

SCALABLE GRAPH ANALYTICS

ERHARD RAHM

www.scads.de

Management and Analysis of Big Graph Data: Current Systems and Open Challenges

Martin Junghanns, André Petermann, Martin Neumann and Erhard Rahm

Abstract Many big data applications in business and science require the management and analysis of huge amounts of graph data. Suitable systems to manage and to analyze such graph data should meet a number of challenging requirements including support for an expressive graph data model with heterogeneous vertices and

Albert Y. Zomaya - Sherif Sakr Editors

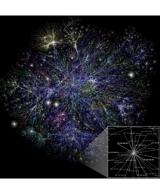
Handbook of Big Data Technologies

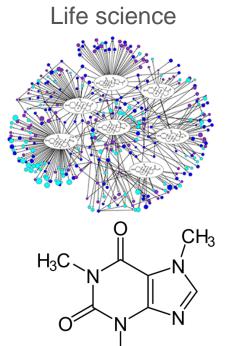
· 외 Springer

ScaDS ,GRAPHS ARE EVERYWHERE"

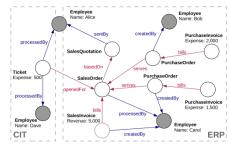
Social science

Engineering





Information science



Facebook

ca. 1.3 billion users

ca. 340 friends per user

Twitter

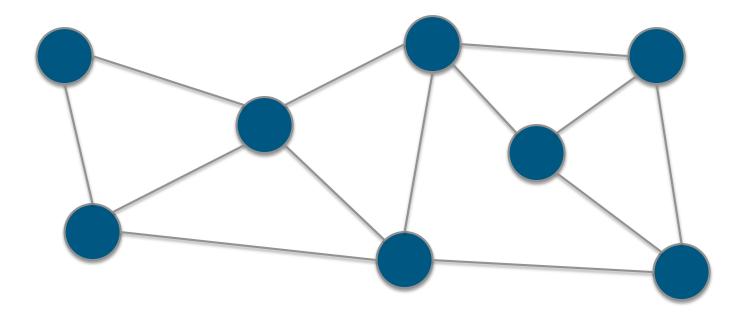
ca. 300 million users

ca. 500 million tweets per day

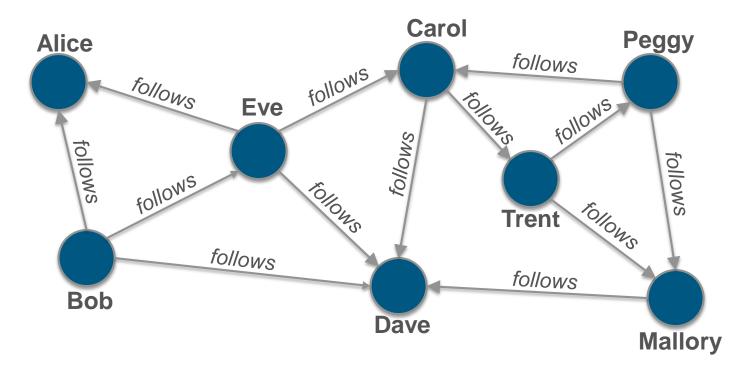
Internet ca. 2.9 billion users Gene (human) 20,000-25,000 ca. 4 million individuals Patients > 18 millions (Germany) Illnesses > 30.000

 CH_3

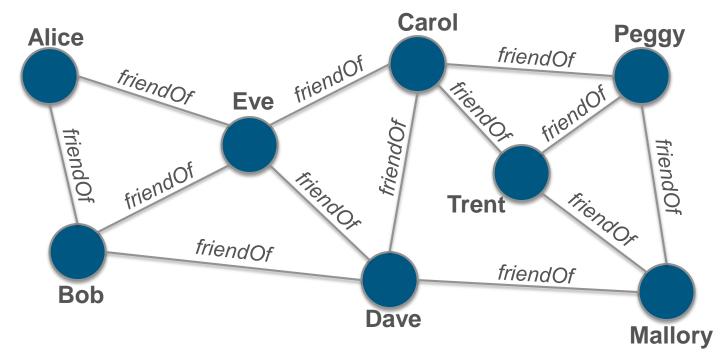
World Wide Web ca. 1 billion Websites LOD-Cloud ca. 90 billion triples



