
DESIGN OF OPTIMISTIC METHODS FOR CONCURRENCY CONTROL IN
DATABASE SHARING SYSTEMS

Erhard Rahm

University of Kaiserslautern, FB lnformatik Postfach 3049, 0-6750 Kaiserslautern,
West Germany

Abstract
Database Sharing refers to a local multiprocessor architecture
where all processors share a common database at the disk level.
Transaction systems running in such an environment intend to
support high transaction rates with short response times as well as
high availability and modular growth. In order to achieve these
goals, Database Sharing (DB-sharing) requires an efficient syn
chronization component to control the processors' accesses to the
shared database. In this paper, we concentrate ourselves on
optimistic methods for concurrency control in DB-sharing environ
ments that promise less synchronization messages per transaction
than locking algorithms. We describe a new distributed protocol
called broadcast validation where the validations for a transaction
are simultaneously started at multiple processors by a broadcast
message. Such a parallel validation scheme is prerequisite for
reaching short response times and high transaction rates. The use
of timestamps permits simple and fast validations as well as an
integrated solution to the so-called buller invalidation problem that
is introduced by the DB-sharing architecture. Further improve
ments of our algorithm are proposed in order to reduce the syn
chronization overhead and to allow a combination with a distributed
locking protocol which is advisable for applications with higher
conflict probability. The communication and validation overhead of
our algorithms is quantified by simple estimates.

1. Introduction
Future transaction processing systems for large applications, as in
banking or reservation processing, will have to meet high per
formance and availability requirements. Such DB-based systems
must be capable of high transaction rates (e.g. 1 000 short trans
actions per second) with equivalent response times compared to
present systems [11]. Another key requirement is extensibility of
the system (modular growth).
A possible architecture for such high performance systems is
Database Sharing (DB-sharing [14]) where a number of loosely or
closely coupled processors have direct access to a shared set of
databases. Each processor owns a local main memory and runs a
separate copy of the operating system and the database manage
ment system. With loose coupling, interprocessor communication
is exclusively based on messages, while closely coupled systems
may use a common memory partition (e.g. as a global database
buffer). In this paper, we focus on loosely coupled DB-sharing
systems because we believe loose coupling offers the best frame
work to achieve high availability and extensibility. Examples of
DB-sharing systems are the Data Sharing facility of IMSIVS [16],
Computer Console's Power System [36], the DCS project [31] and
the AMOEBA project [32].
Due to the physical attachment of the disk drives to all processors,
the system components must be close together (e.g. in one room)
permitting a high-speed communication system (1-1 00 MBytes/s).
It is assumed that a global load control, performed by one or more
front-ends (Fig. 1), distributes each incoming transaction to one of
the processors (transaction routing). A transaction can be
completely executed on one processor because each CPU has

CH2439-8/87/0000/0l54$0l.OO © 1987 IEEE
154

direct access to all parts of the shared database(s). This avoids the
necessity of a distributed 2-phase-commit protocol, which would be
required in a distributed database system where the database is
partitioned among the processors. For transaction and crash
recovery, a local log (not shown in Fig. 1) is maintained by each
processor reflecting the updates of locally executed transactions.
For media recovery a global log can be used that is constructed by
merging the local logs [32].

Terminals

Front-ends

Communlcation
system

Processors

External
storage

shared databases

Fig. 1: Structure of a loosely coupled DB-sharing system

One of the main advantages of DB-sharing is flexibility. Since each
processor can access the entire database, transaction load may be
dynamically distributed according to current needs and system
availability. Additional processors can be added without altering the
transaction programs or the database schema. Likewise, a proces
sor failure does not prevent the surviving processors from acces
sing the disks or the terminals. Transaction in progress on a tailed
processor are backed out and can be automatically redistributed
among the available processors.
Obviously, DB-sharing needs a global synchronization protocol
to control the processors' accesses to the shared database and to
preserve serializibility of the executed transactions. Since there is
no common memory, concurrency control requires message
exchange among the processors that can seriously affect a
transaction's response time; a high communication overhead does
also limit transaction rates. Therefore, the concurrency control
algorithm must minimize the number of synchronization messages
per transaction. A survey of existing proposals tor synchronization
in DB-sharing systems can be found in [23,28].
Another difficulty with DB-sharing - the so-called buffer lnvalida·
lion problem [26] - results from the existence of a local database
buffer in each processor. Since a database page may simul
taneously reside in multiple butters, modification of any copy will
thus invalidate all other copies. In order to solve this problem, invali
dated objects in the buffers must be detected to avoid access to
obsolete data. Furthermore, the latest object versions have to be

propagated to other processors when they are requested there.
The latter point is implicitly solved if a FORCE-strategy [15]1S used
for update propagation to the database on disk, i.e. all modifications
of a transaction must be written to disk before the transaction
commits. In that case, the most recent page version can always be
read from disk. Unfortunately, the FORCE-strategy is not
acceptable tor high performance requirements due to the high 1/0
overhead that considerably increases the response times of
update transactions. With a NOFORCE-scheme, however, it must
be determined from where the latest page version can be obtained;
modified pages may be exchanged across the shared disks or,
preferably, via the interprocessor connections.

In this paper we investigate some new synchronization protocols
tor DB-sharing based on optimistic concurrency control that allow
tor an integrated solution to the buffer invalidation problem with
NOFORCE. An optimistic concurrency control is particularly
interesting tor DB-sharing because no synchronization message is
required during the processing of a transaction, but only tor
validation at the transaction's end. This should usually give better
response times - provided the number of rollbacks can be kept
small - than with a locking algorithm where multiple lock request
messages per transaction are required, in general.
In the next section, we shortly review. the original proposal of [17]
tor optimistic synchronization in centralized database systems and
propose an improvement that uses timestamps tor validation. After
a discussion of known approaches tor optimistic concurrency
control in distributed environments in section 3, we describe our
broadcast validation scheme that relies on distributed control. The
algorithm also uses timestamps tor conflict detection and performs
all validations tor a transaction in parallel. In sect1on 5, we g1ve a
refinement of the broadcast validation scheme that should allow for
a considerable reduction of validation and communication over
head, and in section 6 we show how the revised scheme can be
combined with the primary copy locking algorithm, a distributed
locking protocol tor DB-sharing. Finally, we give a simple quanti
tative analysis of the synchronization overhead of our algorithms as
well as some concluding remarks.

