
www.scads.de

SCALABLE GRAPH ANALYTICS

ERHARD RAHM

2

„GRAPHS ARE EVERYWHERE“

3

Facebook
ca. 1.3 billion users
ca. 340 friends per user

Twitter
ca. 300 million users
ca. 500 million tweets per day

Internet
ca. 2.9 billion users

Gene (human)
20,000-25,000
ca. 4 million individuals

Patients
> 18 millions (Germany)

Illnesses
> 30.000

World Wide Web
ca. 1 billion Websites

LOD-Cloud
ca. 90 billion triples

Social science Engineering Life science Information science

𝑮𝑮𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑽𝑽𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑬𝑬𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)

“GRAPHS ARE EVERYWHERE”

4

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝑟𝑟𝑒𝑒)

“GRAPHS ARE EVERYWHERE”

Alice

Bob

Eve

Dave

Carol

Mallory

Peggy

Trent

5

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔,𝐹𝐹𝑟𝑟𝑒𝑒𝑒𝑒𝐹𝐹𝑑𝑑𝑒𝑒𝑟𝑒𝑒𝑟𝑟𝑒𝑒)

“GRAPHS ARE EVERYWHERE”

Alice

Bob

Eve

Dave

Carol

Mallory

Peggy

Trent

6

“GRAPHS ARE HETEROGENEOUS”

Alice

Bob

AC/DC

Dave

Carol

Mallory

Peggy

Metallica

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔 ∪ 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐔𝐔,𝐹𝐹𝑟𝑟𝑒𝑒𝑒𝑒𝐹𝐹𝑑𝑑𝑒𝑒𝑟𝑒𝑒𝑟𝑟𝑒𝑒 ∪ 𝐿𝐿𝑒𝑒𝐿𝐿𝑒𝑒𝑒𝑒)

7

0.2

0.28

0.26

0.33

0.25

0.26

“GRAPHS CAN BE ANALYZED”

Alice

Bob

AC/DC

Dave

Carol

Mallory

Peggy

Metallica

3.6
2.82

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔 ∪ 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐔𝐔,𝐹𝐹𝑟𝑟𝑒𝑒𝑒𝑒𝐹𝐹𝑑𝑑𝑒𝑒𝑟𝑒𝑒𝑟𝑟𝑒𝑒 ∪ 𝐿𝐿𝑒𝑒𝐿𝐿𝑒𝑒𝑒𝑒)

8

“GRAPHS CAN BE ANALYZED“

Assuming a social network
1. Determine subgraph
2. Find communities
3. Filter communities
4. Find common subgraph

9

 all „V“ challenges
 volume (scalability)
 Variety (support for heterogenous data / data

integration)
 Velocity (dynamically changing graph data)
 veracity (high data quality)
 value (improved business value)

 ease-of-use

 high cost-effectiveness

GRAPH DATA ANALYTICS: HIGH-LEVEL
REQUIREMENTS

10

 powerful but easy to use graph data model
 support for heterogeneous, schema-flexible vertices

and edges
 support for collections of graphs (not only 1 graph)
 powerful graph operators

 powerful query and analysis capabilities
 interactive, declarative graph queries
 scalable graph mining

 high performance and scalability

 persistent graph storage and transaction support

 graph-based integration of many data sources

 versioning and evolution (dynamic /temporal graphs)

 comprehensive visualization support

GRAPH DATA ANALYTICS: REQUIREMENTS

11

 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA

12

 First Generation:
 research prototypes only
 peak popularity in early 90s

 Second Generation:
 NoSQL movement
 commercial systems

GRAPH DATABASES

 graph data model
 mostly property graphs, RDF or generic graphs
 different vertex and edge data
 graph operators (traversal, pattern matching) /

queries

 application scope
 mostly queries/OLTP on small graph portions
 some support for analytical queries/computations

(analyze whole graph, e.g., page rank)

RECENT GRAPH DATABASE SYSTEMS

 popular data model for commercial graph DBMS
 de-facto industry standard TinkerPop
 query languages Gremlin (TinkerPop) and Cypher

