Discovering high-level changes between
versions of structured data sources

Michael Hartung

Interdisciplinary Centre for Bioinformatics and Database Research Group Leipzig
University of Leipzig

Lab Seminar WS 09/10, December 2009 g} B |

UNIVERSITAT LEIPZIG Detecting high-level changes between versions of structured data source

- =" Database Research Group
- @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 1

U NIVERSITAT LEIPZIG

Motivation ‘

Evolving data sources in different domains
* new/revised knowledge, correction of design errors, ...

Unstructured ,
- protein data sources e. swisgrot PubI\Med
* |iterature databases — |

.uni-trier. de

Bibliography

Structured d]Y GO lee“ GO g | Computer Science

 ontologies in life sciences pirectery the Gene Ontology
« product catalogs, web directories in the web el N e RaETate= a s Eq i

Problem dl[ml[o][z] open directory project|

* Providers only release new versions

« Changes (diff) between old and new version are usually missing

« But diff is required in dependent applications, e.g., for data
migration or enhanced analysis/experiments

Crucial step: computation of changes/diff between an old and
new data source version

Detecting high-level changes between versions of structured data sources
—— Database Research Group
@ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 2

Motivation

- Diff in previous work on evolution
« DILS 2008: common model for ontologies, annotations and ontology
mappings — add, del, toObsolete
« BMC Bioinformatics 2009: inclusion of merge for concepts
« OntoContent 2009: usage of information about added/deleted
elements for efficient versioning of ontologies

« Issues not addressed yet
» set of simple changes is not understandable for human users
« applications need semantically richer diff between versions
 inverse of changes as an important point addSubTree(c3,{c4,...})

- Need for a generic approach to detect add(c4,‘is_a‘,c3) add(c3)
invertible high-level changes between :
. ‘ ‘ el(c1)
data source versions 2dd(e2'synonym'cl) .

merge({c1,c2},c2)

UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data sources

eth Database Research Group
] @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009

L

Agenda

. Motivation

. Overview

. Approach
- Data model
- Low- and high-level changes
- Rules and Rule Engine

. Evaluation results

. Summary and next steps

,I‘" - UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data sources

3 ;3“ Database Research Group
Q within the Department of Informatics Michael Hartung Leipzig, December 9, 2009

How should the final result look like?

Human readable
For complex analysis
and investigations,
better understanding of evolution,
more intuitive

e.g., merge, ...

High-Low level mapping

Machine processable \ 4
For conversi_ons (e.g., Low-level (base)
old to new version), base for Changes ® €.g., add, ...

high-level changes

O NI

- UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data sources

|~ Database Research Group
% within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 5

Schematic overview

Data source
version
DSoId

Match System
Matchers:
* metadata

e structure
* instance
Set operators:
* intersect, union, diff

Rule library

Rules for data source DS

Change action descriptions

merge, move, split ...

Data source
version
Dsnew

Further
Knowledge
(e.g. id events,

annotations)

A

- UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data sources

=" Database Research Group
@ within the Department of Informatics

iterations

A

Version Diff
I:)Sold = I:)Snew

\ /

Working repository
» data source versions

* low- and high-level changes
* high-low level mapping

Michael Hartung Leipzig, December 9, 2009 6

\ /_/

Data Model

 data source DS in different versions DS, ..., DS, which can be compared,
e.g., the diff between DS, and DS,

DS, = (O, Att, Ass);

« O:set of objects obj = (accession/key) which are identified by an
accession/key (given or created)

« Att: set of attributes att = (obj, att_name, att_value) which belong to the
objects available in DS;

« Ass: set of associations ass = (obj_source, ass_type, obj_target) which
associate objects of DS, through a specific ass_type

Example: Gene Ontology of June 2007 2 GO,,,.,; = (O, Att, ASS).p07.07
« Objects: GO:0005515, ...

« Attributes: (GO:0005515, name, protein binding), ...

« Associations: (GO:0005515, is_a, GO:0005488), ...