2. Basic Algorithms for Optimistic Concurrency Control
With optimistic concurrency control (OCC) a transaction c�nsists of
three phases: a read phase, a validation phase and a poss1ble wnte
phase [17]. During the read phase the updates of a transaction are
performed within a private buffer not accessible by other
transactions. Validation has to ensure that the execution of the
validating transaction preserves serializability; conflict resolution
relies on transaction abort as opposed to blocking in pessimistic
(locking) algorithms. In the write phase, only required tor success
tully validated update transactions, sufficient log data must be
forced to a sate place and modifications are made visible to other
transactions.
Modifying database objects in private buffers allows for a simple
undo recovery by just deleting the copies of uncommitted
transactions (no 1/0). Furthermore, concurrency is not reduced by
blocking transactions, instead a consistent copy of an

.
object �s

always accessible even if a modification for the object IS 1n
preparation. Another advantage is the deadlock freedom o'. OCC,
thus saving an expensive deadlock detection usually reqwred 1n
locking algorithms. . .
In most OCC schemes the serialization order of transacltons IS
determined by the validation order. Therefore, during validation it is
checked that the validating transaction has seen all modifications of
already validated transactions. In the original proposal of ,11 7], a
transaction number counter TNC is maintained to determme the
transactions against which a transaction has to be validated. The
TNC is incremented after each successful validation and its current
value is used as the unique transaction number n(T) of the
validating transaction T. For validation the system keeps track of the
set of objects read and written by a transaction T (read set RS(T)
and write set WS(T), respectively). In this paper it is assumed that

j55

the write set of a transaction is part of its read set. Let TSTART(Tj)
be the value of the TNC at the start of transaction Tj, then the
(serial) validation of [17] for Tj looks as follows:

VALID:= true;
TFINISH (Tj) := TNC;
for n (Ti) = TSTART (Tj) + t to TFINISH {Tj) do;

if RS (Tj) n WS (Ti) >' {} then VALID :• false;

end;
if VALID then do; TNC.= TNC+ 1;

end;
else abort Tj;

n {Tj) := TNC;
write phase for Tj;

Validation and write phase form a critical section that prevents other
transactions from validation; transactions in the read phase remain
unaffected. An optimization allowing for parallel validation and write
phases (however, at the expense of a higher restart probability) was
also proposed in [17].

w(x) v wr
T1 I I I

T2

Fig. 2: Scenario with unnecessary rollback of T2

A disadvantage of the above validation scheme is that transactions
are unnecessarily aborted in situations like in Fig. 2. In the shown
scenario, validation of T2 tails because object x was modified by the
concurrently executed transaction T1 . However, the rollback of T2
is unnecessary since x was read after T1 's write phase (wr) and thus
the latest version was seen. The unnecessary rollbacks are due to
the tact that the validation scheme of [17] does not regard the
actual time interval that transactions run concurrently, but it
assumes the worst case that they have completely been executed
in parallel. This is especially unfavorable for long transactions that
may often be (unnecessarily) restarted by short update trans
actions.
This problem can be circumvented by a revised scheme where
timestamps are used to detect conflicts (the use of timestamps tor
validation was also proposed by other authors, e.g. in [34]). Here
the transaction number of a successful update transaction T is
stored as a timestamp or version number within each object modi
fied by T. Now, a transaction has also to keep the timestamps of the
accessed object versions in its read set that are used in the
validation to decide whether an obsolete object version was seen
or not. The validation of transaction Tj is as follows (TS (x) denotes
the current version number of x, ts (x,Tj) is the timestamp of x as
seen by Tj):

VALID:= true;

for all r" RS (Tj) do;
if ts (r, Tj) < TS (r) then VALID:= false;

end;
if VALID then do;

TNC:= TNC+ 1;
n (Tj) :- TNC;

for all w" WS (Tj) do; TS(w) := n (Tj); end;

wrfte phase for Tj;
end;
else abort Tj;

Besides of the avoidance of unnecessary rollbacks, the revised
scheme obtains two further improvements. First, it is no longer
required to store the write sets of committed transactions, and
second, validation is much taster because we now need only one
comparision per read set element. A fast validation, however, is
only given if we can access TS (x) in main memory which is not the
case if object x has been replaced from the database buffer. This
problem can be solved by reading TS (x) not from the object itse�
but from a separate main storage data structure ('object table')
where the timestamps of recently modified objects are kept. An
entry tor an object x can be removed from this table as soon as

there are no more transactions that were running when the latest
modification of x was performed. " In a validation we now need only
consider those objects with an entry in the object table.
Analytical studies [2, 20] as well as simulations [1 ,7,21] have re
vealed that only in nearly conflict-free environments the original
proposal of [17] gives performance characteristics equivalent to
locking; in most cases, however, the pessimistic approach
performed better. The main reason for this lies in the risk of a high
abortion rate or even cyclic restarts especially for long transactions
or in the presence of (frequently modified) hot spot objects.
Improvements are possible by the above described method based
on timestamps or if a forward oriented synchronization scheme is
used where validation is performed against running transactions
and not against already committed ones [12,22]. However, these
schemes do also not help in applications with a high conflict
probability; here, the optimistic attitude is only feasible in combi
nation with locking as proposed in [19,6,35]. Though more
complex, these integrated strategies allow to combine the
advantages of both approaches: a pessimistic synchronization can
be used for long and already failed transactions to limit the number
of rollbacks and to avoid cyclic restarts, while otherwise an optimistic
concurrency control is applied to provide a high degree of
concurrency and fast response times. First investigations have
shown [11] that these integrated schemE!s have the potential to
outperform pure locking algorithms.
The described validation scheme based on timestamps will be used
in our distributed synchronization algorithms for DB-sharing
systems that are developed by stepwise refinement in sections
4-6. Our final proposal will be a combination with a locking strategy
to permit an efficient synchronization even for transaction loads
wHh higher conflict probability. At first, however, we shortly look at
some related wor1< on OCC in distributed database systems and in
DB-sharing systems.