(Neo4j, openCypher)

 query example (pattern matching)

PROPERTY GRAPH MODEL

15

Data Model Scope Storage
System RDF/SPARQL PGM/TinkerPop Generic OLTP/Queries Analytics Approach Replication Partitioning
Apache Jena TBD / native
AllegroGraph / native
MarkLogic / native
Ontotext GraphDB / native
Oracle Spatial and Graph / native
Virtuoso / relational
TripleBit / native
Blazegraph / / native RDF
IBM System G / / native PGM,

wide column store

Stardog / / native RDF
SAP Active Info. Store /- realtional
ArangoDB / document store
InfiniteGraph / native
Neo4j / native
Oracle Big Data / key value store
OrientDB / document store
Sparksee / native
SQLGraph / relational

Titan / wide column store,
key value store

HypergraphDB native

SYSTEM COMPARISON

COMPARISON

17

Graph Database
Systems
Neo4j, OrientDB

data model rich graph models
(PGM)

focus queries

query language yes

graph analytics (no)

scalability vertical

analysis workflows no

persistency yes

dynamic graphs /
versioning

no

data integration no

visualization (yes)

 goal: better support for scalable/distributed graph
mining
 page rank, connected components, clustering, frequent

subgraphs, …
 mostly generic graphs only (e.g., directed multigraphs)

 early approaches based on MapReduce
 iterative processing via control program and multiple MR

programs
 unintuitive programming and limited performance (high

communication and I/O costs)

 „newer“ computation models pioneered by Google Pregel
 vertex-centric programming („Think Like a Vertex“)
 Bulk-synchronous-parallel (BSP) computation
 In-memory storage of graph data

GRAPH PROCESSING SYSTEMS

 parallel and synchronized execution of vertex compute function

 vertex keeps state about itself

 compute function

 reads incoming messages,
 updates vertex state (value)
 sends information to neighboring vertices

 vertices can deactivate themselves (call voteToHalt() function)

 iterative execution within supersteps until there are no active vertices
or messages anymore (bulk-synchronus-parallel execution)

VERTEX-CENTRIC PROCESSING

Time

1
2
3

Superstep 𝑆𝑆𝑖𝑖−1

1
2
3

Superstep 𝑆𝑆𝑖𝑖

1
2
3

Superstep 𝑆𝑆𝑖𝑖+1

EXAMPLE – MAXIMUM VALUE

1 2 3 4
v = 3 v = 6 v = 2 v = 1

𝑆𝑆0

1 2 3 4
v = 6 v = 6 v = 2 v = 6

1 2 3 4
v = 6 v = 6 v = 6 v = 6

1 2 3 4
v = 6 v = 6 v = 6 v = 6

𝑆𝑆1

𝑆𝑆2

𝑆𝑆3

Active

Inactive

Updated

Message

 alternate execution models
 partition-centric (“Think-like-a-graph”): synchronized execution of compute

functions for entire partions (all vertices on one worker)
 asynchronous: to avoid many idle vertices/workers with skewed degree

distributions

 Gather-Apply-Scatter (GAS) programming model
 gather function: aggregates/combines messages
 apply function: preprocesses incoming messages and updates vertex state
 scatter function: uses vertex state to produce outgoing messages
 Goals: reduce network traffic and better workload balancing for graphs

graphs with highly skewed degree distribution

 Scatter-Gather programming model
 user provides vertex and edge functions:
 vertex function uses all incoming messages to modify vertex value
 edge function uses vertex value to generate a message
 susceptible to execution skew (like vertex-centric)

ALTERNATE MODELS

GRAPH PROCESSING SYSTEMS

Language Computation Model BSP async. Agg. Add Remove Comb.

Pregel C++ Pregel

Giraph Java Pregel

GPS Java Pregel

Mizan C++ Pregel n.a.

GraphLab C++ GAS n.a.

GraphChi C++, Java Pregel n.a.

Signal/Collect Java Scatter-Gather n.a.

Chaos Java Scatter-Gather n.a.

Giraph++ Java Partiton-centric

GraphX Scala, Java GAS n.a.