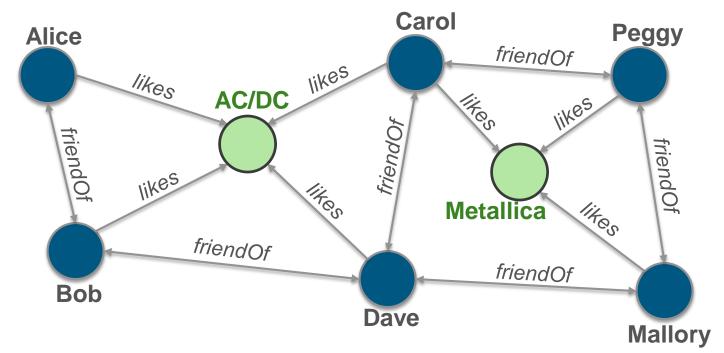
Graph = (Vertices, Edges)



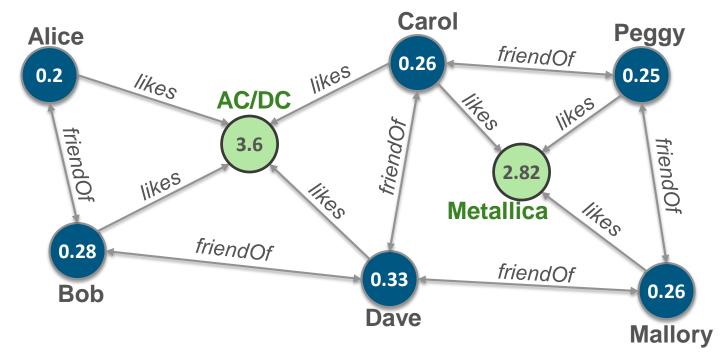
Graph = (**Users**, Followers)



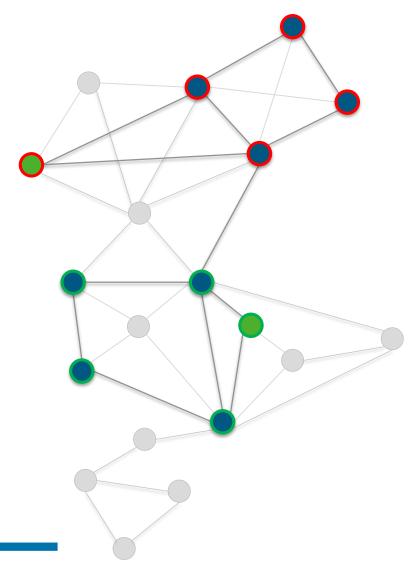
Graph = (**Users**, Friendships)



 $Graph = (Users \cup Bands, Friendships \cup Likes)$



 $Graph = (Users \cup Bands, Friendships \cup Likes)$



Assuming a social network

- 1. Determine subgraph
- 2. Find communities
- 3. Filter communities
- 4. Find common subgraph

GRAPH DATA ANALYTICS: HIGH-LEVEL REQUIREMENTS

- all "V" challenges
 - volume (scalability)
 - Variety (support for heterogenous data / data integration)
 - Velocity (dynamically changing graph data)
 - veracity (high data quality)
 - value (improved business value)
- ease-of-use
- high cost-effectiveness

ScaDS GRAPH DATA ANALYTICS: REQUIREMENTS

- powerful but easy to use graph data model
 - support for heterogeneous, schema-flexible vertices and edges
 - support for collections of graphs (not only 1 graph)
 - powerful graph operators
- powerful query and analysis capabilities
 - interactive, declarative graph queries
 - scalable graph mining
- high performance and scalability
- persistent graph storage and transaction support
- graph-based integration of many data sources
- versioning and evolution (dynamic /temporal graphs)
- comprehensive visualization support

- Motivation
 - graph data
 - requirements
- Graph data systems
 - graph database systems
 - distributed graph processing systems (Pregel, etc.)
 - distributed graph dataflow systems (GraphX, Gelly)

Gradoop

- architecture
- Extended Property Graph Model (EPGM)
- implementation and performance evaluation
- Open challenges

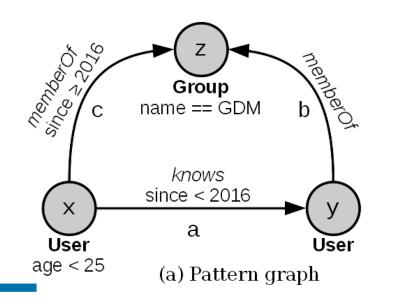
• First Generation:

