

Matching Anatomy Ontologies - Quality and Performance

Anika Groß

Interdisciplinary Centre for Bioinformatics http://www.izbi.uni-leipzig.de

> Database Group Leipzig http://dbs.uni-leipzig.de

Leipzig, 9th December 2009

Ontologies

- Formal representation to model the entities and their relationships within a domain
- Life science example domains
 - > Biological processes
 - > Anatomy
 - ▶ ...
- Often multiple ontologies for the same domain, e.g.: Open Biomedical Ontologies provide 34 anatomy (related) ontologies

Matching Anatomy Ontologies - Quality and Performance

Ontology Mappings

- Set of semantic correspondences between concepts of different ontologies
- Automatically generated by ontology matching approaches
- Crucial for
 - > Data integration
 - > Enhanced data analysis across ontologies
 - ≻ ...

Overview

- Ontologies, ontology mappings
- Matching of anatomy ontologies
 - Dataset
 - Match workflow (stepwise)
 - Evaluation w.r.t. quality (precision, recall, ...)
- Distributed Matching
 - Resources
 - Distributed Architecture
 - Evaluation w.r.t. performance
- Conclusion & future work

Matching Anatomy Ontologies

Aim Find overlapping information in anatomy ontologies
 Possible application Aligning anatomies across model organisms to compare functional information about genes/proteins

Example Alignment (OAEI Anatomy track)

> Mouse anatomy: Adult Mouse Anatomical Dictionary (MA)

Human anatomy: Anatomy subset of NCI Thesaurus (NCI)
 Perfect mapping contains 1523 correspondences
 Given partial reference mapping

- > contains 988 correspondences (934 trivial, 54 non-trivial)
- "Real" evaluation of my match results:

"[...] it is possible to send us an submission [...] you will be informed about precision, recall and f-measure [...] we restrict ourselves to do this for each system only two times [...]"*

> Match result should be as good as possible before I try ...

* http://oaei.ontologymatching.org/2007/results/anatomy/samples.html

Workflow

- Basic statistics of input ontologies
- Frequency of word occurrence
- Origin of words (language), e.g. English, Latin, Greek
- Depth of graph structure
- ...

Initial Analysis

Basic statistics

	MA	NCI
# concepts	2737	3298
# relationships	3438	5423
# synonyms (per attribute)	344 (0.1)	5247 (1.6)
# attr = #names + #synonyms	3081	8545

• Frequent word analysis (Top 10)

occ_{word} – # occurrences of word in attribute set (names, synonyms)

Words in MA	осс	occ / attr	Words in NCI	осс	occ / attr
vein	180	0,058	of	1079	0,126
artery	168	0,055	the	722	0,084
muscle	163	0,053	cell	718	0,084
nucleus	122	0,040	artery	504	0,059
bone	113	0,037	vein	269	0,031
nerve	111	0,036	muscle	263	0,031
gland	104	0,034	system	261	0,031
system	100	0,032	tissue	218	0,026
epithelium	92	0,030	gland	205	0,024
of	79	0,026	bone	199	0,023

→ semi-automatic elimination of most frequent terms that carry no valuable information (e.g. "of")?

TODO

- Application of this knowledge in preprocessing
- Analyze origin of words (language), e.g. English, Latin, Greek
 → used to find further synonyms
- Depth of graph structure ...

Workflow

Preprocessing

Attribute Normalization

- Remove all delimiters/punctuations, replace upper case letters Right_Lung_Respiratory_Bronchiole → right lung respiratory bronchiole
- **TODO** \rightarrow Conversion to simplest word part (stemming)
 - \rightarrow Alphabetic order

Precomputation of attribute values

n-Level name path: path from concept to root including n levels
 → Consider all non-redundant paths (is_a, part_of) to the root

Example Get 3-Level name path for concepts "NCI_C12719", "MA_0001161"

<u>ID:</u> NCI_C12719 <u>Name:</u> Ganglion* <u>Path:</u> /nervous system/peripheral nervous system/ganglion

ID: MA_0001161 Name: peripheral nervous system ganglion Path: /nervous system/ganglion/peripheral nervous system ganglion

* **Ganglion** <u>German:</u> Ein von einer Kapsel umschlossener Nervenzellknoten; <u>Spanish:</u> Formaciones nodulares que hay en el trayecto de los nervios

Preprocessing

Precomputation of attribute values

- Get additional knowledge n Google-URLs (different query strategies)
- E.g. compare only wiki-URLs

<u>Query</u> "pallidum" site:en.wikipedia.org

<u>ID:</u> MA_0000889 <u>Name:</u> pallidum <u>1st-Wiki-URL:</u> http://en.wikipedia.org/wiki/Globus_pallidus

Query "globus pallidus" site:en.wikipedia.org

<u>ID:</u> NCI_C12449 <u>Name:</u> Globus_Pallidus * <u>1st-Wiki-URL:</u> http://en.wikipedia.org/wiki/Globus_pallidus

TODO

- Try different query strategies, e.g. (anatomy OR anatomical structure) "globus pallidus"
- Use UMLS-Metathesaurus
 = comprehensive thesaurus of biomedical concepts
- * Globus pallidus German: Teil des Mittelhirns; Spanish: parte del cerebro medio

