among
all reduce tasks by splitting large blocks. Our evaluation in
a real cloud environment using real-world data demonstrated
that both approaches are robust against data skew and scale
with the number of available nodes. The BlockSplit approach
is conceptionally simpler than PairRange but achieves already
excellent results. PairRange is less dependent on the initial
partitioning of the input data and slightly more scalable for
large match tasks.

In future work, we will extend our approaches to multi-
pass blocking that assigns multiple blocks per entity. We will
also experiment with different block split strategies, e.g., for
minimizing data replication. We will further investigate how

our load balancing approaches can be adapted for MapReduce-
based implementations of other data-intensive tasks, such as
join processing or data mining.

Acknowledgments: This work was supported by an Amazon
Web Service (AWS) in Education research grant.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in OSDI, 2004.

[2] H. Köpcke and E. Rahm, “Frameworks for entity matching: A compar-
ison,” Data Knowl. Eng., vol. 69, no. 2, 2010.

[3] R. Baxter, P. Christen, and T. Churches, “A comparison of fast blocking
methods for record linkage,” in Workshop Data Cleaning, Record
Linkage, and Object Consolidation, 2003.

[4] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution
approaches on real-world match problems,” PVLDB, vol. 3, no. 1, 2010.

[5] T. Elsayed, J. J. Lin, and D. W. Oard, “Pairwise Document Similarity
in Large Collections with MapReduce,” in ACL, 2008.

[6] R. Vernica, M. J. Carey, and C. Li:, “Efficient parallel set-similarity joins
using MapReduce,” in SIGMOD, 2010.

[7] “Hadoop,” http://hadoop.apache.org/mapreduce/.
[8] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi:, “LEEN:

Locality/Fairness-Aware Key Partitioning for MapReduce in the Cloud,”
in CloudCom, 2010.

[9] L. Kolb, A. Thor, and E. Rahm, “Block-based Load Balancing for Entity
Resolution with MapReduce,” in CIKM, 2011.

[10] D. DeWitt and M. Stonebraker, “MapReduce: A major step back-
wards,” 2008, http://databasecolumn.vertica.com/2008/01/mapreduce-a-
major-step-back.html.

[11] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri, “Practical
Skew Handling in Parallel Joins,” in VLDB, 1992.

[12] J. Lin, “The Curse of Zipf and Limits to Parallelization: A Look at
the Stragglers Problem in MapReduce,” in Workshop on Large-Scale
Distributed Systems for Information Retrieval, 2009.

[13] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-resistant parallel
processing of feature-extracting scientific user-defined functions,” in
SoCC, 2010.

[14] C. Wang, J. Wang, X. Lin, W. Wang, H. Wang, H. Li, W. Tian, J. Xu,
and R. Li, “MapDupReducer: Detecting near duplicates over massive
datasets,” in SIGMOD, 2010.

[15] L. Kolb, A. Thor, and E. Rahm, “Multi-pass Sorted Neighborhood
Blocking with MapReduce,” CSRD, 2011.

[16] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga,
and D. Gannon, “Cloud technologies for bioinformatics applications,”
in Workshop on Many-Task Computing on Grids and Supercomputers,
2009.

[17] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. J. Flynn, and D. Thain,
“All-Pairs: An Abstraction for Data-Intensive Computing on Campus
Grids,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 1, 2010.

[18] A. Okcan and M. Riedewald, “Processing theta-joins using MapReduce,”
in SIGMOD, 2011.

APPENDIX I
MATCHING TWO SOURCES

This section describes the extension of BlockSplit and Pair-
Range for matching two sources R and S. We thereby assume
that all entities have a valid blocking key. Consideration of
entities without valid blocking keys can be accomplished
as follows: matchB(R,S) = matchB(R − R∅, S − S∅) ∪
match⊥(R,S∅) ∪match⊥(R∅, S − S∅).

Given two sources R an S with a subset R∅ ⊆ R and S∅ ⊆
S of entities without blocking keys, the desired match result
matchB(R,S) using a blocking key B can be constructed as
union of three match results. First, the regular matching is
applied for entities with valid blocking keys only (R−R∅ and
S−S∅). The result is then completed with the match results of

(a) Example data (left) and BDM (right). (b) Example of match-pair
enumeration.

Fig. 15. Matching two sources R and S.

the Cartesian product of R with S∅ and R∅ with S−S∅. Such
results can be obtained by employing a constant blocking key
(denoted as ⊥) so that all entity pairs are considered.