- research prototypes only
- peak popularity in early 90s
- Second Generation:
 - NoSQL movement
 - commercial systems

- graph data model
 - mostly property graphs, RDF or generic graphs
 - different vertex and edge data
 - graph operators (traversal, pattern matching) / queries
- application scope
 - mostly queries/OLTP on small graph portions
 - some support for analytical queries/computations (analyze whole graph, e.g., page rank)

- popular data model for commercial graph DBMS
 - de-facto industry standard TinkerPop
 - query languages Gremlin (TinkerPop) and Cypher (Neo4j, openCypher)

query example (pattern matching)



MATCH (x:User)-[a:knows]->(y:User), (x)-[b:memberOf]->(z:Group), (y)-[c:memberOf]->(z) WHERE x.age < 25 AND z.name = 'GDM' AND a.since < 2016 AND c.since >= 2016 RETURN y.name, x.name

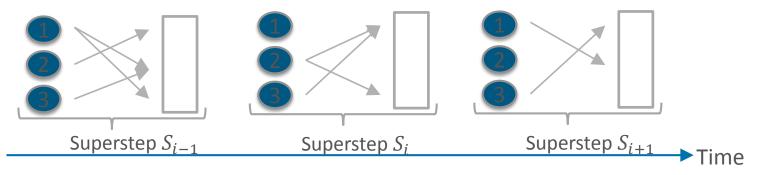
(b) Cypher

	[Data Model			Scope		Storage		
System	RDF/SPARQL	PGM/TinkerPop	Generic	OLTP/Queries	Analytics	Approach	Replication	Partitioning	
Apache Jena TBD	√/√			✓		native	-		
AllegroGraph	✓ / ✓			✓		native	\checkmark		
MarkLogic	✓ / ✓			✓		native	\checkmark	\checkmark	
Ontotext GraphDB	✓ / ✓			✓		native	\checkmark		
Oracle Spatial and Graph	✓ / ✓			✓		native	\checkmark		
Virtuoso	√/√			✓		relational	\checkmark	\checkmark	
TripleBit	√/√			✓		native			
Blazegraph	√/√	\checkmark/\checkmark		✓	\checkmark	native RDF	\checkmark	\checkmark	
IBM System G	✓ / ✓	$\checkmark \checkmark$	\checkmark	✓	\checkmark	native PGM,	\checkmark	\checkmark	
						wide column store			
Stardog	√/√	\checkmark / \checkmark		✓	0	native RDF	\checkmark		
SAP Active Info. Store		√/-		✓		realtional			
ArangoDB		$\checkmark \checkmark$		✓		document store	\checkmark	\checkmark	
InfiniteGraph		\checkmark / \checkmark		✓		native	\checkmark	\checkmark	
Neo4j		\checkmark / \checkmark		✓		native	\checkmark		
Oracle Big Data		\checkmark / \checkmark			\checkmark	key value store	\checkmark	\checkmark	
OrientDB		$\sqrt{\sqrt{1}}$		✓		document store	\checkmark	\checkmark	
Sparksee		$\sqrt{\sqrt{1}}$		✓		native	\checkmark		
SQLGraph		$\sqrt{\sqrt{1}}$		 ✓ 		relational			
Titan		\checkmark / \checkmark		~	0	wide column store, key value store	\checkmark	\checkmark	
HypergraphDB			✓	✓		native			

	Graph Database Systems Neo4j, OrientDB
data model	rich graph models (PGM)
focus	queries
query language	yes
graph analytics	(no)
scalability	vertical
analysis workflows	no
persistency	yes
dynamic graphs / versioning	no
data integration	no
visualization	(yes)

- goal: better support for scalable/distributed graph mining
 - page rank, connected components, clustering, frequent subgraphs, ...
 - mostly generic graphs only (e.g., directed multigraphs)
- early approaches based on MapReduce
 - iterative processing via control program and multiple MR programs
 - unintuitive programming and limited performance (high communication and I/O costs)
- , newer" computation models pioneered by Google Pregel
 - vertex-centric programming ("Think Like a Vertex")
 - Bulk-synchronous-parallel (BSP) computation
 - In-memory storage of graph data