Gelly Scala, Java GSA, Scatter-Gather, Pregel n.a.

COMPARISON (2)

23

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

data model rich graph models
(PGM)

generic
graph models

focus queries analytic

query language yes no

graph analytics no yes

scalability vertical horizontal

Workflows no no

persistency yes no

dynamic graphs /
versioning

no no

data integration no no

visualization (yes) no

 Graph processing systems are specialized systems
 tailored programming abstractions for fast execution of

a single iterative graph algorithm

 complex analytical problems often require the
combination of multiple techniques, e.g.:
 creation of combined graph structures from different

sources (data extraction, transformation and
integration)

 different analysis steps: queries, iterative graph
processing, machine learning, …

 Dataflow systems can combine such tasks within dataflow
programs/workflows/scripts for distributed execution
 1st generation: MapReduce workflows
 Apache Spark/Flink: in-memory dataflow systems

GRAPH DATAFLOW SYSTEMS

• Distributed in-memory dataflow systems (e.g., Apache Spark, Apache
Flink)

 general-purpose operators (e.g. map, reduce, filter, join) =>
transformations

 specialized libraries (e.g. machine learning, graph analysis)

 holistic view enables optimizations (operator reordering, caching, etc.)

DATAFLOW SYSTEMS

• Dataset := distributed collection of data objects
• Transformation := operation on datasets (higher-order function)
• Dataflow Programm := composition of transformations

Dataset

Dataset

Dataset

Transformation

Transformation

Dataset

Dataset

Transformation Dataset

Dataflow Program

 Graph abstraction on top of a dataflow system
(e.g., Gelly on Apache Flink and GraphX on Apache Spark)
 generic graph representation
 graph operations / transformations / processing

 Graph transformations / operations
 mutation: adding / removing of vertices and edges
 map: modification of vertex and edge values
 subgraph: find subgraph for user-defined vertex / edge predicates
 join: combination of vertex / edge datasets with other datasets
 union/difference/intersect: combine two graphs into one

 Graph processing
 Gelly implements Pregel, GAS, Scatter-Gather by using native

Flink iteration functions
 GraphX implements GAS based on Spark Iterations

GRAPH DATAFLOW SYSTEMS

Gelly

COMPARISON (3)

27

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

Graph Dataflow
Systems (Flink Gelly,
Spark GraphX)

data model rich graph models
(PGM)

generic
graph models

generic
graph models

focus queries analytic analytic

query language yes no no

graph analytics no yes yes

scalability vertical horizontal horizontal

Workflows no no yes

persistency yes no no

dynamic graphs /
versioning

no no no

data integration no no no

visualization (yes) no no

An end-to-end framework for scalable
(distributed) graph data management
and analytics supporting a rich graph

data model and queries

WHAT‘S MISSING?

28

Data Volume and Problem Complexity

Ea
se

-o
f-u

se

Graph Processing Systems

Graph Databases

Graph Dataflow Systems Gelly

29

 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA

30

 Hadoop-based framework for graph data management and
analysis
 persistent graph storage in scalable distributed store (Hbase)
 utilization of powerful dataflow system (Apache Flink) for

parallel, in-memory processing

 Extended property graph data model (EPGM)
 operators on graphs and sets of (sub) graphs
 support for semantic graph queries and mining

 declarative specification of graph analysis workflows
 Graph Analytical Language - GrALa

 end-to-end functionality
 graph-based data integration, data analysis and visualization

 open-source implementation: www.gradoop.org

GRADOOP CHARACTERISTICS

31

 integrate data from one or more sources into a dedicated
graph store with common graph data model

 definition of analytical workflows from operator algebra

 result representation in meaningful way

END-TO-END GRAPH ANALYTICS

Data Integration Graph Analytics Visualization

32

HIGH LEVEL ARCHITECTURE

HDFS/YARN
Cluster

HBase Distributed Graph Store

Extended Property Graph Model

Flink Operator Implementations

Data Integration

Flink Operator Execution

Workflow
Declaration

Visual

GrALa DSL
Representation

Data flow

Control flow

Graph Analytics Representation

33

 includes PGM as special case

 support for collections of logical graphs / subgraphs
 can be defined explicitly
 can be result of graph algorithms / operators

 support for graph properties

 powerful operators on both graphs and graph collections

 Graph Analytical Language – GrALa
 domain-specific language (DSL) for EPGM
 flexible use of operators with application-specific UDFs
 plugin concept for graph mining algorithms