Matching

- Look for 1,523 correspondences
- → Mapping size should be only slightly more/less
- Search predominantly 1:1 correspondences for anatomy concepts
- Use normalized and precomputed attributes to match MA and NCI
 - > name&synonym
 - n-Level name path
 - n googleURLs (only wikipedia)
- Similarity computed using
 - > Trigram
 - > Overlap (dice)
- Combination
 - > Aggregation: union of single matcher results (max similarity)
 - Candidate Selection: Max1, MaxDelta

MaxDelta-Threshold

- MaxDelta strategy*: only correspondences with maximal (and slightly differing) similarity (e.g., 0.03)
- From small to large ontology
 MA NCI
- Example: Correspondences for one MA-concept (used matcher: 2-level name path TRIGRAM, minimal threshold 0.75)

- * Do, H.H.; Rahm, E.: COMA A System for Flexible Combination of Schema Matching Approaches, Proc. VLDB, 2002
- ** thyroid gland left lobe German: linker Schilddrüsenflügel; Spanish: lóbulo tiroideo izquierdo

Matching Anatomy Ontologies - Quality and Performance

Evaluation Setup

Combination of matchers:

- TRIGRAM: Name&Synonym, n-Level name path
- TRIGRAM: Name&Synonym, n-Level name path, google(only wikipedia)

Different configurations:

- Minimal threshold
- MaxDelta parameter
- Number of levels (name path)
- #wikiURLs
- URL Overlap

Measures to evaluate quality of match results:

- PRM = Partial Reference Mapping
- MR = Match Result
- Size_{PRM}, Size_{MR}
- Prec_{PRM}, Rec_{PRM}, F-Meas_{PRM} Precision, Recall, F-Measure w.r.t. PRM

Evaluation Results

- 2- vs. 3-Level name path no big difference (use nearest semantic neighborhood)
- 0.9 (MaxDelta 0.03) to restrictive \rightarrow small mapping size
 - Good if focus on precision
- wiki1 produces to much results (~6,000) Problem: fine and general concepts are described on the same wiki page
- wiki8 seams to be promising ...

Matching Anatomy Ontologies - Quality and Performance

Postprocessing

Todo:

- Use different integrity constraints to filter false correspondences
- Same numbers
 - ➤ if concepts of one correspondence contain numbers (roman or arabic) → allow only same number
- Remove structural conflicts
 - > Use of semantic constraints, e.g., high-level disjointness
 - > Opposite hierarchy of "as similar" identified concepts
- Require similar node depth
 - Concepts of a correspondence should have the same (a similar) distance to the root

• . . .

How much time took it?

Example match task:

 M_1 = Trigram Name, Synonyms t=0.8 & M_2 Trigram 2-level name path 0.8 Nested loop: ~18,000,000 comparisons

- 1 CPU:
- **11.5 min** ($M_1 \rightarrow 5.3 \text{ min}, M_2 \rightarrow 6.2 \text{ min}$)

Why only use one CPU out of 2/4/.. available CPUs?

- 6 CPUs:
- 2 min ($M_1 \rightarrow 0.9$ min, $M_2 \rightarrow 1.1$ min)

50 runs with different configurations: only ~2h instead of 9.6h

How was it realized?

Distributed Matching *

Basic idea

- Use the CPUs/main memory of available resources (e.g., in our group) to speed up ontology match task significantly
- Top database group resources

Σ : 42 CPUs à 2.66 GHz

- Utilization of resources when they are not used (lunch break, over night, weekend, holiday, ...)
- * Joined work with Toralf and Michael

Distributed Matching *

* Joined work with Toralf and Michael

Matching Anatomy Ontologies - Quality and Performance

Distributed Architecture

Ontology Partitioning for Distributed Matching

- Partition each ontology and match parts on services
- Merge of single results into overall result

Experiment

Experimental setup

- NCI Thesaurus self match using TRIGRAM
- 68,855*68,855 concepts = nested loop $4.8*10^{\circ}$ comparisons
- Split in 32 partitions à ~2,150 concepts on each side \rightarrow 1024 jobs
- Partition: Hashing of accession number, example bucket:

SELECT ... WHERE accession LIKE "%00" OR accession LIKE "%01" OR accession LIKE "%02"

Possible to match it in the lunch break? *

- 19 CPUs from the db group* and IZBI server
- 65 minutes
- 1,223 comparisons per millisecond

How is the performance for less CPUs?

* Thanks to Stefan, Lars and Andreas for providing us their free resources 😊

Running Times for Different #CPUs

Significant speed up even for one machine (2/4 CPUs)
 → Reduced from ~16h to ~1h

Real vs. Theoretic Speed up

Distributed Matching NCIxNCI - Speed up

Matching Anatomy Ontologies - Quality and Performance

Assignment of Jobs

%Jobs (Overall: 1024 Jobs)

Conclusion and Future Work

(1) Match workflow

- Experiences in aligning large life science ontologies with metadata-based strategies
- Future work
 - > Improve the workflow (e.g., Google query strategies, ...)
 - > Evaluation of the data (send to OAEI)
 - Investigate and compare the stability/robustness of metadatabased and instance-based matching approaches

(2) Distributed matching

- Significant reduction of elapsed time for "nested-loop" matching of large ontologies/data sets
- Future work
 - > Combination of distributed matching with intelligent blocking strategies
 - Interesting for object matching?

Matching Anatomy Ontologies - Quality and Performance