For simplicity we furthermore assume that each input parti-
tion contains only entities of one source (this can be ensured
by Hadoop’s MultipleInputs feature). The number of partitions
may be different for each of the two sources.

For illustration, we use the example data of Figure 15(a)
that utilizes the entities A-N and the blocking keys w-z. Each
entity belongs to one of the two sources R and S. Source R
is stored in one partition Π0 only whereas entities of S are
distributed among two partitions Π1 and Π2.

The BDM computation is the same but adds a source tag
to the map output key to identify blocks with the same key in
different sources, i.e., Φi,R and Φi,S . The BDM has the same
structure as for the one-source case but distinguishes between
the two sources for each block (see Figure 15(a)).

A. Block-based Load Balancing

The BlockSplit strategy for two sources follows the same
scheme as for one source. The main difference is that the
keys are enriched with the entities’ source and that each entity
(value) is annotated with its source during the map phase.
Hence, map outputs key-value pairs with key=(reduce index
� block index � split � source) and value=(entity). This allows
the reduce phase to easily identify all pairs of entities from
different sources. Like in the one-source case BlockSplit splits
large blocks Φk but restricts the resulting match tasks k.i× j
so that Πi ∈ R and Πj ∈ S.

Figure 16 shows the workflow for the example data of
Figure 15(a). The BDM indicates 12 overall pairs so that the
average reduce workload is 4 pairs. The largest block Φ3 is
therefore subject to split because it has to process 6 pairs. The
split results in two match tasks (3.0×1 and 3.0×2). All match
tasks are ordered by the number of pairs: 0.* (4 pairs, reduce0),
3.0×1 (4 pairs, reduce1), 2.* (2 pairs, reduce2), 3.0×2 (2
pairs, reduce2). The eventual dataflow is shown in Figure 16.
Partitioning is based on the reduce task index only, for routing
all data to the reduce tasks whereas sorting is done based on
the entire key. The reduce function is called for every match
task k.i× j and compares entities considering only pairs from
different sources. Thereby, the reduce tasks read all entities of
R and compare each entity of S to all entities of R.

Fig. 16. Example BlockSplit dataflow for 2 sources.

Fig. 17. Example PairRange dataflow for 2 sources.

B. Pair-based Load Balancing

The PairRange strategy for two sources follows the same
principles as for one source. Entity enumeration is realized per
block and source like in Section V. Pair enumeration is done
for blocks Φi using entities of Φi,R and Φi,S sharing the same
blocking key. The enumeration scheme is column-oriented but
all cells of the |Φi,R| × |Φi,S | matrix will be enumerated. For
two entities eR ∈ Φi,R and eS ∈ Φi,S with entity indexes
x and y, respectively, the pair index is defined as follows:
pi(x, y) = c(x, y, |Φi,S |) + o(i) with c(x, y,N) = x · N + y
and o(i) = Σi−1

k=0(|Φk,R| · |Φk,S |) − 1. Figure 15(b) shows
the resulting match-pair enumeration for our running example.
With r = 3, the resulting 12 pairs are divided into three ranges
of size 4. Block Φ1 (blocking key equals y) needs not to be
considered because no entity in S has such a blocking key.

The map phase identifies all relevant ranges for each entity.
For an entity eR ∈ Φi,R with index x the ranges of pairs

pi(x, 0) through pi(x, |Φi,S |) need to be considered whereas
for eS ∈ Φi,S with index y the pairs pi(0, y) through
pi(|Φi,R|, y) are relevant.

For each relevant range, map emits a key-value pair with
key=(range index � block index � source � entity index) and
value= entity. Compared to the the one-source case, in addition
to its entity index, each entity (value) is also annotated with
its source (R or S). Partitioning is based on the range index
only, for routing all data to the reduce tasks. Sorting is done
based on the entire key. The reduce function is called for
every block and compares entities like in the one-source case
but only considers pairs from different sources.

Figure 17 illustrates the approach using the example data
of Figure 15(a). For example, entity C ∈ R is the first entity
(index=0) within block Φ3. It takes part in ranges <1 and
<2 and will therefore be sent to the second and third reduce
task. Hence map emits two keys (1.3.R.0) and (2.3.R.0),
respectively, for entity C.