EXTENDED PROPERTY GRAPH MODEL (EPGM)

34

• Vertices and directed Edges

35

• Vertices and directed Edges
• Logical Graphs

36

• Vertices and directed Edges
• Logical Graphs
• Identifiers

1 3

4

5

21 2

3

4

5

1

2

37

• Vertices and directed Edges
• Logical Graphs
• Identifiers
• Type Labels

1 3

4

5

21 2

3

4

5
Person Band

Person

Person

Band

likes likes

likes

knows

likes

1|Community

2|Community

38

• Vertices and directed Edges
• Logical Graphs
• Identifiers
• Type Labels
• Properties

1 3

4

5

21 2

3

4

5
Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973

likes
since : 2014

likes
since : 2013

likes
since : 2015

knows

likes
since : 2014

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

39

Operators

40

Operators

Unary Binary
Algorithms

* auxiliary

G
ra

ph
 C

ol
le

ct
io

n
Lo

gi
ca

lG
ra

ph

Aggregation

Pattern Matching

Transformation

Grouping Equality

Call *

Combination

Overlap

Exclusion

Equality

Union

Intersection
Difference

Gelly Library

BTG Extraction

Frequent Subgraphs

Limit

Selection
Distinct

Sort

Apply *
Reduce *

Call *

Adaptive Partitioning

Subgraph

41

Combination

Overlap

Exclusion

LogicalGraph graph3 = graph1.combine(graph2);
LogicalGraph graph4 = graph1.overlap(graph2);
LogicalGraph graph5 = graph1.exclude(graph2);

BASIC BINARY OPERATORS

1 3
4

5
2

3

1 2

1 3
4

5
2

1
2 4

5

3

42

udf = (graph => graph[‘vertexCount’] = graph.vertices.size())
graph3 = graph3.aggregate(udf)

AGGREGATION

1 3
4

5
2

3

1 3
4

5
2

3 | vertexCount: 5

UDF

43

LogicalGraph graph4 = graph3.subgraph((vertex => vertex[:label] == ‘green’))
LogicalGraph graph5 = graph3.subgraph((edge => edge[:label] == ‘blue’))
LogicalGraph graph6 = graph3.subgraph(

(vertex => vertex[:label] == ‘green’),
(edge => edge[:label] == ‘orange’))

SUBGRAPH

3

1 3
4

5
2

3

4

1 2

5

3
5

2UDF

UDF

UDF 3

6

1 2

44

GraphCollection collection = graph3.match(“(:Green)-[:orange]->(:Orange)”);

PATTERN MATCHING

3

1 3
4

5
2 Pattern

4 5

1 3
4

2

Graph Collection

45

 new: support of Cypher query language for pattern matching*

* Junghanns et al.: Cypher-based Graph Pattern Matching in Gradoop. Proc. GRADES 2017

q = "MATCH (p1: Person) -[e: knows *1..3] ->(p2: Person)
WHERE p1.gender <> p2 .gender RETURN *"

GraphCollection matches = g.cypher (q)

LogicalGraph grouped = graph3.groupBy(
[:label], // vertex keys
[:label]) // edge keys

LogicalGraph grouped = graph3.groupBy([:label], [COUNT()], [:label], [MAX(‘a’)])

