
Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 1

Discovering high-level changes between

versions of structured data sources

Michael HartungMichael Hartung

Interdisciplinary Centre for Bioinformatics and Database Research Group Leipzig
University of Leipzig

Lab Seminar WS 09/10, December 2009

B

C

A

E

D

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 2

Motivation

• Evolving data sources in different domains

• new/revised knowledge, correction of design errors, …

• Unstructured
• protein data sources
• literature databases

• Structured

• ontologies in life sciences
• product catalogs, web directories in the web

• Problem

• Providers only release new versions
• Changes (diff) between old and new version are usually missing
• But diff is required in dependent applications, e.g., for data

migration or enhanced analysis/experiments

Crucial step: computation of changes/diff between an old and
new data source version

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 3

Motivation

• Diff in previous work on evolution

• DILS 2008: common model for ontologies, annotations and ontology
mappings – add, del, toObsolete

• BMC Bioinformatics 2009: inclusion of merge for concepts
• OntoContent 2009: usage of information about added/deleted

elements for efficient versioning of ontologies

• Issues not addressed yet

• set of simple changes is not understandable for human users
• applications need semantically richer diff between versions
• inverse of changes as an important point

���� Need for a generic approach to detect

invertible high-level changes between

data source versions
del(c1)

add(c2,‘synonym‘,c1)

add(c3)

add(c4)

add(c4,‘is_a‘,c3) …

merge({c1,c2},c2)

addSubTree(c3,{c4,…})

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 4

Agenda

● Motivation

● Overview

● Approach

− Data model

− Low- and high-level changes

− Rules and Rule Engine

● Evaluation results

● Summary and next steps

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 5

How should the final result look like?

High-level (complex)

Changes

Low-level (base)

Changes

Human readable

For complex analysis
and investigations,

better understanding of evolution,
more intuitive

Machine processable

For conversions (e.g.,
old to new version), base for

high-level changes

High-Low level mapping

e.g., merge, …

e.g., add, …

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 6

Match
(DSold,DSnew)

Data source

version

DSold

Data source

version

DSnew

Advanced
Diff (Rule
Engine)

Merge &
Reduce

Rule library

Change action descriptions

Working repository
• data source versions

• low- and high-level changes
• high-low level mapping

Rules for data source DS
Match System
Matchers:
• metadata
• structure
• instance
Set operators:
• intersect, union, diff

Version Diff
DSold – DSnew

merge, move, split …

Further

Knowledge

(e.g. id events,

annotations)

iterations

Schematic overview

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 7

Data Model

• data source DS in different versions DS1, …, DSn which can be compared,
e.g., the diff between DS6 and DS7

DSi = (O, Att, Ass)i

• O: set of objects obj = (accession/key) which are identified by an
accession/key (given or created)

• Att: set of attributes att = (obj, att_name, att_value) which belong to the
objects available in DSi

• Ass: set of associations ass = (obj_source, ass_type, obj_target) which
associate objects of DSi through a specific ass_type

Example: Gene Ontology of June 2007 � GO2007-07 = (O, Att, Ass)2007-07

• Objects: GO:0005515, …

• Attributes: (GO:0005515, name, protein binding), …

• Associations: (GO:0005515, is_a, GO:0005488), …

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 8

Low-level changes

Inverse:

delAtt(att)addAtt(att)

mapAtt(att2,att1)mapAtt(att1,att2)

delAss(ass)addAss(ass)

mapAss(ass2,ass1)mapAss(ass1,ass2)

delObj(obj)addObj(obj)

mapObj(obj2,obj1)mapObj(obj1,obj2)

Low-level change: lc = name(<param>)

• Objects: mapObj(obj,obj), addObj(obj), delObj(obj)

• Associations: mapAss(ass,ass), addAss(ass), delAss(ass)

• Attributes: mapAtt(att,att), addAtt(att), delAtt(att)

• Can be applied on data sources which support base operations
such as insert, delete and update (e.g., relational database)

• Inverses are predefined:

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 9

Low-level changes between two versions

objects

attributes

associations

+

objects

attributes

associations

-

DSold DSnew

mapObj

mapAtt

mapAss

addAssdelAss

addAttdelAtt

addObj

delObj

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 10

High-level changes

High-level change: hc = name(<param>,<lc>)

• Name and parameters, e.g., merge(from,to,<lc>)
• Parameter can be single- or multi-valued
• Set of associated low-level changes (lc) that lead to this high-level change