Lee

Detecting high-level changes between versions of structured data sources

—— Database Research Group
==L e
/ e within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 7

Low-level changes

Low-level change: Ic = name(<param>)

« Objects: mapObj(obj,0bj), addObj(obj), delObj(obj)

» Associations: mapAss(ass,ass), addAss(ass), delAss(ass)

» Attributes: mapAtt(att,att), addAtt(att), delAtt(att)

« Can be applied on data sources which support base operations
such as insert, delete and update (e.g., relational database)

 Inverses are predefined:

Inverse: mapObj(obj1,0bj2) mapObj(obj2,0bj1)
addObj(obj) delObj(obj)
mapAss(ass1,ass2) mapAss(ass2,assi)
addAss(ass) delAss(ass)
mapAtt(att1,att2) mapAtt(att2,att1)
addAtt(att) delAtt(att)

Detecting high-level changes between versions of structured data sources
=~ Database Research Group

& @ within the Dp artment of Informatic

Michael Hartung Leipzig, December 9, 2009 8

Low-level changes between two versions ‘

DS, DS

new

mapODbj

addObj

delObj
mapAtt

attributes
delAtt

2N

associations associations

ail
b

Detecting high-level changes between versions of structured data sources

: —— Database Research Group
-7 @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 9

High-level changes

High-level change: he = name(<params,<ic>)

 Name and parameters, e.g., merge(from,to,<Ic>)
« Parameter can be single- or multi-valued
« Set of associated low-level changes (/c) that lead to this high-level change

mapODbj(A,A)

> merge({A,B},A,{mapObj(A,A),
mapObj(B,A)})
mapQObj(B,A)

« Can usually not be performed directly on data sources - mapping to a set
of corresponding low-level changes is required (high-low level mapping)

\‘ Li Detecting high-level changes between versions of structured data sources

: —— Database Research Group
. @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 10

High-level changes - Inverse

« Inverse for high-level changes, e.g., inverse(merge(from,to)) =

split(to,from)
« Inverse of a high-level change is realized by the inverse of its
associated low-level changes

merge(ABLA) (e SPIt(A{AB)

mapODbj(A,A) mapObj(A,A)

mapObj(A,B)

mapObj(B,A)

direction: old 2 new direction: new - old

,I‘" B UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data sources

3 ;‘i;“ Database Research Group
W Q within the Department of Informatics Michael Hartung Leipzig, December 9, 2009

Identifying low-level changes

Input: data source DS of two versions (old, new) - DS, DS

new

Output: low-level changes (map, add, del) for all element types
(object, attribute, association)

1. Step: Apply match to identify common elements
Result: mapObj, mapAtt, mapAss

2. Step: Integration of further knowledge (e.g., id events)
Result: extensions to mapObj, mapAtt, mapAss

3. Step: Computation of added and deleted elements based
on DS, ,and DS, and the matched elements found so far
Result: addObj, delObj, addAtt, delAtt, addAss, delAss

e UNIVERSITAT LEIPZIG Detecting high-level changes between versions of structured data sources

- =" Database Research Group
] @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 12

Identifying low-level changes (Script)

computeLowLevelChanges(DS,4, DS, ..)

« $mapAit = matchAitt(DS, DS,.,) U {external ones} modified

« $mapObj = matchObj(DS,, DS,,,) U {external ones} Find same or
« $mapAss = matchAss(DS_, DS elements

U {external ones}

new)

- $addObj = DS,,,,-objects \ range($mapObj)

- $delObj = DS,,,.objects \ domain($mapObj) Ensures that

each element is
at least covered
by one low-level
change -
completeness

- $addAtt = DS, ,-attributes \ range($mapAtt)
- $delAtt = DS_,.attributes \ domain($mapAtt)

- $addAss = DS, ,.associations \ range($mapAss)
» $delAss = DS_,.associations \ domain($mapAss)

return [$mapObj, $mapAtt, $mapAss,
$addObj, $delObj, $addAtt,
$delAtt, $addAss, $delAss]

Detecting high-level changes between versions of structured data sources

—— Database Research Group
T
- @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 13

<&

Example match strategy for Gene Ontology ‘

GO:0005515

* matchObj
« Uses: Concept accession number + synonyms
« Strategy: two concepts (c1,c2) match if they have an

equal accession number or the accession number of c7 is ST
available in a synonym of ¢2 GO-0045308
- matchAtt