GROUPING

Keys

3

1 3
4

5
2

+Aggregate

3

a:23 a:84

a:42

a:12

1 3
4

5
2

a:13

a:21

4

count:2 count:3

max(a):42

max(a):84

max(a):13 max(a):21

6 7

4

6 7

46

SAMPLE GRAPH

[0] Tag
name : Databases

[1] Tag
name : Graphs

[2] Tag
name : Hadoop

[3] Forum
title : Graph Databases

[4] Forum
title : Graph Processing

[5] Person
name : Alice
gender : f
city : Leipzig
age : 23

[6] Person
name : Bob
gender : m
city : Leipzig
age : 30

[7] Person
name : Carol
gender : f
city : Dresden
age : 30

[8] Person
name : Dave
gender : m
city : Dresden
age : 42

[9] Person
name : Eve
gender : f
city : Dresden
age : 35
speaks : en

[10] Person
name : Frank
gender : m
city : Berlin
age : 23
IP: 169.32.1.3

0

1

2

3

4

5

6 7 8 9

10

11 12 13 14

15

16

17

18 19 20 21

22

23

knows
since : 2014

knows
since : 2014

knows
since : 2013

hasInterest

hasInterest hasInterest

hasInterest

hasModeratorhasModerator
hasMember hasMember

hasMember hasMember

hasTag hasTaghasTag hasTag

knows
since : 2013

knows
since : 2014

knows
since : 2014

knows
since: 2015

knows
since: 2015

knows
since : 2015

knows
since: 2013

GROUPING: TYPE LEVEL (SCHEMA GRAPH)

vertexGrKeys = [:label]
edgeGrKeys = [:label]
sumGraph = databaseGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])

[11] Person

count : 6

[12] Forum

count : 2

[13] Tag

count : 3

hasMember
count : 4

knows
count : 10

hasInterest
count : 4

hasTag
count : 4

hasModerator
count : 2

24

26

28

27

25

48

personGraph = databaseGraph.subgraph((vertex => vertex[:label] == ‘Person’),
(edge => edge[:label] == ‘knows’))

vertexGrKeys = [:label, “city”]
edgeGrKeys = [:label]
sumGraph = personGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])

GROUPING: PROPERTY-SPECIFIC

1 3

[11] Person

city : Leipzig
count : 2

[12] Person

city : Dresden
count : 3

[13] Person

city : Berlin
count : 1

24

25

26

27

28

knows
count : 3

knows
count : 1 knows

count : 2

knows
count : 2

knows
count : 2

49

GraphCollection filtered = collection.select((graph => graph[‘vertexCount’] > 4));

SELECTION

UDF

vertexCount > 4

1 | vertexCount: 5

2 | vertexCount: 4

0 2
3

4
1

5 7 86

1 | vertexCount: 5

0 2
3

4
1

50

GraphCollection frequentPatterns = collection.callForCollection(new TransactionalFSM(0.5))

CALL (E.G., FREQUENT SUBGRAPHS)

FSM

Threshold: 50%

1

0 1 2
3

4

5 6 7
8

9

10
13

14

2

3

11 12

15 16

17 18

19 20

4

5

6

21 2322

25 2624

7

8

51

Implementation
and evaluation

52

GRAPH REPRESENTATION

Id Label Properties Graphs

Id Label Properties SourceId TargetId Graphs

EPGMGraphHead

EPGMVertex

EPGMEdge

Id Label Properties POJO

POJO

POJO

DataSet<EPGMGraphHead>

DataSet<EPGMVertex>

DataSet<EPGMEdge>

Id Label Properties Graphs

EPGMVertex

GradoopId := UUID
128-bit

String PropertyList := List<Property>
Property := (String, PropertyValue)
PropertyValue := byte[]

GradoopIdSet := Set<GradoopId>

53

Id Label Properties

1 Community {interest:Heavy Metal}

2 Community {interest:Hard Rock}

Id Label Properties Graphs

1 Person {name:Alice, born:1984} {1}

2 Band {name:Metallica,founded:1981} {1}

3 Person {name:Bob} {1,2}

4 Band {name:AC/DC,founded:1973} {2}

5 Person {name:Eve} {2}

Id Label Source Target Properties Graphs

1 likes 1 2 {since:2014} {1}

2 likes 3 2 {since:2013} {1}

3 likes 3 4 {since:2015} {2}

4 knows 3 5 {} {2}

5 likes 5 4 {since:2014} {2}

likes
since : 2014

likes
since : 20131 3

4

5

2

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973likes

since : 2015

knows

likes
since : 20141 2

3

4

5

DataSet<EPGMGraphHead>

DataSet<EPGMVertex> DataSet<EPGMEdge>

GRAPH REPRESENTATION: EXAMPLE

54

// input: firstGraph (G[1]), secondGraph (G[2])