3. Related Work on OCC In distributed environments
While there is a number of proposals for OCC in distributed
database systems (e.g. [3,5,8,9,18,29,33)), only two optimistic
methods were proposed for DB-sharing until now: a centralized
scheme in [28] and a distributed algorithm based on a tokenring
topology in (13,26]. Unfortunately, the known solutions for distribu
ted database systems (that usually rely on distributed control) can
not directly be adapted to DB-sharing because of the buffer invali
dation problem. Furthermore, in distributed database systems it is
necessary to start subtransactions in order to access 'external' data
and a distributed two phase commit protocol is required resulting in
additional communication overhead compared to DB-Sharing
where the read and write phases are performed locally. On the
other hand, with a distributed validation scheme in DB-sharing
systems a transaction has to validate at all processors in principle
because there may be a conflict at any node, whereas in distributed
database systems validation is restricted to the nodes where sub
transactions were executed (i.e. a transaction can be synchronized
locally n no external data was accessed). Compared to locking, the
optimistic methods should usually cause less synchronization
messages as a centralized locking algorithm that provokes commu
nication for most or even all lock requests. With DB-sharing there
are also less synchronous messages per transaction in general if a
distributed optimistic protocol is applied instead of a distributed
locking scheme (one validation request versus several external
lock requests/releases). With NOFORCE, additional communica
tion may be necessary in both approaches in order to fetch
modified pages from external database buffers (see below).
A main shortcoming of a centralized validation scheme for
DB-sharing is that the central node constitutes a single point of
failure. Furthermore, a combination with a centralized locking
scheme nece to �IT'it the number of restarts causes ma

156

lock request (release) messages for 'pessimistic' transactions.
Bottleneck situations at the central validation site, however, can be
eliminated - even for 1000 (short) transactions per second - by a
sufficient fast processor (e.g. 30 MIPS) if timestamps are used for
validation (23].
A much higher validation overhead is introduced by a distributed
validation scheme where a transaction has to validate at each
processor in principle; the total validation overhead increases
therefore as a square function of the number of processors. In the
proposal of (13] based on a tokenring topology, validations can
only be performed at the processor possessing the token.
Accordingly, after the read phase a transaction has to wait for the
arrival of the token in order to validate locally. For validation against
external transactions the read and write set of the transaction is
transmitted around the ring along with the token, so that the
transaction's outcome is not determined until the completion of a
full ring circulation. The drawbacks of the tokenring approach are
quite obvious:

Response times are increased by the waiting time for the token
arrival as well as by the time required for a further ring circulation.
Additional processors do therefore increase response times.
Throughput is limited because the validations are not performed
in parallel but serially. Since the communication overhead grows
with more processors we have less time to execute the
drastically increased number of validations, thus restricting the
possible numbers of processors and throughput.

Furthermore, the time t the token remains at a node must be
carefully controlled, because short values of t (e.g. when only few
transactions are ready to validate) cause a high communication
overhead while higher values lead to longer circulation times and
therefore to increased response times. Still worse, the whole
algorithm collapses if t exceeds a certain value at one processor
(13] because then all other processors produce even more trans
actions waiting for validation so that t constantly grows.

4. Broadcast Validation for DB-Sharing
In this section we describe a distributed version of the timestamp
based validation scheme of section 2 for synchronization in DB
sharing systems that avoids the disadvantages of the tokenring
approach. The scheme is called 'broadcast validation' because the
validations for a transaction are simutlaneously started at all proces
sors by broadcasting a validation request. The use of timestamps
facilitates the treatment of buffer invalidations because access to
obsolete objects can easily be detected. In the rest of this paper,
we assume that synchronization takes place on block (page) level in
order to allow an integrated solution to concurrency control and
buffer invalidation. Furthermore, a NOFORCE-strategy is assumed
for the database buffers; of course, the solutions can also be
adapted to a FORCE-policy where the exchange of modified pages
is simplified.
In contrast to the tokenring algorithm, with our broadcast validation
scheme all local validations of a transaction are performed in parallel
thus giving shorter response times and allowing for higher
transaction rates. Furthermore, this approach is better suited to
support modular growth because a transaction's response time is
only weakly dependent on the number of processors. The algo
rithm uses a broadcast medium (e.g. a bus), that is feasible due to
the local arrangement of the processors, to start the validations for a
transaction simultaneously at all nodes. The results of the local
validations are then returned to the processor P where the
transaction was executed; n all local validations were successful the
write phase for the transaction is performed on P, otherwise the
transaction is aborted.
Since the local serializibility of a transaction at all nodes does not
automatically guarantee global serializability (30] we enforce that
transactions are validated at each processor in the same order. With
a broadcast medum this requirement can be achieved quite easily
by processing all validation requests in the order they were
received, provided a reliable communication system is given. An
attemative would be to assign a globally unique timestamp to a

transaction at the end of its read phase and to perform all validations
in timestamp order; 'late' transactions (i.e. transactions with an EOT
timestamp lower than that of already validated transactions) are
aborted. Validating all transactions at all processors in the same
order guarantees that a transaction successfully vatidated at each
node does not affect global serializability; the global serializability
order is determined by any of the local serializability orders which in
tum are determined by the validation order.
In order to apply the timestamp-based validation scheme of section
2 it is necessary to assign each (successful) transaction a unique
transaction number that indicates the transaction's position in the
global serialization order. This can be done by maintaining a global
counter (equivalent to the TNC) the current value of which is
propagated and incremented with each validation request. Since
each transaction is validated at each node and the validations are
performed in the same order at every processor, a transaction can
always get a unique transaction number that is greater than all
previously assigned transaction numbers.
To perform the local validations an object table has to be maintained
at each site; in this table an entry is created for each block
successfully modified by a local transaction. The validation for a
transaction T fails at processor P if there exists an entry in P's object
table for a block B modified by a local tr,ansaction T' and if the
transaction number of r is greater than the object version of the
copy of B accessed by T. In this case, T has seen an invalidated
version of B. If the validation of T is successful at each node, then it
is ensured that T has not accessed obsolete data.
Though the algorithm sketched so far detects if an invalidated
object was accessed, it is preferable to prevent the use of obsolete
pages as far as possible (i.e. to make the latest versions available) in
order to minimize the amount of transaction aborts. To achieve this
goal we can make use of the fact that the validation request for a
transaction T contains T's write set that indicates the pages T is
intending to modify. If T has been validated successfully at all
nodes, all pages in the database buffers belonging to T's write set
can be discarded because they become obsolete. Alter T's write
phase the current version of these pages can be requested from
the processor where T was executed (NOFORCE; with FORCE the
pages can be read from disk). The information where the latest
versions of modified blocks can be obtained is also kept in the
object table.
Unfortunately, the fate of the validating transaction T is still
uncertain after the successful validation at one processor and thus
the write set of T indicates only possible modificatons. Since we
should (optimistically) assume that T will not fail, it makes little sense
to allow access to the pages belonging to T's write set, because the
accessing transactions must then be aborted in case that T
succeeds (T's modifications must be seen by all transactions
validating alter T). To avoid these unnecessary rollbacks we use a
'pessimistic' strategy and do not allow access to pages subject to a
possible modification. For this purpose, the block entries of the
object tables are extended to the following structure:

BLOCK·ID: ...
LAST-MODIFIER: transaction number of the latest successful

modifier ;
MODIFYING-PROCESSOR: processor where the L AST·

MODIFIER was executed;
IN-DOUBT: Boolean; (' indicates whether or not the block is

sliJject to a possible modifiCation •1
POSS IBLE-UPDATER: name of the transaction not yet com

mitted that wants to modify the block;
WAITING-LIST: list of local transactions that wait until

IN-DOUBT· false;
In order to access a block B at processor P during the read phase, a
transaction T has now to apply the following procedure:

if (rs private buffer contains a copy of B) then access this copy ;
else do;

if (P's object table contains an entry for B) then do;
if IN-DOUBT (B) then append Tto the WAITING-LIST (B) ;
else if MODIFYING-PROCESSOR (B) • P then read B

from the local database buffer or from disk ;

157

else if (local database buffer holds a copy of B) and
(timestamp of this copy • LAST-MODIFIER (B))

then access this copy; t B was ai'eady requested •)
else request copy of B from MODIFYING

PROCESSOR;
end;
else read B from local database buffer or from disk;

end;
Note, that the 'locking' of pages by setting IN-DOUBT to true
(corresponds to an X-lock) cannot result in deadlocks because the
POSSIBLE-UPDATERs have finished their read phases and can
therefore not be blocked by other transactions.

In order to activate blocked transactions, it is necessary to inform all
processors about the final outcome of an update trar1saction, e.g
by a broadcast message. These (broadcast) messages can be sent
alter the end of the update transaction and do therefore not
increase the transaction's response time; these messages can also
be bundled (e.g. with the next validation request) in order to
reduce the communication overhead. However, there is a tradeoff
between the reduction of communication overhead by bundling
and the response times of blocked transactions, because the more
the broadcast message about a transaction's fate is delayed, the
longer are the waiting times for blocked transactions.

The informal description of the algorithm given so far is now
specified more precisely by a procedural notation. The processing
of a transaction T at processor P mainly encompasses the following
steps:

read phase of T; t T may be blocked sometimes due to
POSS IBLE-UPDA TERs •1

broadcast validation request;
local validation of T with determination of n (T) ;
receive validation responses from other processors;
if (any validation failed) then abort T;

else do;
store n (T) as timestamp within the pages of WS (T);
perform wrte phase for T;

end;
if (T is an update transaction) then broadcast T's outcome to all

processors; t possibly delayed •1
If T was not successful, the failure of T need only to be communi
cated to the processors where T has been validated successfully.
The (local) validation of T at a processor looks as follows:

VALID ;z true;

for all r E RS (T) do;

if (the local object table contains an entry for r) and
(ts (r. T) <LAST-MODIFIER (r) or IN-DOUBT (r)) then VALID:= false;

end;
if VALID then do;

for all wE WS (T) do;

end·
end;

IN-DOUBT (w) ;z true; t entry for w may have to be createo
at first•)

POSS IBLE-UPDATER (w) :z T;

send validation response to the processor where T was
executed;

The algorithm shows that the validation of T also fails if IN-DOUBT
holds for any of the referenced pages, because we assume that
the POSSIBLE-UPDATER will be successful. A delay of T's
validation until the actual fate of the POSSIBLE-UPDATER is
known (to possibly avoid the rollback) is not advisable because
then all further validations would also have to be delayed.
The broadcast information about the successful end of an update
transaction does not only allow for the detection of obsolete pages
in the database buffer and for the activation of waiting transactions,
but it can also be used to Save- unnecessary work by aborting
running transactions that are doomed to fail. These are all trans
actions that have accessed old copies of pages belonging to the
write set of the successful transaction (this is possible in case the
pages were accessed before they were locked). The early abortion

of these transactions saves the work for the completion of their
read phase as well as for their validation.
The following actions take place at a processor where T was
successfully validated alter the receipt of the message that
indicates T's outcome:

if (Twas successful) then do;

for all w E WS (T) do;
remove copy of w from the local database buffer if present;

('ropy obsolete ')
IN-DOUBT (w) :=false;
LAST-MODIFIER (w) :� n (T);
MODIFYING-PROCESSOR (w) := processor where T was

executed;

abott all running transactions 1j with wE RS (7j);

activate the transactions wafting in WAIT ING-LIST (w};
end;

end;
else do;(' T was aborted ')

for all w E WS (T) do;
IN-DOUBT (w) :z false;
activate transactions from WAITING-LIST (w);

end;
end;

Of course, these actions are also executed at t�e processor where
T was started. Here, however, the 'unlocking' of blocks (by
resetting IN-DOUBT) and the activation of blocked transaction is
delayed until the write phase of T is completed. The write phases
can be pertormed in parallel because validation ensures that the
write sets of concurrently writing transactions are disjoint (trans
actions cannot successfully validate if they have accessed blocks
with IN-DOUBT = true).
In order to limit the number of entries in the object tables (and to
avoid unsuccessful page requests), the processors keep track of
locally modified pages that have been written out due to buffer
replacement decisions. The information that the current version of
these pages can now be read from disk is piggy-backed to the next
broadcast message and is sent to all other processors. The
corresponding block entries can simply be deleted from the object
tables (note that these entries are not required for validation,
because the transactions that have accessed obsolete copies of
the pages are already aborted). This restricts the maximum number
of object table entries roughly to the total number of buller frames
in the system. The entries should not be deleted from the object
table except in the mentioned case, because otherwise information
is lost where the current page version can be found. This, however,
may lead to accesses to obsolete page copies and consequently to
transaction aborts.
With the broadcast validation scheme described in this section, the
only synchronization message that directly increases a transaction's
response time is the validation request. Since all validations for a
transaction are pertormed in parallel, the response time impact of
the synchronization protocol should be quite small. Furthermore,
the parallel validations should allow for higher transaction rates and
better extensibility than with the tokenring approach. Further key
properties of our algorithm were introduced to manage the buffer
invalidation problem, to reduce the validation overhead and the
number of rollbacks and to save unnecessary work:

The use of timestamps permits the detection of access to
invalidated page copies and a simple and fast validation.
Furthermore, unnecessary rollbacks are avoided as shown in
section 2.
The blocking of pages subject to a possible modification help to
limit the number of rollbacks and enables parallel write phases.
Broadcasting the outcome of an update transaction that is
required to activate waiting transactions allows to discard
obsolete pages from the buffers and to store the information
where modified pages can be obtained (thus reducing the
number of aborts). Furthermore, running transactions that have
accessed obsolete data can be instantaneously rolled back so
that unnecessary work is saved. The broadcast messages are

158

sent alter the end of the update transactions and can be
bundled to reduce the communication overhead.
A single data structure, the object table, is used at each
processor for validation and for blocking of pages, and to store
the information from where modified pages should be
requested.

5. Reducllon of Validation and Communication Over-
head

Though the broadcast validation scheme of the previous section
allows for short response times, the communication and validation
overhead is still rather high because a transaction is validated at
each processor. As a consequence the synchronization overhead
grows not linearly with the number of processors (N) but
proportionally to N"2. Therefore, we propose a substantial
refinement that should permit a noticeable reduction of the
communication and validation overhead. The basic idea is to make a
logical assignment of database partitions to processors and to
validate a transaction only at those processors that are 'responsible'
for at least one object of T's read set. This is the same principle
used for OCC in distributed database systems where a transaction
needs only to validate at the nodes where subtransactions were
executed. With DB-sharing, however, the partitioning of the
database is logical and only used for synchronization.
The same idea is applied in the primary copy locking (PCL)
algorithm for DB-sharing [24] to reduce the number of external lock
requests. For this purpose, the database is logically partitioned and
each of the N processors is assigned the synchronization
responsibility (= primary copy authority or PCA) for exactly one
partilion. With PCL, all lock requests for which one's own processor
holds the PCA can be managed locally; only for the remaining
objects a lock request message must be sent to the authorized
processor. In order to keep the number of these messages low, the
PCA distribution and the strategy of load control for routing
transactions to the processors has to be suitably coordinated
according to an assumed reference behavior of the transactions
[27]. With such a scheme, transactions are usually assigned to that
processor owning the PCA for most of the database portions the
transaction is probably going to operate on (load control also has to
ensure that no processor gets overloaded). Such a routing strategy
does not only help to reduce the number of synchronization
messages, but also to increase the hit ratio in the database buffers
and to limit the number of buller invalidations due to an improved
locality of reference. The PCA distribution and/or the routing
strategy can be dynamically adapted to changing conditions in the
system (processor failure, new processor) or when the reference
behavior of the transaction load has significantly changed.
In the rest of this section, we show how the broadcast validation
scheme must be modified for a PCA-Iike synchronization in order to
reduce the validation and communication overhead. In the next
section we investigate a combination of the revised scheme with
PCL to be preferably used in applications with higher conflict
probabi lily.
In the improved validation scheme the use of the object table is
slightly different than in the previous section. Here, only the
PCA-processor always knows exactly the LAST-MODIFIER for
modified blocks, whereas the other processors are not informed
about a modification until the broadcast message indicating the
successful end of an update transaction is received. Conse
quently, the fields IN-DOUBT and POSSIBLE-UP DATER can only
be maintained for blocks belonging to the local partition. For the
identification of an object version, the name of the last modifying
transaction is sufficient; i.e. transaction numbers are no longer
required. This is because we already know that an invalidated page
was accessed if the transaction name stored in the referenced
page copy is different from the transaction name kept as the
LAST-MODIFIER at the PCA-processor.
The validation of a transaction T at processor P looks now as follows
(RS (T,P) and WS (T,P) denote the pages from RS (T) and WS (T),
respectively, for which P holds the PCA):

VALID:= true; OT2 OT3
for all r E RS (T,P) do; p 1

OTt

EJ
P2

B
P3 � if (P's object table contains an entry for r)

and (ts (r, T) ;t LAST-MODIFIER (r) or IN-DOUBT (r))

then VALID:- false;
end;
if VALID then do;

if RS (T,P) • RS (T) then (' T must only validate at P ')

for all wE WS (T) do;

LAST-MODIFIER (w) ;. T;
MODIFYING-PROCESSOR :. processor where T was

� buffer

a) I

Tt/P3
false

=
� buffer

I I

OT2 OT3
��� P1

or1

B
P2

EJ
P3 B

end;

else for all wE WS (T.P) do;
IN-DOUBT (w) :=true;
POSSIBLE-UPDATER := T;

end;
end;

