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Motivation ‘

Evolving data sources in different domains
* new/revised knowledge, correction of design errors, ...

Unstructured ,
- protein data sources e. swisgrot PubI\Med
* |iterature databases — |

.uni-trier. de

Bibliography

Structured d]Y GO lee“ GO g | Computer Science

 ontologies in life sciences pirectery the Gene Ontology
« product catalogs, web directories in the web el N e RaETate= a s Eq i

Problem dl[ml[o][z] open directory project|

* Providers only release new versions

« Changes (diff) between old and new version are usually missing

« But diff is required in dependent applications, e.g., for data
migration or enhanced analysis/experiments

Crucial step: computation of changes/diff between an old and
new data source version
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Motivation

- Diff in previous work on evolution
« DILS 2008: common model for ontologies, annotations and ontology
mappings — add, del, toObsolete
« BMC Bioinformatics 2009: inclusion of merge for concepts
« OntoContent 2009: usage of information about added/deleted
elements for efficient versioning of ontologies

« Issues not addressed yet
» set of simple changes is not understandable for human users
« applications need semantically richer diff between versions
 inverse of changes as an important point addSubTree(c3,{c4,...})

- Need for a generic approach to detect add(c4,‘is_a‘,c3) add(c3)
invertible high-level changes between :
. ‘ ‘ el(c1)
data source versions 2dd(e2'synonym'cl) .

merge({c1,c2},c2)
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How should the final result look like?

Human readable
For complex analysis
and investigations,
better understanding of evolution,
more intuitive

e.g., merge, ...

High-Low level mapping

Machine processable \ 4
For conversi_ons (e.g., Low-level (base)
old to new version), base for Changes ® €.g., add, ...

high-level changes

O NI
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Schematic overview

Data source
version
DSoId

Match System
Matchers:
* metadata

e structure
* instance
Set operators:
* intersect, union, diff

Rule library

Rules for data source DS

Change action descriptions

merge, move, split ...

Data source
version
Dsnew

Further
Knowledge
(e.g. id events,

annotations)

A
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Version Diff
I:)Sold = I:)Snew

\ /

Working repository
» data source versions

* low- and high-level changes
* high-low level mapping
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Data Model

 data source DS in different versions DS, ..., DS, which can be compared,
e.g., the diff between DS, and DS,

DS, = (O, Att, Ass);

« O:set of objects obj = (accession/key) which are identified by an
accession/key (given or created)

« Att: set of attributes att = (obj, att_name, att_value) which belong to the
objects available in DS;

« Ass: set of associations ass = (obj_source, ass_type, obj_target) which
associate objects of DS, through a specific ass_type

Example: Gene Ontology of June 2007 2 GO,,,.,; = (O, Att, ASS).p07.07
« Objects: GO:0005515, ...

« Attributes: (GO:0005515, name, protein binding), ...

« Associations: (GO:0005515, is_a, GO:0005488), ...

Lee
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Low-level changes

Low-level change: Ic = name(<param>)

« Objects: mapObj(obj,0bj), addObj(obj), delObj(obj)

» Associations: mapAss(ass,ass), addAss(ass), delAss(ass)

» Attributes: mapAtt(att,att), addAtt(att), delAtt(att)

« Can be applied on data sources which support base operations
such as insert, delete and update (e.g., relational database)

 Inverses are predefined:

Inverse: mapObj(obj1,0bj2) mapObj(obj2,0bj1)
addObj(obj) delObj(obj)
mapAss(ass1,ass2) mapAss(ass2,assi)
addAss(ass) delAss(ass)
mapAtt(att1,att2) mapAtt(att2,att1)
addAtt(att) delAtt(att)
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Low-level changes between two versions ‘

DS, DS

new

mapODbj

addObj

delObj
mapAtt

attributes
delAtt

2N

associations associations

ail
b
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High-level changes

High-level change: he = name(<params,<ic>)

 Name and parameters, e.g., merge(from,to,<Ic>)
« Parameter can be single- or multi-valued
« Set of associated low-level changes (/c) that lead to this high-level change

mapODbj(A,A)

> merge({A,B},A,{mapObj(A,A),
mapObj(B,A)})
mapQObj(B,A)