1: DataSet<GradoopId> graphId = secondGraph.getGraphHead()
2: .map(new Id<G>());
3:
4: DataSet<V> newVertices = firstGraph.getVertices()
5: .filter(new NotInGraphBroadCast<V>())
6: .withBroadcastSet(graphId, GRAPH_ID);
7:
8: DataSet<E> newEdges = firstGraph.getEdges()
9: .filter(new NotInGraphBroadCast<E>())

10: .withBroadcastSet(graphId, GRAPH_ID)
11: .join(newVertices)
12: .where(new SourceId<E>().equalTo(new Id<V>())
13: .with(new LeftSide<E, V>())
14: .join(newVertices)
15: .where(new TargetId<E>().equalTo(new Id<V>())
16: .with(new LeftSide<E, V>());

Exclusion

OPERATOR IMPLEMENTATION

likes
since : 2013

likes
since : 20141 3

4

5

2

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973likes

since : 2015

knows

likes
since : 20141 2

3

4

5

55

IMPLEMENTATION OF GRAPH GROUPING

GroupBy(1,2,3) +
GC + GR* + Map
Assign edges to groups
Compute aggregates
Build super edges

Filter + Map
Extract super vertex tuples
Build super vertices

GroupBy(1) + GroupReduce*
Assign vertices to groups
Compute aggregates
Create super vertex tuples
Forward updated group members

V

E

Map
Extract
attributes

Filter + Map
Extract group members
Reduce memory footprint

Join*
Replace Source/TargetId
with corresponding super
vertex id

Map
Extract
attributes

*requires worker communication

V1 V2

V3

V‘

E1 E2 E‘

56

TEST WORKFLOW: SUMMARIZED COMMUNITIES

http://ldbcouncil.org/

1. Extract subgraph containing only Persons and knows relations

2. Transform Persons to necessary information

3. Find communities using Label Propagation

4. Aggregate vertex count for each community

5. Select communities with more than 50K users

6. Combine large communities to a single graph

7. Group graph by Persons location and gender

8. Aggregate vertex and edge count of grouped graph

57

TEST WORKFLOW: SUMMARIZED
COMMUNITIES

https://git.io/vgozj

1. Extract subgraph containing only Persons

and knows relations

2. Transform Persons to necessary information

3. Find communities using Label Propagation

4. Aggregate vertex count for each community

5. Select communities with more than 50K users

6. Combine large communities to a single graph

7. Group graph by Persons location and gender

8. Aggregate vertex and edge count of grouped graph

58

BENCHMARK RESULTS

Dataset # Vertices # Edges

Graphalytics.1 61,613 2,026,082

Graphalytics.10 260,613 16,600,778

Graphalytics.100 1,695,613 147,437,275

Graphalytics.1000 12,775,613 1,363,747,260

Graphalytics.10000 90,025,613 10,872,109,028

 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)
 16x 48 GB RAM
 1 Gigabit Ethernet
 Hadoop 2.6.0
 Flink 1.0-SNAPSHOT

0

200

400

600

800

1000

1200

1 2 4 8 16

Ru
nt

im
e

[s
]

Number of workers

Runtime
Graphalytics.100

1

2

4

8

16

1 2 4 8 16

Sp
ee

du
p

Number of workers

Speedup
Graphalytics.100 Linear

59

BENCHMARK RESULTS 2

Dataset # Vertices # Edges

Graphalytics.1 61,613 2,026,082

Graphalytics.10 260,613 16,600,778

Graphalytics.100 1,695,613 147,437,275

Graphalytics.1000 12,775,613 1,363,747,260

Graphalytics.10000 90,025,613 10,872,109,028

1

10

100

1000

10000

Ru
nt

im
e

[s
]