• Can usually not be performed directly on data sources � mapping to a set
of corresponding low-level changes is required (high-low level mapping)

B

A

A mapObj(A,A)

mapObj(B,A)

�merge({A,B},A,{mapObj(A,A),

mapObj(B,A)})

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 11

High-level changes - Inverse

• Inverse for high-level changes, e.g., inverse(merge(from,to)) =
split(to,from)

• Inverse of a high-level change is realized by the inverse of its
associated low-level changes

B

A

A mapObj(A,A)

mapObj(B,A)

merge({A,B},A)

B

A

AmapObj(A,A)

mapObj(A,B)

Inverse

Inverse split(A,{A,B})

direction: old � new direction: new � old

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 12

Identifying low-level changes

Input: data source DS of two versions (old, new) � DSold, DSnew

Output: low-level changes (map, add, del) for all element types
(object, attribute, association)

1. Step: Apply match to identify common elements
Result: mapObj, mapAtt, mapAss

2. Step: Integration of further knowledge (e.g., id events)
Result: extensions to mapObj, mapAtt, mapAss

3. Step: Computation of added and deleted elements based
on DSnew and DSold and the matched elements found so far
Result: addObj, delObj, addAtt, delAtt, addAss, delAss

Match
(DSold,DSnew)

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 13

Identifying low-level changes (Script)

computeLowLevelChanges(DSold, DSnew)

• $mapObj = matchObj(DSold, DSnew) U {external ones}
• $mapAtt = matchAtt(DSold, DSnew) U {external ones}
• $mapAss = matchAss(DSold, DSnew) U {external ones}

• $addObj = DSnew.objects \ range($mapObj)
• $delObj = DSold.objects \ domain($mapObj)

• $addAtt = DSnew.attributes \ range($mapAtt)
• $delAtt = DSold.attributes \ domain($mapAtt)

• $addAss = DSnew.associations \ range($mapAss)
• $delAss = DSold.associations \ domain($mapAss)

return [$mapObj, $mapAtt, $mapAss,
$addObj, $delObj, $addAtt,
$delAtt, $addAss, $delAss]

Ensures that
each element is
at least covered
by one low-level
change �
completeness

}
Find same or
modified
elements

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 14

Example match strategy for Gene Ontology

• matchObj
• Uses: Concept accession number + synonyms
• Strategy: two concepts (c1,c2) match if they have an

equal accession number or the accession number of c1 is
available in a synonym of c2

GO:0005515

synonym:
GO:0045308

GO:0045308

GO:0005515 GO:0005515

name:
protein binding

name:
protein binding

activity

• matchAtt
• Uses: Attribute name + corresponding accession

number
• Strategy 1: two attributes ((c1,a1,v1), (c2,a2,v2))

match if c1=c2 and a1=a2 (for single value attributes
like name, obsolete, definition)

• Strategy 2: two attributes ((c1,a1,v1), (c2,a2,v2))
match if c1=c2 and a1=a2 and v1=v2 (for attributes
with multiple values like synonym)

• matchAss
• Uses: Accession numbers of associated concepts
• Strategy: two relationships ((c1,r1,c2), (c3,r2,c4)) match

if c1=c3 and r1=r2 and c2=c4

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 15

Rules for High-Level Changes

Rules R

• Idea: generate high-level changes based on existing changes +
constraints

• Rule r : set of changes C and constraints CT � high-level change hc
• Constraints:

- existence constraint � an input change in C must be present or not
- parameter constraint � parameters of input changes are interrelated

by specific operators, e.g., equality (=), inequality (!=), …
- reduce constraint � defines which input changes are unnecessary

after generating hc
- build constraint � defines how hc is built from the input changes,

i.e., mapping between parameters of hc and the input changes of C

change c

low-level

change lc

high-level

change hc

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 16

Rules (cont.)