« Uses: Attribute name + corresponding accession

number |)
« Strategy 1:two attributes ((c1,a1,v1), (c2,a2,v2))

maitch if c1=c2 and a1=a2 (for single value attributes

like name, obsolete, definition)
« Strategy 2:two attributes ((c1,a1,v1), (c2,a2,v2))

name:

match if c1=c2 and a1=a2 and vi=v2 (for attributes
with multiple values like synonym)

 matchAss
« Uses: Accession numbers of associated concepts
« Strategy: two relationships ((c1,r1,c2), (c3,r2,c4)) match
if c1=c3 and r1=r2 and c2=c4

protein binding

Detecting high-level changes between versions of structured data sources

= =" Database Research Group
. @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 14

Rules for High-Level Changes ‘

low-level
change Ic

high-level

Rules R change hc

- Idea: generate high-level changes based on existing changes +
constraints
* Rule r : set of changes € and constraints CT - high-level change hc
« Constraints:
- existence constraint > an input change in € must be present or not
- parameter constraint > parameters of input changes are interrelated
by specific operators, e.g., equality (=), inequality (!=), ...
- reduce constraint - defines which input changes are unnecessary
after generating hc
- build constraint = defines how hc is built from the input changes,
l.e., mapping between parameters of hc and the input changes of C

Detecting high-level changes between versions of structured data sources

—— Database Research Group
T
é within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 15

Rules (cont.)

Rules (more formal):

«CxCT 2 hc

«C={c,(p; Ps --.), Co(P1; Pos ---)s - Co(Pys Pos ---)}

*he(p,, p,, --.)
» CT = [existence, parameter, reduce, build]

* existence: c € C 2 {exist, not-exist}

* parameter: c,(p;) <op> c,(p): <op>in {'=’, =, ...]
 reduce: c € C 2 {reduce, not-reduce}

* build: p; € he: he(p)= ci(p)

Example: merge of objects

 C x CT - merge(from, to)
* C = {mapObj(A,C), mapObj(B,C), mapObj(A,D), mapObj(B,E)}
 existence: mapODbj(A,C), mapObj(B,C), ImapObj(A,D), ImapObj(B,E)
« parameter: C!=D, CI=E, A!=B

 reduce: mapQObj(A,C), mapObj(B,C)

* build: from=A, to=C -2 merge(A,C)

Detecting high-level changes between versions of structured data sources

LhE
2 "; —— Database Research Group
e @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 16

Rule engine

Input: set of low-level changes LC (result of match)
set of rules R

Output: set of high-level changes HC

C: set of all changes

applyRules(LC,R)

C=LC

do {

for all rules re R do
 applyRule(C,r) > C,[new changes generated by H
« C=CU C,[save all newly generated changes]

} while (hasChanged(C))

compact(C) [merge of changes, deletion of unnecessary changes]
return C\LC [high-level changes are returned]

UNIVERSITAT LEIPZIG Detecting high-level changes between versions of structured data sources

“" Database Res
: @wth tthtmthfmt Michael Hartung Leipzig, December 9, 2009

L

Applying a single rule

;

Input: set of changes C
rule r

Output: set of new changes C, generated by ron C

applyRule(C,n

select(C,r) [select input change vectors ¢é from C that satisfy existence
and parameter constraint of | 2 Cg,yisp, = {€4, Co, ---}; €;=(Cy, €5 --.)
for all €; € Cguyisp, dO
» build new change from changes in é; 2 ¢,.,; [PUild constraint of r]
» assign low-level changes from changes in €;10 C,
» mark unnecessary changes in ¢;[reduce constraint of r]
+C.=C.U {Cresuitt
return C,

l S Detecting high-level changes between versions of structured data sources
—— Database Research Group

: within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 18

Overview of possible high-level changes and their inverse

High-level change hc Inverse of hc
merge(objs_from, obj_to) split(obj to, objs_from)
substitute(obj, obj subs) substitute(obj_subs, obj)
toObsolete(obj) revokeObsolete(obj)
chgAttValue(obj, att_name, | chgAttValue(obj, att name,
old_value, new_value) new_value, old_value)
moveODbj(obj, obj_from, moveObj(obj, obj_to,
obj_to) obj_from)

addLeafObj(obj) delLeafObj(obj)
addinnerObj(obj) dellnnerObj(obj)
addSubTree(obj _root, objs) | delSubTree(obj root, objs)