The algorithm shows that each element of T's read set is only
checked at the PCA-processor, while with the basic broadcast
scheme each object was inspected at each processor. So the total
validation overhead per transaction is now exactly the same as the
validation overhead at one processor in the basic scheme. In other
words, the validation overhead could be decreased by a factor of N.
If T was successful at P and if T has only referenced objects from
P's partition, we can immediately update the fields LAST-MODIFIER
and MODIFYING-PROCESSOR. Only if two or more processors are
involved in T's validation, the outcome of T is uncertain after the
successful validation at P and we therefore have to set IN-DOUBT
to 'true'.
As in the basic scheme, the successful end of an update
transaction is broadcast to all processors to remove invalidated
pages from the buffers, to store the information where the current
page versions are available and to abort running transactions that
have accessed invalidated copies. Resetting of IN-DOUBT and
activating of blocked transactions, however, may only be necessary
at the (PCA-) processors where the transaction has valida·
ted.Similarly, the failure of an update transaction is only notified to
the (PCA·)processors where the transaction has successfully
validated.
Some aspects of the improved algorithm are now illustrated by the
example in Fig. 3. Fig. 3a shows the situation where the most
recent copy of block B resides in the buffers of processors Pt and
P3. The object tables (OT) in each processor indicate that the last
successful modification of B was perlonned by transaction Tt at P3.
At P3 that owns the PCA for B the object table also shows that no
transaction has notified a possible modification (IN-DOUBT =false).
Assume now, that a transaction T2 at Pt wants to validate and that
B belongs to T2's write set. Assume further that T2 has also
referenced objects of the local partition and that it therefore has to
validate at Pt as well as at P3. Fig. 3b shows the situation when T2
has successfully validated at P3. Since T2 may still fail at Pt, in P3's
object table block B is kept as IN-DOUBT with T2 as
POSSIBLE-UPDATER. Note, that setting IN-DOUBT prevents only
transactions at P3 from accessing B, while at Pt and P2 the old
version of B may still be referenced.
In Fig. 3c the scenario is depicted when all processors have been
informed that T2 was successful. In the object tables the fields
LAST-MODIFIER and MODIFYING-PROCESSOR are changed to
T2 and Pt, respectively, and in P3 IN-DOUBT is reset to 'false'. At
Pt the new copy of B was written from the private buffer of T2 into
the local database buffer thereby overwriting the old copy of B; at
P3 the copy of B is discarded for being obsolete. If T2 had failed to
validate at P1 or P3 then the situation of Fig. 3a would have been
reestablished.
With the revised scheme the validation overhead grows only
linearly with the number of processors; the communication
overhead is also much smaller because fewer processors have to
process a validation request and to send a validation response.
Especially for short transactions and with an effective transaction

159

T1/P3
true
T2/Pt =

� buffer � buffer

b) I I I

P1

OTt OT2 OT3

E]
P2

E]
P3 B

T2/Pt
false

=

� buffer

c) I I I
Fig. 3: Use of the object tables in the PCA·Iike OCC scheme

(example)
routing strategy, many transactions may be completely processed
and synchronized locally. The reduction of the synchronization
overhead with the PCA-Iike synchronization (that is quantified in
section 7) leads to a decreased competition for CPU-service at
each node and therefore to better response times; the reduced
overhead also facilitates modular growth and permits higher
transaction rates. The number of restarts, however, may be a little
higher than with the basic approach because access to pages that
are possibly modified can only be prevented for pages of the local
partition (by means of setting IN-DOUBT). Accesses to obsolete
page versions are therefore somewhat more likely than before.

6. Combination with PCL
The improved broadcast validation scheme of the previous section
should be sufficient for environments with low or medium conflict
probability, e.g. if short or read transactions are dominating. How
ever, if long update transactions and accesses to hot spot objects
are frequent, there is the danger of a high abortion rate or even
cyclic restarts. For these applications a combination of the broad·
cast validation algorithm with primary copy locking should be the
best synchronization protocol where transactions are either opti·
mistically or pessimistically synchronized. A pessimistic synchroni
zation that guarantees the success of a transaction (except in case
of deadlock) is advisable for already failed transactions (to prevent
cyclic restarts) and for long (update) transactions for which a higher
restart probability exists. Other transactions are optimistically syn
chronized to allow fast response times and a decreased communi
cation overhead. The price for this flexibility, however, is an in
creased complexity of the protocol; in particular, global deadlock
detection is more important because simpler deadlock resolution
schemes (e.g. timeout) are expected to perform badly with higher
conflict probability.
In the combined scheme. the block entries in the PCA-processo�s
object table have to be extended in order to keep information
about granted and waiting lock requests. We assume that two lock
types (read and write locks) are available and that locks are held until
the end of the transaction. Pessimistic transactions prepare their
updates also in private buffers in order to avoid access to 'dirty'
modifications by an optimistic transaction.
The validation of an optimistically synchronized transaction T is

mainly as in section 5 except that incompatible locks also lead to a
validation failure (thus increasing the restart probability for optimistic
transactions). So T's validation not only fails if an obsolete page
version was seen or if IN-DOUBT holds for an element of RS (T), but
also if a write lock is granted for any read set element or if a read lock
is granted tor any element of WS (T).

Lock requests are delayed due to an optimistic transaction only in
case IN-DOUBT • ,rue' because then the successful validation at
the PCA-processor has been guaranteed. The processing of a lock
request of transaction T tor page x by the PCA-processor looks as
follows:

GRANTED;. true;
if (entry for x exists) then do;

if IN-DOJBT (x) or (incompatible locks granted) then do;
GRANTED :- fafs6;
append T to the waiting list for pessimistic transactions;

end·
end;
if GRANTED then do;

adapt information about granted locks;
send lock l'llsponse if T is not a local transaction;

end·
Apparently, pessimistic transactions that are blocked due to
IN-DOUBT have to be activated when the latA of the POSSIBLE
UPDATER is known. In this case waiting optimistic transactions are
only activated if there are no incompatible lock requests; otherwise,
they are immediately aborted.
Since pessimistic transactions have to acquire a lock at the
PCA-processor before they access a page, they can use the
PeA-processor's information that is always up-to-date to get the
latest copy of a block. In order to avoid unnecessary page requests,
a pessimistic transactions checks before requesting a lock for a
block B whether the local buffer holds a copy of B. If so, the version
number of this copy is notified to the PCA-processor (together with
the lock request) where it is decided whether this copy is
up-to-date or not. If no copy was present or only an invalidated one,
the current version of B can be requested from the MODIFYING
PROCESSOR when the lock is grantable.
When a transaction releases its locks, pessimistic transactions
waiting for a lock can possibly be activated; for write locks the fields
LAST-MODIFIER and MODIFYING-PROCESSOR are adapted in
the object table. Alter the end of a pessimistic update transaction a
broadcast message is also sent to all processors to specity modified
pages. This information only relevant to optimistic transactions is
used to abort running transactions that have accessed invalidated
pages and to avoid further accesses to obsolete data.

7. Quantitative Assessment of the Validation and Com-
munication Overhead

In order to quantity the superiority of the PCA-Iike synchronization
scheme of section 5 over the basic broadcast validation algorithm,
we give a simple estimation of the number of instructions required
for communication (without requesting of pages from external
buffers) and validation. For this purpose, we use the following
parameters:

N number of processors
T transaction rate per processor (#transactions par second)
f share of update transactions (0 <• f <• I)
p average number of partttions referenced by a transaction with PCA·

like synchronization (I <- p <• N)
L average number of instructions for processing one transaction

wtthout synchronization
K average number of instructions for sending or receiving one

message
V average number of instructions per validation (inclusive

adaptlon of data structures)

For simplicity we assume that sending and receiving a message
requires the same number (K) of instructions; we do also not
distinguish between the send operation of a broadcast message
and of a simple message.