Rules (more formal):

• C x CT ���� hc
• C = {c1(p1, p2, …), c2(p1, p2, …), …, cn(p1, p2, …)}

• hc(p1, p2, …)

• CT = [existence, parameter, reduce, build]

• existence: c є C � {exist, not-exist}

• parameter: ci(pj) <op> ck(pl): <op> in {‘=’, ’!=’, …}

• reduce: c є C � {reduce, not-reduce}

• build: pj є hc: hc(pj)= ck(pl)

Example: merge of objects

• C x CT ���� merge(from, to)
• C = {mapObj(A,C), mapObj(B,C), mapObj(A,D), mapObj(B,E)}

• existence: mapObj(A,C), mapObj(B,C), !mapObj(A,D), !mapObj(B,E)

• parameter: C!=D, C!=E, A!=B

• reduce: mapObj(A,C), mapObj(B,C)

• build: from=A, to=C � merge(A,C)

B

C

A

E

D

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 17

Rule engine

Input: set of low-level changes LC (result of match)
set of rules R

Output: set of high-level changes HC

C: set of all changes

applyRules(LC,R)

C = LC
do {
for all rules r є R do

• applyRule(C,r) � Cr [new changes generated by r]
• C = C U Cr [save all newly generated changes]

} while (hasChanged(C))
compact(C) [merge of changes, deletion of unnecessary changes]
return C\LC [high-level changes are returned]

Advanced
Diff (Rule
Engine)

Merge &
Reduce

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 18

Applying a single rule

Input: set of changes C
rule r

Output: set of new changes Cr generated by r on C

applyRule(C,r)

select(C,r) [select input change vectors ĉ from C that satisfy existence
and parameter constraint of r] � Csatisfy = {ĉ1, ĉ2, …}; ĉi =(c1, c2, …)

for all ĉi є Csatisfy do

• build new change from changes in ĉi � cresult [build constraint of r]
• assign low-level changes from changes in ĉi to cresult

• mark unnecessary changes in ĉi [reduce constraint of r]
• Cr = C

r
U {cresult}

return Cr

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 19

Overview of possible high-level changes and their inverse

delSubTree(obj_root, objs)addSubTree(obj_root, objs)

delInnerObj(obj)addInnerObj(obj)

delLeafObj(obj)addLeafObj(obj)

……

moveObj(obj, obj_to,
obj_from)

moveObj(obj, obj_from,
obj_to)

chgAttValue(obj, att_name,
new_value, old_value)

chgAttValue(obj, att_name,
old_value, new_value)

revokeObsolete(obj)toObsolete(obj)

substitute(obj_subs, obj)substitute(obj, obj_subs)

split(obj_to, objs_from)merge(objs_from, obj_to)

Inverse of hcHigh-level change hc

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 20

Common rules I

B

C

A
merge(A,C) and merge(B,C)

����compact merge({A,B},C)

• mapObj(A,C), mapObj(B,C)
• !mapObj(A,D), !mapObj(B,E)
• C!=D, C!=E, A!=B

E

D

C

A

B

E

D split(A,B) and split(A,C)
����compact split({A,{B,C})

• mapObj(A,B), mapObj(A,C)
• !mapObj(D,B), !mapObj(E,C)
• A!=D, A!=E, B!=C

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 21

Common rules II

BA

substitute(A,B)

• mapObj(A,B)
• !mapObj(D,B), !mapObj(A,C)
• A!=D, B!=C, A!=B

D

C

C

A

B
moveObj(A,B,C)

• mapObj(A,A)
• delAss(A,B), addAss(A,C)
• B!=CA

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 22

Common rules III

addLeafObj(A)

• addObj(A)
• !addAss(B,A)
• -B

A addInnerObj(A)

• addObj(A)
• addAss(B,A)
• -

B

A

addSubTree(A,B)

• addInnerObj(A),
addLeafObj(B)
• addAss(B,A)
• A!=B

B

A
addSubTree(A,C)

• addInnerObj(A),
addSubTree(B,C)
• addAss(B,A)
• A!=B

B

A

C

addSubTree(A,B)
addSubTree(A,C)
�compact addSubTree(A,{B,C})

• Similar rules for delLeafObj,

delInnerObj, delSubTree

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 23

Common rules IV

chgAttValue(A,att,v1,v2)

• mapAtt((A,att,v1),(A,att,v2))
• A=A, att=att, v1!=v2

A

chgAttValue(A,att,V1,V2)

• addAtt((A,att,v2)), delAtt((A,att,v1))
• A=A, att=att, v1!=v2

att: v2

A

att: v1

A

att: v2

A

att: v1

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 24

Specific rules – Example Gene Ontology

toObsolete(A)

• chgAttVal(A,att,v1,v2)
• att = ‚obsolete‘
• v1 = ‚false‘, v2 = ‚true‘

A

obsolete: true

A

obsolete: false

revokeObsolete(A)

• chgAttVal(A,att,v1,v2)
• att = ‚obsolete‘
• v1 = ‚true‘, v2 = ‚false‘

A

obsolete: false

A

obsolete: true

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 25

Specific rules – Example NCI Thesaurus

toObsolete(A)