Datasets

 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)
 16x 48 GB RAM
 1 Gigabit Ethernet
 Hadoop 2.6.0
 Flink 1.0-SNAPSHOT

60

COMPARISON

61

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

Graph Dataflow
Systems (Flink
Gelly, Spark
GraphX)

data model rich graph
models (PGM)

generic
graph models

generic
graph models

Extended PGM

focus queries analytic analytic analytic

query language yes no no (yes)

graph analytics (no) yes yes yes

scalability vertical horizontal horizontal horizontal

Workflows no no yes yes

persistency yes no no yes

dynamic graphs
/ versioning

no no no no

data integration no no no (yes)

visualization (yes) no no limited

 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA

62

 Graph data allocation and partitioning

 Benchmarking and evaluation of graph data
systems

 Graph-based data integration and knowledge
graphs

 Analysis of dynamic graphs

 Interactive graph analytics

CHALLENGES

63

 distributed graph processing depends on suitable
graph allocation/partitioning
 minimize communication for graph analysis
 load balancing

 goal: balanced vertex distribution with minimal
number of edges between partitions (edge cut)
 vertex cut: balanced edge distribution with minimal replication

of vertices (PowerGraph, Spark GraphX)

GRAPH DATA ALLOCATION / PARTITIONING

64

 hash-based vertex partitioning prevalent but not
optimal
 vertex neighbors frequently in different

partitions -> high communication overhead

 multilevel graph partitioning (e.g., METIS)
 expensive to determine / static

 newer approaches for adaptive allocation
 Stanton/Kliot (KDD2012), Mondal/Deshpande

(Sigmod2012), Huang/Abadi (VLDB2016)

GRAPH DATA ALLOCATION / PARTITIONING (2)

65

 many comparative evaluations between graph
DBMS and graph processing systems (Han -
VLDB14, Lu -VLDB14, …)
 many differences in considered systems. workloads,

configurations, etc
 early systems using Map/reduce or Giraph are

outperformed by newer graph processing systems
 few results for Spark GraphX, Flink Gelly

 Benchmark efforts for graph data analysis
 e.g., LinkBench, LDBC, gMark
 only few results so far

BENCHMARKING AND EVALUATION

66

 need to integrate diverse data from different
sources (or from data lake) into semantically
expressive graph representation
 for later graph analysis
 for representing background knowledge

(knowledge graphs)

 traditional tasks for data acquisition, data
transformation, data cleaning, schema / entity
matching, entity fusion, data enrichment /
annotation

 most previous work for RDF data, but not for
property graphs

GRAPH-BASED DATA INTEGRATION

67

BIIIG DATA INTEGRATION WORKFLOW

68

„Business Intelligence on Integrated Instance Graphs (BIIIG)“ (PVLDB 2014)

Business Transaction Graphs

(3) Subgraph
Isolation

(2) Graph
integration

Integrated Instance Graph

Domain expert

meta
data

(1) Graph
transformation

D
at

a
So

ur
ce

s

INTEGRATION SCENARIO

69

source: Andreas Thor

 graphs like social networks, citation networks,
road networks etc change over time
 need to efficiently update/refresh analysis results

(graph metrics, communities/clusters, …)
 streaming networks vs slowly evolving networks
 fast stream analysis vs. analysis of series of graph

snapshots

 many initial studies on specific aspects but no
comprehensive system for analysis of
dynamic graphs

DYNAMIC GRAPHS

70

 need to support both interactive graph
queries / exploration + graph mining

 OLAP-like graph analysis functionality
 Multi-level, multidimensional grouping and

aggregation
 need for extended (nested) graph model?

 visual analytics for big graphs
 data reduction techniques for visualization

(sampling, multi-level grouping, …)

INTERACTIVE GRAPH ANALYTICS

71

 Motivation
 graph data
 requirements

 Graph data systems
 graph database systems
 distributed graph processing systems (Pregel, etc.)
 distributed graph dataflow systems (GraphX, Gelly)

 Gradoop
 architecture
 Extended Property Graph Model (EPGM)
 implementation and performance evaluation

 Open challenges

AGENDA

72

Thank
you!