160

The required number of instructions I per transaction (with
synchronization) is as lollows:

I = L+Isync
with lsync = lcomm + Ivai.

lsync, lcomm and Ivai stand for the number of instructions needed
for synchronization, tor communication and tor validation,
respectively. The (minimal) number of instructions per processor is
I·T; of course, the CPU capacity has to be sufficiently higher
because CPU utilization should usually not exceed 80 %. The total
number of instructions IT (IT sync, ITcomm, IT val) can be calculated
from I (lsync, lcomm, Ivai) by mu�ipication with T·N.
Let us first estimate the synchronization overhead for the basic
validation scheme of section 4. Here, the validation request causes
1 send and N-1 receive operations; 2·(N-1) operations are required
for sending and receiving of the validation resu�s. Furthermore, the
broadcast message to propagate the final outcome of an update
transaction costs 1 send and N-1 receive operations. So we have

lcomm = [N + 2·(N-1) + f·N]· K = [(3+f)·N - 2]· K
For var1dation costs, we get

lvai · N ·V
because a transaction is completely validated at each processor.
For the PCA-Iike synchronization scheme, the validation overhead
is merely

Ivai = V,
since each object is only checked at one processor. The
communication overhead is also smaller because just p processors
are involved in the validation of a transaction instead of N.
Therefore, only (p-1) processors receive the validation request and
send a validation response:

lcomm = [p +2·(p-1) +f·N]· K = [3p+f·N - 2]· K
The differences are getting clearer, if we calculate the resulting
overhead for ,yplcal' parameter settings:

N-2,5,10
T. 100 (·> 200, 500 and IOOOtransactions per second)
f-0.5
p • 1.211.8/ 2.5 for N- 21511 o

L ·100000
K • 500 or 5000
V-1000

The value K=500 is typical for modern, message-oriented
operating systems, whereas K-5000 is a realistic setting for large
mainframe operating systems where the communication primitives
are often quite expensive. The value of p usually depends on N
(and the transaction load, of course), because with more
processors it becomes increasingly difficult to support a high
degree of locality within each processor. With the above settings
we get the following instruction requirements (in MIPS) for
synchronization:

basic scheme PCA-Iike synchronization

ITcomm IT val ITcomm IT val
K.SOO K-5000 K-500 K.SOOO

I
N=2 0.5 5.0 0.4 0.26 2.6 0.2
N=5 1.475 14.75 2.5 1.05 10.5 0.5
N=IO 16.5 165.0 10.0 5.25 52.5 1.0

The table shows that the commumcat1on overhead dommates over
the validation overhead for K=5000, so that in this case a bundling
of messages is mandatory. The PCA-fike synchronization allows for
a drastic reduction of the synchronization overhead: for N=10 and
K=5000 the synchronization overhead of the basic scheme is 165
MIPS (!), while the PCA-Iike synchronization requires less than one
third (53.5 MIPS) of this overhead (note that only 100 MIPS (N·H)
are needed for transaction processing without synchronization).
For K-500 and N·10 the ratio is even 4:1 (26.5 MIPS versus 6.25
MIPS) confirming the clear superiority of the PCA-Iike
synchronization.
In a similar way, the communication overhead for the primary copy
locking scheme can be estimated. It turns out that usually the
pessimistic synchronization does not only lead to more
synchronous messages per transaction (thus giving increased
response limes), but that the total communication overhead is more

than twice as high than with the PCA-Iike optimistic synchronization
scheme. In this comparision , however, the costs for deadlock
detection and for requesting modified pages from other processors
are not included. Furthermore, the actual communication overhead
is, of course, strongly dependent on the transaction load.

8. Concluding remarks
In this paper we have proposed a distributed protocol called
broadcast validation for optimistic synchronization in DB-sharing
systems. The scheme was shown to be superior to known
optimistic methods because all validations are performed in parallel
thus permitting short response times; parallel validations are also
prerequisite for high transaction rates and modular growth. The use
of timestamps allow fast validations and an integrated solution to
the buffer invalidation problem with a NOFORCE-strategy. The
number of rollbacks could be restricted by blocking pages that will
possibly be modified and by informing all processors about the fate
of an update transaction in order to remove obsolete copies from
the buffers and to make the modified page versions available.
Furthermore, transactions having accessed obsolete data can be
aborted early (during their read phases) thus saving unnecessary
work.
In section 5, it was shown how a PCA-Iike synchronization can be
applied to the broadcast validation scheme where a transaction only
validates at the processors owning the PCA for at least one object
of the transaction's read set. As demonstrated in section 7, the
revised scheme drastically reduces the validation overhead (by a
factor N) as well as the communication overhead. The revised
scheme is not restricted to environments with a low conflict
probability when it is combined with the primary copy locking
algorithm as proposed in section 6. Such a scheme allows a
transaction to be synchronized either pessimistically (in order to
avoid a rollback) or optimistically (to reach short response times).
The price for this flexibility, however, is an increased complexity of
the protoco I.
Additional improvements of our protocols are feasible if a
multiversion scheme is used or if level-2-consistency is sufficient.
As shown in [25), in these cases read transactions are always
guaranteed to be successful because neither they have to validate
nor must update transactions validate against them. This leads to a
further reduction of the abortion rate and to improved response
times for read transactions. Another point that could not be treated

in this paper are the implications of a processor crash, in particular to
study which provisions are necessary to properly continue
concurrency control after a processor failure. These investigations
are subject to ongoing research.