\ll Detecting high-level changes between versions of structured data sources

—— Database Research Group
e
| B @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 19

Common rules 1

merge(A,C) and merge(B,C)
9compact merge({A,B},C)

» mapObj(A,C), mapObj(B,C)
« ImapObj(A,D), ImapObj(B,E)
- Cl=D, C!=E, Al=B

split(A,B) and split(A,C)
2 compact SPIit({A,{B,C})

« mapObj(A,B), mapObj(A,C)
 ImapObj(D,B), !mapObj(E,C)
« Al=D, Al=E, B!=C

: Detecting high-level changes between versions of structured data sources
: —— Database Research Group
W @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 20

Common rules I1

substitute(A,B)

« mapObj(A,B)
« ImapODbj(D,B), !mapObj(A,C)
« Al=D, B!=C, A!=B

moveODbj(A,B,C)

* mapObj(A,A)
 delAss(A,B), addAss(A,C)
A - BI=C

UNIVERSITAT LEIPZIG Detecting high-level changes between versions of structured data sources

_ 3%~ Database Research Group
: Q within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 21

Common rules III

addLeafObj(A) ° addinnerObj(A)
 addObj(A) addObj(A)

« laddAss(B,A) « addAss(B,A)

. B /‘; .- . -

° addSubTree(A,B) ° addSubTree(A,C)
» addInnerObj(A), » addInnerObj(A),
addLeafObj(B) e addSubTree(B,C)

e « addAss(B,A) * addAss(B,A)

« Al=B G Al=B
addSubTree(A,B)
« Similar rules for delLeafOby, addSubTree(A,C)
dellnnerObj, delSubTree = compact addSubTree(A,{B,C})
L

Detecting high-level changes between versions of structured data sources

—— Database Research Group
e
| B e within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 22

Common rules 1V

@ chgAttValue(A,att,v1,v2)

« mapAtt((A,att,v1),(A,att,v2))
att: v2 « A=A, att=att, v1!=v2
@ chgAttValue(A,att,V1,V2)

- addAtt((A,att,v2)), delAtt((A,att,v1))
att: v2 « A=A, att=att, v1l=v2

. * UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data sources

T L
X3~ Database Res
:@wththoptmtflfmt Michael Hartung Leipzig, December 9, 2009

Specific rules - Example Gene Ontology

toObsolete(A)
A
Q chgAttVal(A,att,v1,v2)
obsolete: true satt= ,obso‘lete |
e vl = false’, v2 = ,true

revokeObsolete(A)
A
Q » chgAttVal(A,att,v1,v2)
* att = ,obsolete’
e v1 = true’, v2 = false’

obsolete: false

- UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data sources

|~ Database Research Group
g within the Department of Informatics Michael Hartung Leipzig, December 9, 2009

Specific rules — Example NCI Thesaurus

C28428 toObsolete(A)

« moveODbj(A,B,C)
« C =,028428"

° revokeObsolete(A)

« moveODbj(A,C,B)
A e C = ,028428‘

UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data sources

La.;** Database Research Group
% within the Department of Informatics Michael Hartung Leipzig, December 9, 2009

Evaluation: GO-BP between 2007-05 and 2007-06

110,083 elements
- 110,605 elements

High-Low Level Mapping
458 correspondences

\ 4
@ Low-level changes

694 (596 add; 72 del; 26 map)

|domain(High-Low Level Mapping)| = 133 (100%)
lrange(High-Low Level Mapping)| = 319 (46%) - 375 low level changes
are standalone, i.e., they do not support any high-level change

. * UNIVERSITAT I'EIPZIG Detecting high-level changes between versions of structured data source

T L
X3~ Database Res
:@wththoptmtflfmt Michael Hartung Leipzig, December 9, 2009

Evaluation: GO-BP between 2007-05 and 2007-06

Selected high-level changes:

* merge({GO:0051225(spindle assembly”), GO:0051226(*meiotic spindle
assembly”), GO:0051227(“mitotic spindle assembly”)}, GO:0051225)