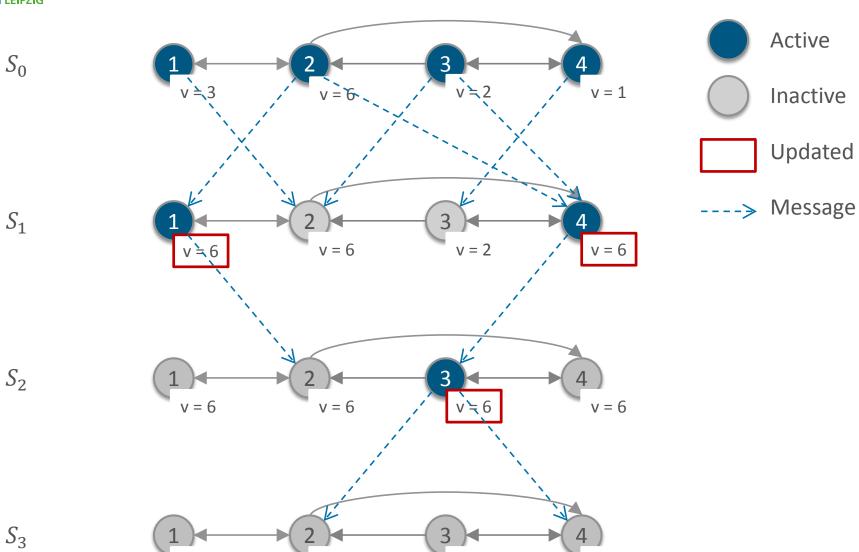
- parallel and synchronized execution of vertex *compute* function
- vertex keeps state about itself
- compute function
 - reads incoming messages,
 - updates vertex state (value)
 - sends information to neighboring vertices
- vertices can deactivate themselves (call voteToHalt() function)
- iterative execution within *supersteps* until there are no active vertices or messages anymore (bulk-synchronus-parallel execution)



EXAMPLE – MAXIMUM VALUE

v = 6

v = 6



v = 6

v = 6

alternate execution models

- partition-centric ("Think-like-a-graph"): synchronized execution of compute functions for entire partions (all vertices on one worker)
- asynchronous: to avoid many idle vertices/workers with skewed degree distributions
- Gather-Apply-Scatter (GAS) programming model
 - **gather** function: aggregates/combines messages
 - **apply** function: preprocesses incoming messages and updates vertex state
 - **scatter** function: uses vertex state to produce outgoing messages
 - Goals: reduce network traffic and better workload balancing for graphs graphs with highly skewed degree distribution

Scatter-Gather programming model

- user provides vertex and edge functions:
- vertex function uses all incoming messages to modify vertex value
- edge function uses vertex value to generate a message
- susceptible to execution skew (like vertex-centric)

	Language	Computation Model	BSP	async.	Agg.	Add	Remove	Comb.
Pregel	C++	Pregel	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Giraph	Java	Pregel	\checkmark		\checkmark			\checkmark
GPS	Java	Pregel	\checkmark		\checkmark			\checkmark
Mizan	C++	Pregel	\checkmark	\checkmark	\checkmark	\checkmark		n.a.
GraphLab	C++	GAS	\checkmark	\checkmark	\checkmark	\checkmark		n.a.
GraphChi	C++, Java	Pregel		\checkmark	\checkmark	\checkmark	\checkmark	n.a.
Signal/Collect	Java	Scatter-Gather	\checkmark	\checkmark				n.a.
Chaos	Java	Scatter-Gather	\checkmark	\checkmark				n.a.
Giraph++	Java	Partiton-centric	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
GraphX	Scala, Java	GAS	\checkmark		\checkmark			n.a.
Gelly	Scala, Java	GSA, Scatter-Gather, Pregel	\checkmark		\checkmark	\checkmark	\checkmark	n.a.