APPENDIX II
LISTINGS

In the following, we show the pseudo-code for the two
proposed load balancing strategies and the BDM computation.
Beside the regular output of Algorithm 3 (the BDM itself),
map uses a function additionalOutput that writes each entity
along with its computed blocking key to the distributed file
system. The additional output of the first MR job is read by the
second MR job. By prohibiting the splitting of input files, it is
ensured that the second MR job receives the same partitioning
of the input data as the first job. A map task of the second
job processes exactly one additional output file (produced by
a map task of the first task) and can extract the corresponding
partition index from the file name. With the help of Hadoop’s
data locality for map task assignment, it is likely that there is
no redistribution of additional output data.

The map tasks of the second job read the BDM at ini-
tialization time. It is not required that each map task holds
the full BDM in memory. For each blocking key that occurs
in the respective map input partition, it is sufficient to store
the overall sum of entities in previous map input partitions
(Algorithm 2 Lines 4-8). Furthermore, it would be possible to
store the BDM in a distributed storage like HBase to avoid
memory shortcomings.

The pseudo-code refers to the following functions:
• BDM.blockIndex(blockKey) returns the block’s index
• BDM.size(blockIndex) returns #entities for a given block
• BDM.size(blockIndex, partitionIndex) returns #entities
for a given block in this partition
• BDM.pairs() returns overall number of entity pairs
• getNextReduceTask returns the reduce task with the
fewest number of assigned entity comparisons (BlockSplit)
• addCompsToReduceTask(reduceTask, comparisons) in-

creases number of assigned pairs of the given reduce task
by the given value (BlockSplit)
• match(e1, e2) compares two entities and adds matching
pairs to the final output.

Algorithm 1: Implementation of BlockSplit
1 map configure(m, r, partitionIndex)
2 matchTasks ← empty map;
3 compsPerReduceTask ← BDM.pairs()/r;

4 // Read BDM from reduce output of Algorithm 3
5 BDM ← readBDM();

6 // Match task creation
7 for k ← 0 to BDM.numBlocks()-1 do
8 comps ← 1

2 · BDM.size(k) · (BDM.size(k)− 1);
9 if 0 < comps ≤ compsPerReduceTask then

10 matchTasks.put((k, 0, 0), comps);

11 else if comps > 0 then
12 for i← 0 to m-1 do
13 |Φi

k| ← BDM.size(k, i);
14 for j ← 0 to i do
15 |Φj

k| ← BDM.size(k, j);
16 if |Φi

k| · |Φ
j
k| > 0 then

17 if i = j then
18 matchTasks.put((k, i, j),
19 1

2 · |Φ
i
k| · (|Φ

i
k| − 1));

20 else
21 matchTasks.put((k, i, j), |Φi

k| · |Φ
j
k|);

22 // Reduce task assignment
23 matchTasks.orderByValueDescending();
24 foreach ((k,i,j), comps) ∈ matchTasks) do
25 reduceTask ← getNextReduceTask();
26 matchTasks.put((k, i, j), reduceTask);
27 addCompsToReduceTask(reduceTask, comps);

28 // Operate on additional map output of Algorithm 3
29 map(kin=blockingKey, vin=entity)
30 k ← BDM.blockIndex(blockingKey);
31 comps ← 1

2 · BDM.size(k) · (BDM.size(k)− 1);
32 if comps ≤ compsPerReduceTask then
33 if comps>0 then
34 reduceTask ← matchTasks.get(k, 0, 0);
35 output(ktmp=reduceTask.k.0.0.0,
36 vtmp=(entitiy, partitionIndex));

37 else
38 for i← 0 to m-1 do
39 min ← min(partitionIndex, i);
40 max ← max(partitionIndex, i);
41 reduceTask ← matchTasks.get(k, max, min);
42 if reduceTask 6= null then
43 output(ktmp=reduceTask.k.max.min.partitionIndex,
44 vtmp=(entitiy, partitionIndex));

45 // part: Repartition map output by reduceTask
46 // comp: Sort by entire map output key
47 // group: Group by blockIndex.i.j (k.i.j)
48 reduce(ktmp=reduceTask.k.i.j,
49 list(vtmp)=list((entity, partitionIndex)))
50 buffer1 ← [];
51 if i = j then
52 foreach (e2, partitionIndex) ∈ list(vtmp) do
53 foreach e1 ∈ buffer1 do
54 match(e1, e2) ; // Comparison; output matches

55 buffer1.append(e2);