« Can usually not be performed directly on data sources - mapping to a set
of corresponding low-level changes is required (high-low level mapping)

\‘ Li Detecting high-level changes between versions of structured data sources

: —— Database Research Group
. @ within the Department of Informatics Michael Hartung Leipzig, December 9, 2009 10




High-level changes - Inverse

« Inverse for high-level changes, e.g., inverse(merge(from,to)) =

split(to,from)
« Inverse of a high-level change is realized by the inverse of its
associated low-level changes

merge(ABLA) (e  SPIt(A{AB)

mapODbj(A,A) mapObj(A,A)

mapObj(A,B)

mapObj(B,A)

direction: old 2 new direction: new - old
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Identifying low-level changes

Input: data source DS of two versions (old, new) - DS, DS

new

Output: low-level changes (map, add, del) for all element types
(object, attribute, association)

1. Step: Apply match to identify common elements
Result: mapObj, mapAtt, mapAss

2. Step: Integration of further knowledge (e.g., id events)
Result: extensions to mapObj, mapAtt, mapAss

3. Step: Computation of added and deleted elements based
on DS, ,and DS, and the matched elements found so far
Result: addObj, delObj, addAtt, delAtt, addAss, delAss
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Identifying low-level changes (Script)

computeLowLevelChanges(DS,4, DS, ..)

« $mapAit = matchAitt(DS, DS,.,) U {external ones} modified

« $mapObj = matchObj(DS,, DS,,,) U {external ones} Find same or
« $mapAss = matchAss(DS_, DS elements

U {external ones}

new)

- $addObj = DS,,,,-objects \ range($mapObj)

- $delObj = DS,,,.objects \ domain($mapObj) Ensures that

each element is
at least covered
by one low-level
change -
completeness

- $addAtt = DS, ,-attributes \ range($mapAtt)
- $delAtt = DS_,.attributes \ domain($mapAtt)

- $addAss = DS, ,.associations \ range($mapAss)
» $delAss = DS_,.associations \ domain($mapAss)

return [ $mapObj, $mapAtt, $mapAss,
$addObj, $delObj, $addAtt,
$delAtt, $addAss, $delAss ]
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Example match strategy for Gene Ontology ‘

GO:0005515

* matchObj
« Uses: Concept accession number + synonyms
« Strategy: two concepts (c1,c2) match if they have an

equal accession number or the accession number of c7 is ST
available in a synonym of ¢2 GO-0045308
- matchAtt

« Uses: Attribute name + corresponding accession

number | )
« Strategy 1:two attributes ((c1,a1,v1), (c2,a2,v2))

maitch if c1=c2 and a1=a2 (for single value attributes

like name, obsolete, definition)
« Strategy 2:two attributes ((c1,a1,v1), (c2,a2,v2))

name:

match if c1=c2 and a1=a2 and vi=v2 (for attributes
with multiple values like synonym)

 matchAss
« Uses: Accession numbers of associated concepts
« Strategy: two relationships ((c1,r1,c2), (c3,r2,c4)) match
if c1=c3 and r1=r2 and c2=c4

protein binding
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Rules for High-Level Changes ‘

low-level
change Ic

high-level

Rules R change hc

- Idea: generate high-level changes based on existing changes +
constraints
* Rule r : set of changes € and constraints CT - high-level change hc
« Constraints:
- existence constraint > an input change in € must be present or not
- parameter constraint > parameters of input changes are interrelated
by specific operators, e.g., equality (=), inequality (!=), ...
- reduce constraint - defines which input changes are unnecessary
after generating hc
- build constraint = defines how hc is built from the input changes,
l.e., mapping between parameters of hc and the input changes of C
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Rules (cont.)