	Graph Database Systems Neo4j, OrientDB	Graph Processing Systems (Pregel, Giraph)	
data model	rich graph models (PGM)	generic graph models	
focus	queries	analytic	
query language	yes	no	
graph analytics	no	yes	
scalability	vertical	horizontal	
Workflows	no	no	
persistency	yes	no	
dynamic graphs / versioning	no	no	
data integration	no	no	
visualization	(yes)	no	

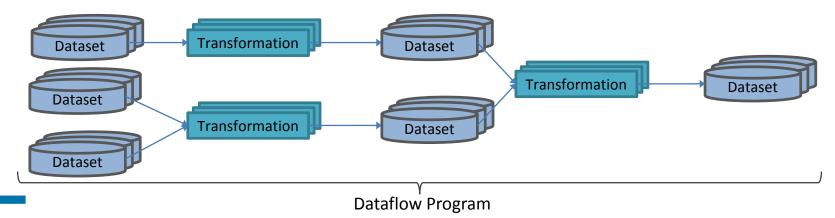
- Graph processing systems are specialized systems
 - tailored programming abstractions for fast execution of a single iterative graph algorithm
- complex analytical problems often require the combination of multiple techniques, e.g.:
 - creation of combined graph structures from different sources (data extraction, transformation and integration)
 - different analysis steps: queries, iterative graph processing, machine learning, ...
- Dataflow systems can combine such tasks within dataflow programs/workflows/scripts for distributed execution
 - 1st generation: MapReduce workflows
 - Apache Spark/Flink: in-memory dataflow systems

- Distributed in-memory dataflow systems (e.g., Apache Spark, Apache Flink)
 - general-purpose operators (e.g. map, reduce, filter, join) => transformations
 - specialized libraries (e.g. machine learning, graph analysis)
 - holistic view enables optimizations (operator reordering, caching, etc.)
- Dataset

:= distributed collection of data objects

• Transformation

- := operation on datasets (higher-order function)
- Dataflow Programm
- := composition of transformations



 Graph abstraction on top of a dataflow system (e.g., Gelly on Apache Flink and GraphX on Apache Spark)

GRAPH DATAFLOW SYSTEMS

- generic graph representation
- graph operations / transformations / processing
- Graph transformations / operations
 - **mutation**: adding / removing of vertices and edges
 - **map**: modification of vertex and edge values
 - **subgraph**: find subgraph for user-defined vertex / edge predicates
 - join: combination of vertex / edge datasets with other datasets
 - **union/difference/intersect:** combine two graphs into one
- Graph processing

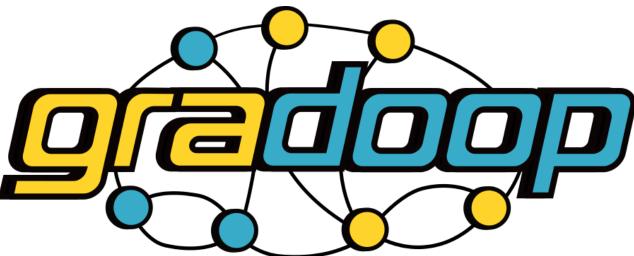
ScaDS

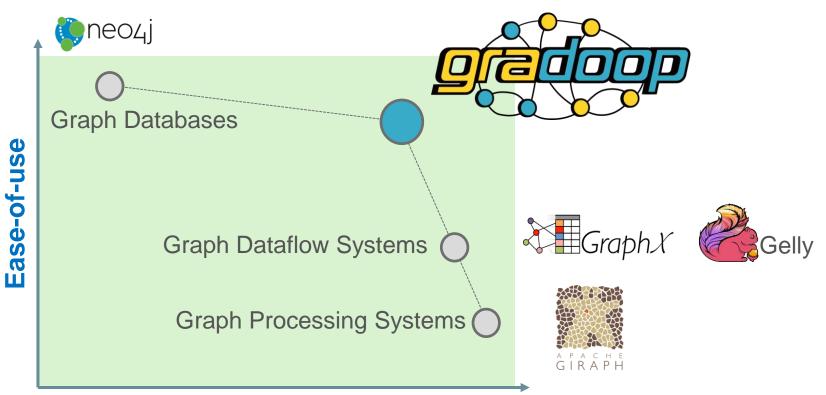
- Gelly implements Pregel, GAS, Scatter-Gather by using native Flink iteration functions
- GraphX implements **GAS** based on Spark Iterations

	Graph Database Systems Neo4j, OrientDB	Graph Processing Systems (Pregel, Giraph)	Graph Dataflow Systems (Flink Gelly, Spark GraphX)
data model	rich graph models (PGM)	generic graph models	generic graph models
focus	queries	analytic	analytic
query language	yes	no	no
graph analytics	no	yes	yes
scalability	vertical	horizontal	horizontal
Workflows	no	no	yes
persistency	yes	no	no
dynamic graphs / versioning	no	no	no
data integration	no	no	no
visualization	(yes)	no	no

WHAT'S MISSING?