» toObsolete(GO:0006755(“carbamoyl phosphate-ADP transphosphorylation”))

« addSubTree(G0O:0033212(“iron assimilation“), {GO:0033213, GO:0033214,
G0O:0033215}), ... (13 more)

« addInnerObj(G0O:0010431), addinnerObj(GO:0055048)
- addLeafObj(G0O:0010424), ... (22 more)

* moveObj(G0O:0000281,'is_a’, GO:0000910, GO:0033205),
... (26 more)

% Detecting high-level changes between versions of structured data sources

~ Database Research Group
3 e within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 27

Evaluation: GO-MF between 2007-05 and 2007-06

46,702 elements
- 46,875 elements

High-Low Level Mapping
127 correspondences

\ 4
@ Low-level changes
245 (203 add; 27 del; 15 map)

138

|domain(High-Low Level Mapping)| = 57 (100%)
lrange(High-Low Level Mapping)| = 107 (43%) - 138 low level changes
are standalone, i.e., they do not support any high-level change

Al
B UNIVERSITAT LEIPZIG Detecting high-level changes between versions of structured data sources

"-‘. [
L SW" Database Res
h @wththoptmtflfmt Michael Hartung Leipzig, December 9, 2009

Evaluation: GO-CC between 2007-05 and 2007-06

13,604 elements
- 13,710 elements

High-Low Level Mapping
100 correspondences

v
Low-level changes
167 (124 add; 17 del; 26 map)

|domain(High-Low Level Mapping)| = 55 (100%)
lrange(High-Low Level Mapping)| = 88 (52%) - 79 low level changes are
standalone, i.e., they do not support any high-level change

UNIVERSITAT LEIPZIG Detecting high-level changes between versions of structured data sources

"’. =
L SW" Database Res
h @wththoptmtflfmt Michael Hartung Leipzig, December 9, 2009

Lue

Completeness of low-level changes

Forward case
Low-level changes LC (changes to build DS, based on DS,

migrated
old version
DSold‘

old version LC

DS, =DS,., ?

D Sold

Inverse case

LC‘ = inverse(LC) - all changes in LC are reversed

migrated

new version Lc new version) DSpew =DSg4?
DSneW
Both together
. everse o
old version mlgratg migrated
DS, Dlel viEEen old version DSy = DSg14 ?

DS ‘ 171
D Sold

Ll

S Detecting high-level changes between versions of structured data sources
? Database Research Group

@ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 30

Order of performing low-level changes

Performing order:

delAtt — delete all attributes not present in origin version

. delAss — delete all associations not present in origin version
. delObj — delete all objects not present in origin version

. addObj — insert all new objects

. mapObj — update all changed objects

. addAss — insert all new associations

. mapAss — update all changed associations

. addAtt — insert all new attributes

. mapAtt — update all changed attributes

©ONOOUAWN=

Evaluation for GO sub ontologies between 2007-05 and 2007-06
using the computed low-level changes:

 reconstruction of versions worked for all three cases (forward,
inverse, both) and all sub ontologies - complete low-level changes

—— Database Research Group
. e
& : @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 31

Detecting high-level changes between versions of structured data sources

Summary and Future Work

Approach for discovering high-level changes between structured
data source versions

« Distinction between low-/high-level changes connected by a high-low
level mapping

« Usage of rules and generic rule engine to detect high-level changes
based on low-level ones

« Approach is customizable

« Match for detection of low-level changes

« Adaptable rules and changes for different data sources

First evaluation for GO sub ontologies between 2007-05 and 2007-06

Next steps

« Extended evaluation, e.g., other time periods (quarter, half year, year)

« Evaluation in other domains, e.g., product catalogs or web directories
(match as critical step)

« Application: efficient matching; use in current/upcoming analysis, e.g.,
Impact of ontology/annotation changes on algorithm results

Detecting high-level changes between versions of structured data sources

—— Database Research Group
%,: @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 32

Thank You for your attention !!

Questions ?

e UNIVERSITAT LEIPZIG Detecting high-level changes between versions of structured data sources

. [~ Database Research Group
: Q within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 33