• moveObj(A,B,C)
• C = ‚C28428‘

C28428

A

B

A

revokeObsolete(A)

• moveObj(A,C,B)
• C = ‚C28428‘

B

A

C28428

A

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 26

Evaluation: GO-BP between 2007-05 and 2007-06

High-level changes

133

Low-level changes

694 (596 add; 72 del; 26 map)

High-Low Level Mapping

458 correspondences

|domain(High-Low Level Mapping)| = 133 (100%)

|range(High-Low Level Mapping)| = 319 (46%) � 375 low level changes
are standalone, i.e., they do not support any high-level change

375

133

319

110,083 elements
� 110,605 elements

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 27

Evaluation: GO-BP between 2007-05 and 2007-06

Selected high-level changes:

• merge({GO:0051225(“spindle assembly”), GO:0051226(“meiotic spindle

assembly”), GO:0051227(“mitotic spindle assembly”)}, GO:0051225)

• toObsolete(GO:0006755(“carbamoyl phosphate-ADP transphosphorylation”))

• addSubTree(GO:0033212(“iron assimilation“), {GO:0033213, GO:0033214,
GO:0033215}), … (13 more)

• addInnerObj(GO:0010431), addInnerObj(GO:0055048)

• addLeafObj(GO:0010424), … (22 more)

• moveObj(GO:0000281,’is_a’, GO:0000910, GO:0033205),
… (26 more)

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 28

Evaluation: GO-MF between 2007-05 and 2007-06

High-level changes

57

Low-level changes

245 (203 add; 27 del; 15 map)

High-Low Level Mapping

127 correspondences

|domain(High-Low Level Mapping)| = 57 (100%)

|range(High-Low Level Mapping)| = 107 (43%) � 138 low level changes
are standalone, i.e., they do not support any high-level change

138

57

107

46,702 elements
� 46,875 elements

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 29

Evaluation: GO-CC between 2007-05 and 2007-06

High-level changes

55

Low-level changes

167 (124 add; 17 del; 26 map)

High-Low Level Mapping

100 correspondences

|domain(High-Low Level Mapping)| = 55 (100%)

|range(High-Low Level Mapping)| = 88 (52%) � 79 low level changes are
standalone, i.e., they do not support any high-level change

79

55

88

13,604 elements
� 13,710 elements

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 30

Completeness of low-level changes

old version
DSold

migrated
old version

DSold‘

LC

Forward case

Low-level changes LC (changes to build DSnew based on DSold)

DSold‘ = DSnew ?

Inverse case

LC‘ = inverse(LC) � all changes in LC are reversed

new version
DSnew

migrated
new version

DSnew‘

LC‘ DSnew‘ = DSold ?

Both together

old version
DSold

migrated
old version

DSold‘

LC

reverse of
migrated

old version
DSold‘‘

LC‘
DSold‘‘ = DSold ?

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 31

Order of performing low-level changes

Performing order:

1. delAtt – delete all attributes not present in origin version
2. delAss – delete all associations not present in origin version
3. delObj – delete all objects not present in origin version
4. addObj – insert all new objects
5. mapObj – update all changed objects
6. addAss – insert all new associations
7. mapAss – update all changed associations
8. addAtt – insert all new attributes
9. mapAtt – update all changed attributes

Evaluation for GO sub ontologies between 2007-05 and 2007-06

using the computed low-level changes:

• reconstruction of versions worked for all three cases (forward,
inverse, both) and all sub ontologies � complete low-level changes

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 32

Summary and Future Work

● Approach for discovering high-level changes between structured
data source versions

• Distinction between low-/high-level changes connected by a high-low
level mapping

• Usage of rules and generic rule engine to detect high-level changes
based on low-level ones

• Approach is customizable
• Match for detection of low-level changes
• Adaptable rules and changes for different data sources

• First evaluation for GO sub ontologies between 2007-05 and 2007-06

● Next steps

• Extended evaluation, e.g., other time periods (quarter, half year, year)
• Evaluation in other domains, e.g., product catalogs or web directories

(match as critical step)
• Application: efficient matching; use in current/upcoming analysis, e.g.,

impact of ontology/annotation changes on algorithm results

Database Research Group

within the Department of Informatics

Detecting high-level changes between versions of structured data sources

Michael Hartung Leipzig, December 9, 2009 33

Thank You for your attention !!

Questions ?