An end-to-end framework for scalable (distributed) graph data management and analytics supporting a rich graph data model and queries





Data Volume and Problem Complexity

- Motivation
 - graph data
 - requirements
- Graph data systems
 - graph database systems
 - distributed graph processing systems (Pregel, etc.)
 - distributed graph dataflow systems (GraphX, Gelly)

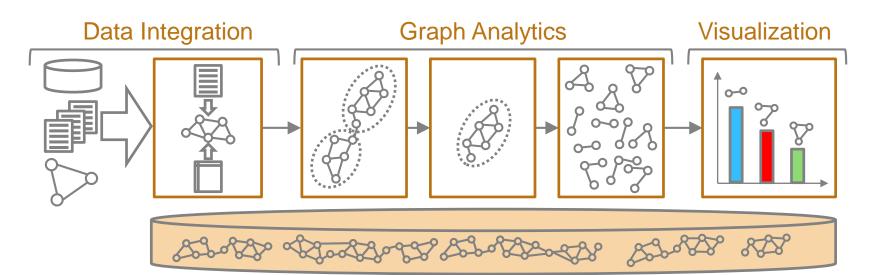
Gradoop

- architecture
- Extended Property Graph Model (EPGM)

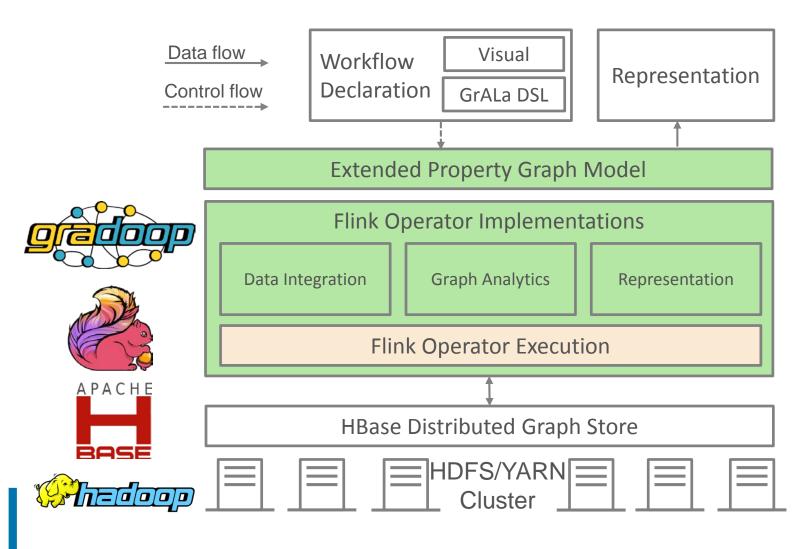
- implementation and performance evaluation
- Open challenges

ScaDS GRADOOP CHARACTERISTICS

- Hadoop-based framework for graph data management and analysis
 - persistent graph storage in scalable distributed store (Hbase)
 - utilization of powerful dataflow system (Apache Flink) for parallel, in-memory processing
- Extended property graph data model (EPGM)
 - operators on graphs and sets of (sub) graphs
 - support for semantic graph queries and mining
- declarative specification of graph analysis workflows
 - Graph Analytical Language GrALa
- end-to-end functionality
 - graph-based data integration, data analysis and visualization
- open-source implementation: www.gradoop.org



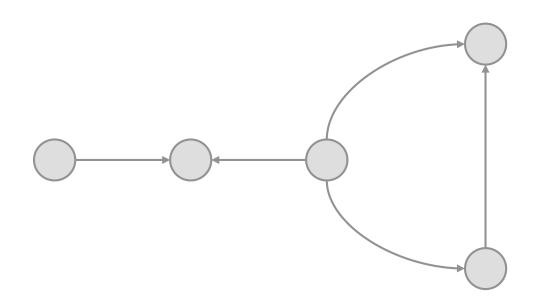
- integrate data from one or more sources into a dedicated graph store with common graph data model
- definition of analytical workflows from operator algebra
- result representation in meaningful way