 M. Junghanns, A. Petermann, M. Neumann, E. Rahm: Management and Analysis of Big
Graph Data: Current Systems and Open Challenges. In: Big Data Handbook (eds.: S. Sakr, A.
Zomaya) , Springer, 2017

Gradoop
 M. Junghanns, M. Kießling, A. Averbuch, A. Petermann, E. Rahm: Cypher-based Graph Pattern Matching in Gradoop.

Proc. ACM SIGMOD workshop on Graph Data Management Experiences and Systems (GRADES), 2017

 M. Junghanns, A. Petermann, K. Gomez, E. Rahm: GRADOOP - Scalable Graph Data Management and Analytics with
Hadoop. Tech. report (Arxiv), Univ. of Leipzig, 2015

 M. Junghanns, A. Petermann, N. Teichmann, K. Gomez, E. Rahm: Analyzing Extended Property Graphs with Apache
Flink. Proc. ACM SIGMOD workshop on Network Data Analytics (NDA), 2016

 M. Junghanns, A. Petermann, E. Rahm: Distributed Grouping of Property Graphs with GRADOOP. Proc. BTW, 2017

 A. Petermann; M. Junghanns: Scalable Business Intelligence with Graph Collections. it - Information Technology Special
Issue: Big Data Analytics, 2016

 A. Petermann, M. Junghanns, S. Kemper, K. Gomez, N. Teichmann, E. Rahm: Graph Mining for Complex Data
Analytics. Proc. ICDM 2016 (Demo paper)

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: BIIIG : Enabling Business Intelligence with Integrated Instance Graphs.
Proc. 5th Int. Workshop on Graph Data Management (GDM 2014)

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: Graph-based Data Integration and Business Intelligence with BIIIG.
Proc. VLDB Conf., 2014

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: FoodBroker - Generating Synthetic Datasets for Graph-Based Business
Analytics. Proc. 5th Int. Workshop on Big Data Benchmarking (WBDB), 2014

 A. Petermann, M. Junghanns, E. Rahm: DIMSpan - Transactional Frequent Subgraph Mining with Distributed In-Memory
Dataflow Systems. arXiv 2017

REFERENCES

73

	Scalable Graph AnalyTics
	Foliennummer 2
	„Graphs are everywhere“
	“Graphs are everywhere”
	“Graphs are everywhere”
	“Graphs are everywhere”
	“Graphs are heterogeneous”
	“Graphs can be analyzed”
	“Graphs can be analyzed“
	Graph Data Analytics: High-level requirements
	Graph Data Analytics: requirements
	Agenda
	Graph Databases
	Recent Graph Database Systems
	Property Graph model
	System Comparison
	Comparison
	Graph Processing systems
	Vertex-centric processing
	Example – Maximum Value
	Alternate models
	Graph Processing Systems
	Comparison (2)
	Graph Dataflow Systems
	Dataflow Systems
	Graph Dataflow Systems
	Comparison (3)
	�				What‘s missing?
	Foliennummer 29
	Agenda
	Gradoop Characteristics
	End-to-end Graph Analytics
	High Level Architecture
	Extended Property Graph Model (EPGM)
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Basic Binary Operators
	Aggregation
	Subgraph
	Pattern Matching
	Grouping
	Sample Graph
	Grouping: Type level (Schema Graph)
	Grouping: property-specific
	Selection
	Call (e.g., Frequent Subgraphs)
	Foliennummer 52
	Graph Representation
	Graph Representation: example
	Operator implementation
	Implementation of Graph Grouping
	Test Workflow: Summarized communities
	Test Workflow: Summarized communities
	Benchmark Results
	Benchmark Results 2
	Comparison
	Agenda
	Challenges
	Graph data allocation / partitioning
	Graph data allocation / partitioning (2)
	Benchmarking and evaluation
	Graph-based data integration
	BIIIG Data integration workflow
	Integration scenario
	Dynamic graphs
	Interactive graph analytics
	Agenda
	References