Rules (more formal):

«CxCT 2 hc

«C={c,(p; Ps --.), Co(P1; Pos ---)s - Co(Pys Pos ---)}

*he(p,, p,, --.)
» CT = [existence, parameter, reduce, build]

* existence: c € C 2 {exist, not-exist}

* parameter: c,(p;) <op> c,(p): <op>in {'=’, =, ...]
 reduce: c € C 2 {reduce, not-reduce}

* build: p; € he: he(p)= ci(p)

Example: merge of objects

 C x CT - merge(from, to)
* C = {mapObj(A,C), mapObj(B,C), mapObj(A,D), mapObj(B,E)}
 existence: mapODbj(A,C), mapObj(B,C), ImapObj(A,D), ImapObj(B,E)
« parameter: C!=D, CI=E, A!=B

 reduce: mapQObj(A,C), mapObj(B,C)

* build: from=A, to=C -2 merge(A,C)
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Rule engine

Input: set of low-level changes LC (result of match)
set of rules R

Output: set of high-level changes HC

C: set of all changes

applyRules(LC,R)

C=LC

do {

for all rules re R do
 applyRule(C,r) > C,[new changes generated by H
« C=CU C,[save all newly generated changes]

} while (hasChanged(C))

compact(C) [merge of changes, deletion of unnecessary changes]
return C\LC [high-level changes are returned]
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Applying a single rule

;

Input: set of changes C
rule r

Output: set of new changes C, generated by ron C

applyRule(C,n

select(C,r) [select input change vectors ¢é from C that satisfy existence
and parameter constraint of | 2 Cg,yisp, = {€4, Co, ---}; €;=(Cy, €5 --.)
for all €; € Cguyisp, dO
» build new change from changes in é; 2 ¢,.,; [PUild constraint of r]
» assign low-level changes from changes in €;10 C,
» mark unnecessary changes in ¢;[reduce constraint of r]
+C.=C.U {Cresuitt
return C,
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Overview of possible high-level changes and their inverse

High-level change hc Inverse of hc
merge(objs_from, obj_to) split(obj to, objs_from)
substitute(obj, obj subs) substitute(obj_subs, obj)
toObsolete(obj) revokeObsolete(obj)
chgAttValue(obj, att_name, | chgAttValue(obj, att name,
old_value, new_value) new_value, old_value)
moveODbj(obj, obj_from, moveObj(obj, obj_to,
obj_to) obj_from)

addLeafObj(obj) delLeafObj(obj)
addinnerObj(obj) dellnnerObj(obj)
addSubTree(obj _root, objs) | delSubTree(obj root, objs)
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Common rules 1

merge(A,C) and merge(B,C)
9compact merge({A,B},C)

» mapObj(A,C), mapObj(B,C)
« ImapObj(A,D), ImapObj(B,E)
- Cl=D, C!=E, Al=B

split(A,B) and split(A,C)
2 compact SPIit({A,{B,C})

« mapObj(A,B), mapObj(A,C)
 ImapObj(D,B), !mapObj(E,C)
« Al=D, Al=E, B!=C
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Common rules I1

substitute(A,B)

« mapObj(A,B)
« ImapODbj(D,B), !mapObj(A,C)
« Al=D, B!=C, A!=B

moveODbj(A,B,C)

* mapObj(A,A)
 delAss(A,B), addAss(A,C)
A - BI=C
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Common rules III

addLeafObj(A) ° addinnerObj(A)
 addObj(A)  addObj(A)

« laddAss(B,A) « addAss(B,A)

. B /‘; .- . -

° addSubTree(A,B) ° addSubTree(A,C)
» addInnerObj(A), » addInnerObj(A),
addLeafObj(B) e addSubTree(B,C)

e « addAss(B,A) * addAss(B,A)

« Al=B G  Al=B
addSubTree(A,B)
« Similar rules for delLeafOby, addSubTree(A,C)
dellnnerObj, delSubTree = compact addSubTree(A,{B,C})
L
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Common rules 1V

@ chgAttValue(A,att,v1,v2)

« mapAtt((A,att,v1),(A,att,v2))
att: v2 « A=A, att=att, v1!=v2
@ chgAttValue(A,att,V1,V2)

- addAtt((A,att,v2)), delAtt((A,att,v1))
att: v2 « A=A, att=att, v1l=v2
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Specific rules - Example Gene Ontology

toObsolete(A)
A
Q  chgAttVal(A,att,v1,v2)
obsolete: true satt= ,obso‘lete |
e vl = false’, v2 = ,true

revokeObsolete(A)
A
Q » chgAttVal(A,att,v1,v2)
* att = ,obsolete’
e v1 = true’, v2 = false’

obsolete: false
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Specific rules — Example NCI Thesaurus

C28428 toObsolete(A)