56 else
57 pair ← list(vtmp).firstElement();
58 buffer.append(pair.first);
59 firstPartitionIndex ← pair.second();
60 foreach (e2, partitionIndex) ∈ list(vtmp) do
61 if partitionIndex = firstPartitionIndex then
62 buffer.append(e2);

63 else
64 foreach e1 ∈ buffer do
65 // Comparison; output matches
66 match(e1, e2);

Algorithm 2: Implementation of PairRange
1 map configure(m, r, partitionIndex)
2 BDM ← readBDM() ; // Output of MR job 1
3 compsPerReduceTask ← dBDM.pairs()/re;
4 entityIndex ← [] ; // Next entity index for each block
5 for i← 0 to BDM.numBlocks()-1 do
6 entityIndex[i] ← 0;
7 for j ← 0 to partitionIndex-1 do
8 entityIndex[i] ← entityIndex[i]+ BDM.size(i, j)

9 // Operate on additional map output of Algorithm 3
10 map(kin=blockingKey, vin=entity)
11 ranges ← ∅;
12 i ← BDM.blockIndex(blockingKey);
13 x ← entityIndex[i];
14 N ← BDM.size(i);
15 <min ← rangeIndex(0, max(x, 1), N, i);
16 <max ← rangeIndex(min(x, N-2), N-1, N, i);
17 ranges ← {<min} ∪ {<max};
18 if ranges.size>2 then
19 for k ← 1 to x-1 do
20 ranges ← ranges ∪{k};

21 <med ← rangeIndex(min(x, N-2), min(x+1, N-1), N, i);
22 for k ← <med to <max-1 do
23 ranges ← ranges ∪ {k};

24 foreach r ∈ ranges do
25 output (ktmp=r.i.x, vtmp=(entitiy, x));

26 entityIndex[i] ← entityIndex[i]+1;

27 reduce configure(m, r)
28 BDM ← readBDM();
29 compsPerReduceTask ← dBDM.pairs()/re;

30 // Repartition map output by range index (r), sort by
31 // blockIndex.entityIndex (i.x), group by blockIndex (i)
32 reduce(ktmp=r.i.x, list(vtmp)=list((entity, x)))
33 N ← BDM.size(i);
34 buf ← [];
35 foreach (e, x) ∈ list(vtmp) do
36 buf.append((e, x));

37 for j ← 0 to buf.size()-2 do
38 for k ← 1 to buf.size()-1 do
39 range ← rangeIndex (buf[j].second(), buf[k].second(), N, i);
40 if range=r then
41 match(buf[j].first(), buf[k].first());

42 else if range>r then
43 return;

44 rangeIndex(col, row, blockSize, blockIndex)
45 cellIndex ← 0.5 · col · (2·blockSize-col-3)+row-1;
46 pairIndex ← cellIndex + pairIndexOffset(blockIndex);
47 return bpairIndex/compsPerReduceTaskc;

48 pairIndexOffset(blockIndex)
49 sum ← 0;
50 for k ← 0 to blockIndex-1 do
51 sum ← BDM.size(k)·(BDM.size(k)-1) + sum;

52 return 0.5 · sum;

Algorithm 3: Computation of the BDM
1 map configure(m, r, partitionIndex)
2 // Store partitionIndex

3 map(kin=unused, vin=entity)
4 blockingKey = computeKey(entity);
5 additionalOutput (k=blockingKey, v=entity) ; // to DFS
6 output (ktmp =blockingKey.partitionIndex, vtmp=1);

7 // Repartition map output by blockingKey, sort by
8 // blockingKey.partitionIndex, group by blockingKey.partitionIndex
9 reduce(ktmp=blockingKey.partitionIndex, list(vtmp)=list(1)))

10 sum ← 0;
11 foreach number in list(vtmp) do
12 sum ← sum+number;

13 output (kout=unused, vout=blockingKey +”,”+partitionIndex +”,”+sum);

	Introduction
	MapReduce Program Execution
	Load balancing for ER
	General ER Workflow for Load Balancing
	Block Distribution Matrix

	Block-based Load Balancing
	Pair-based Load Balancing
	Evaluation
	Robustness: Degree of data skew
	Number of reduce tasks
	Scalability: Number of nodes

	Related Work
	Summary and outlook
	References
	Appendix I: Matching two sources
	Block-based Load Balancing
	Pair-based Load Balancing

	Appendix II: Listings