References
(1] Agrawal, R., Carey, M.J., Liny, M.: Models for Studying Con

currency Control Performance: Alternatives and Implications. Proc.
ACM SIGMOD 1 985, 1 08-121

[2] Agrawal, R., DeWitt, D.J.: Integrated Concurrency Control and
Recovery Mechanisms: Design and Performance Evaluation. ACM
TODS 10 (4), 1 985, 529-564

[3] Badal, D.Z., McElyea, W.: A Robust Adaptive Concurrency Control
lor Distributed Databases. Proc. IEEE INFOCOM 84, 382·391

[4] Bhargava, B.: Resiliency Features of the Optimistic Concurrency
Control Approach for Distributed Database Systems. Proc. 2nd
Symp. on Reliabil�y in Distr. Software and Database Systems, 1 982,
1 9-32

[5] Boksenbaum, C., Cart, M., Ferrie, J., Pons, J.-F.: Certffication by
Intervals of Timestamps in Distributed Database Systems. Proc.
1 0th Int. Coni. on VLDB, 1 984, 377-387

[6] Boral, H., Gold, L.: Towards a Self-Adapting Centralized Con
currency Control Algorithm. Proc. SIGMOD 1 984, t8-32

[7] Carey, M.J., Stonebraker, M.A.: The Performance of Concurrency
Control Algortthms for Database Management Systems. Proc. 1 Oth
Int. Coni. on VLDB, 1984, 1 07-1 1 8

(8] Ceri, S . , Owicki, S . : O n the Use of Optimistic Methods for
Concurrency Control in Distributed Databases. Proc. 6th Berkeley

161

Workshop on Distr. Database Management and Computer Networks,
1982, 1 1 7-129

[9] Ghertal, F.F., Mamrat, S.: An Optimistic Concurrency Control
Mechanism for an Object Based Distributed System. Proc. 5th Int.
Cont. on Distributed Computing Systems, 1985, 236-245

[10] Gold, 1., Shmueli, 0., Hofri, M.: The Private Workspace Model
Feasibility and Applications to 2PL Performance Improvements.
Proc. 1 1th Int. Cont. on VLDB, 1 985, 1 92-208

[1 1] Gray, J. et al.: One Thousand Transactions per Second. Proc. IEEE
Spring CompCon, 1 985, 96-101

[12] Harder, T.: Observations on Optimistic Concurrency Control.
Information Systems 9 (2), 1 984, 1 1 1 -120

(13] Harder, T., Peinl, P., Reuter, A.: Optimistic Concurrency Control in a
Shared Database Environment. Manuscript, FB lnformatik, Univ.
Kaiserslautern/Stuttgart, t 985

[1 4] Harder, T., Rahm, E. : Multiprocessor Database Systems for High
Performance Transaction Systems. lnformationstechnik 28 (4),
1 986, 21 4-225 (in German)

[15] Harder, T., Reuter, A.: Principles of Transaction-Oriented Database
Recovery, in: ACM Comp. Surveys 15 (4), 1983, 287-31 7

[16] Keene, W.N. Data Sharing Overview. In: IMSNS VI , DBRC and Data
Sharing User's Guide, Release 2, G30-591 1 -0, 1 982

[17] Kung, H.T., Robinson, J.T.: On Optimistic Methods for Concurrency
Control. ACM TODS 6 (2), 1981, 21 3-226

[18] Lai, M., Wilkinson, K.: Distributed Transaction Management in
JASMIN. Proc. 1 0th Int. Coni. on VLDB, 1984, 466-470

(1 9] Lausen, G.: Concurrency Control in Database Systems: A Step
Towards the Integration of Optimistic Methods and Locking. Proc.
ACM Annual Cont., 1982, 64-68

[20] Menasce, D.A., Nakanishi, T.: Optimistic versus Pessimistic
Concurrency Control Mechanisms in Database Management
Systems. Information Systems 7 (1), 1 982, 1 3-27

[2t] Peinl, P. : Synchronization in Centralized Database Systems -
Algorithms, Implementation and Ouant�ative Assessment. Doctoral
Dissertation, Univ. Kaiserslautern, FB lnformatik, 1 986 (in German)

[22] Pradel, U., Schlageter, G., Unland, R.: Redesign of Optimistic
Methods: Improving Performance and Applicability. Proc. IEEE 2nd
Int. Coni. on Data Engineering, 1 986, 466-473

[23] Rahm, E.: Concurrency Control in Database Sharing Systems. Proc.
1 6th Gl Annual Cont., lnformatik Fachberichte 126, Springer 1 986,
61 7-632

(24] Rahm, E.: Primary Copy Synchronization for DB-Sharing. Information
Systems 1 1 (4), 1 986, 275-286

[25] Rahm, E.: Optimistic Concurrency Control in Database Systems: A
Survey. Internal report 1 66/87, Univ. Kaiserslautern, FB lnformatik,
1 987 (in German)

[26] Rahm, E.: Integrated Solutions to Concurrency Control and Buffer
Invalidation in Database Sharing Systems. Proc. IEEE 2nd Int. Cont.
on Computers and Applications, 1 987

[27] Reuter, A,: Load Control and Load Balancing in a Shared Database
Management System. Proc. IEEE 2nd Int. Cont. on Data
Engineering, 1 986, 188-197

[28] Reuter, A., Sheens, K.: Synchronization in a Data Sharing
Environment. Technical report, IBM San Jose Research Lab., 1 984

[29] Schlageter, G.: Optimistic Methods for Concurrency Control in
Distributed Databasa Systems. Proc. 7th VLDB, 1981 , 1 25-130

[30] Schlageter, G.: Problems of Optimistic Concurrency Control in
Distributed Database Systems. SIGMOD Record 12 (3), 1 982, 62-66

(31] Sekino, A. et al.: The DCS - A New Approach to Multisystem Data
Sharing. Proc. National Comp. Cont., 1 984, 59-68

(32] Shoens, K. et al.: The AMOEBA Project. Proc. IEEE Spring
CompCon, 1 985, 1 02-1 05

[33] Sinha, M.K., Nanadikar, P.O., Mehndiratta, S.L.: Timestamp Based
Certification Schemes for Transactions in Distributed Database
Systems. Proc. SIGMOD 1 985, 402-41 1

[34] Thomasian, A., Ryu, I.K.: Analysis of Some Optimistic Concurrency
Control Schemes Based on Certification. Proc. SIGMETRICS 1 985,
1 92-203

[35] Vidyasankar, K., Raghavan, V.V.: Highly Flexible Integration of the
Locking and the Optimistic Approaches of Concurrency Control.
Proc. IEEE COMPSAC 1 985. 489-494

(36] West, J.C., lsman, M.A., Hannaford, S.G.: PERPOS Fault-Tolerant
Transaction Processing. Proc. 3rd Symp. on Reliability in Distr.
Software and Database Systems, 1 983, 1 89-194

This work was financially supported by Siemens AG, Munich.