« moveODbj(A,B,C)
« C =,028428"

° revokeObsolete(A)

« moveODbj(A,C,B)
A e C = ,028428‘
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Evaluation: GO-BP between 2007-05 and 2007-06

110,083 elements
- 110,605 elements

High-Low Level Mapping
458 correspondences

\ 4
@ Low-level changes

694 (596 add; 72 del; 26 map)

|domain(High-Low Level Mapping)| = 133 (100%)
lrange(High-Low Level Mapping)| = 319 (46%) - 375 low level changes
are standalone, i.e., they do not support any high-level change
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Evaluation: GO-BP between 2007-05 and 2007-06

Selected high-level changes:

* merge({GO:0051225( spindle assembly”), GO:0051226(*meiotic spindle
assembly”), GO:0051227(“mitotic spindle assembly”)}, GO:0051225)

» toObsolete(GO:0006755(“carbamoyl phosphate-ADP transphosphorylation”))

« addSubTree(G0O:0033212(“iron assimilation“), {GO:0033213, GO:0033214,
G0O:0033215}), ... (13 more)

« addInnerObj(G0O:0010431), addinnerObj(GO:0055048)
- addLeafObj(G0O:0010424), ... (22 more)

* moveObj(G0O:0000281,'is_a’, GO:0000910, GO:0033205),
... (26 more)
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Evaluation: GO-MF between 2007-05 and 2007-06

46,702 elements
- 46,875 elements

High-Low Level Mapping
127 correspondences

\ 4
@ Low-level changes
245 (203 add; 27 del; 15 map)

138

|domain(High-Low Level Mapping)| = 57 (100%)
lrange(High-Low Level Mapping)| = 107 (43%) - 138 low level changes
are standalone, i.e., they do not support any high-level change

Al
B UNIVERSITAT LEIPZIG Detecting high-level changes between versions of structured data sources

"-‘. [
L SW" Database Res
h @wththoptmtflfmt Michael Hartung  Leipzig, December 9, 2009




Evaluation: GO-CC between 2007-05 and 2007-06

13,604 elements
- 13,710 elements

High-Low Level Mapping
100 correspondences

v
Low-level changes
167 (124 add; 17 del; 26 map)

|domain(High-Low Level Mapping)| = 55 (100%)
lrange(High-Low Level Mapping)| = 88 (52%) - 79 low level changes are
standalone, i.e., they do not support any high-level change
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Completeness of low-level changes

Forward case
Low-level changes LC (changes to build DS, based on DS,

migrated
old version
DSold‘

old version LC

DS, =DS,., ?

D Sold

Inverse case

LC‘ = inverse(LC) - all changes in LC are reversed

migrated

new version Lc new version ) DSpew =DSg4?
DSneW
Both together
. everse o
old version mlgratg migrated
DS, Dlel viEEen old version DSy = DSg14 ?

DS ‘ 171
D Sold

Ll
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Order of performing low-level changes

Performing order:

delAtt — delete all attributes not present in origin version

. delAss — delete all associations not present in origin version
. delObj — delete all objects not present in origin version

. addObj — insert all new objects

. mapObj — update all changed objects

. addAss — insert all new associations

. mapAss — update all changed associations

. addAtt — insert all new attributes

. mapAtt — update all changed attributes

©ONOOUAWN=

Evaluation for GO sub ontologies between 2007-05 and 2007-06
using the computed low-level changes:

 reconstruction of versions worked for all three cases (forward,
inverse, both) and all sub ontologies - complete low-level changes
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Summary and Future Work

Approach for discovering high-level changes between structured
data source versions

« Distinction between low-/high-level changes connected by a high-low
level mapping

« Usage of rules and generic rule engine to detect high-level changes
based on low-level ones

« Approach is customizable

« Match for detection of low-level changes

« Adaptable rules and changes for different data sources

First evaluation for GO sub ontologies between 2007-05 and 2007-06

Next steps

« Extended evaluation, e.g., other time periods (quarter, half year, year)

« Evaluation in other domains, e.g., product catalogs or web directories
(match as critical step)

« Application: efficient matching; use in current/upcoming analysis, e.g.,
Impact of ontology/annotation changes on algorithm results
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Thank You for your attention !!

Questions ?
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