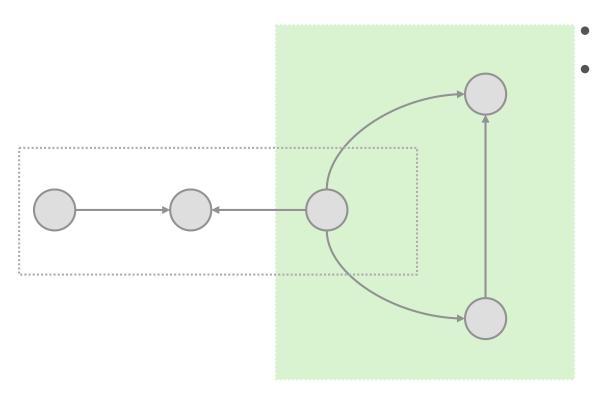


EXTENDED PROPERTY GRAPH MODEL (EPGM)

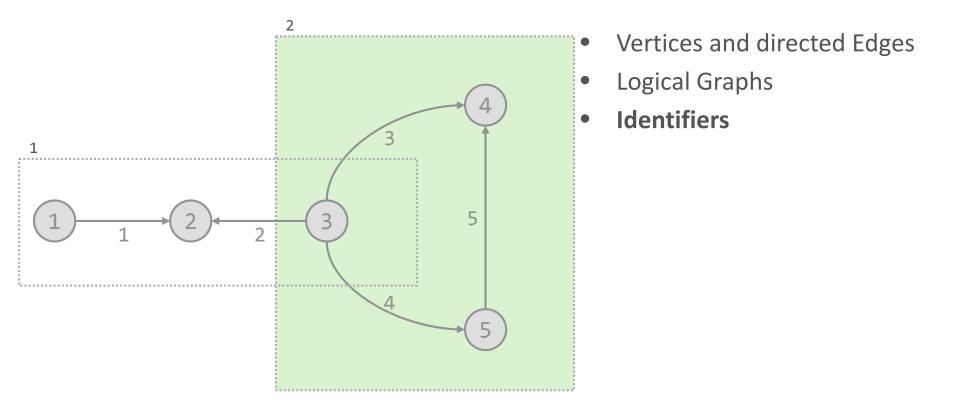
- includes PGM as special case
- support for collections of logical graphs / subgraphs
 - can be defined explicitly
 - can be result of graph algorithms / operators
- support for graph properties
- powerful operators on both graphs and graph collections
- Graph Analytical Language GrALa
 - domain-specific language (DSL) for EPGM
 - flexible use of operators with application-specific UDFs
 - plugin concept for graph mining algorithms

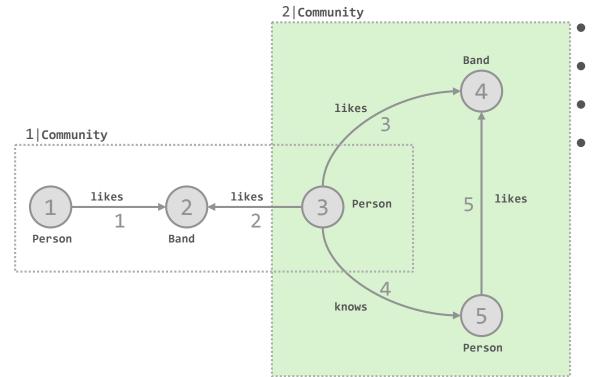
• Vertices and directed Edges



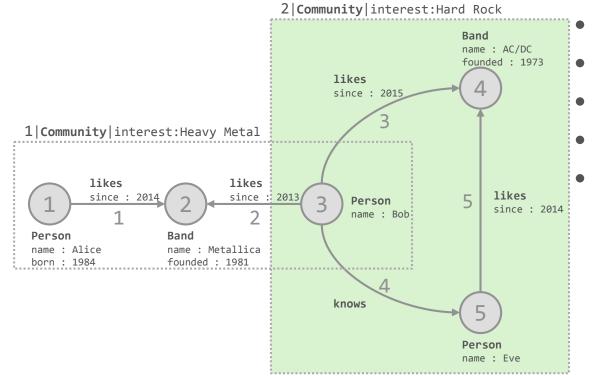


- Vertices and directed Edges
- Logical Graphs

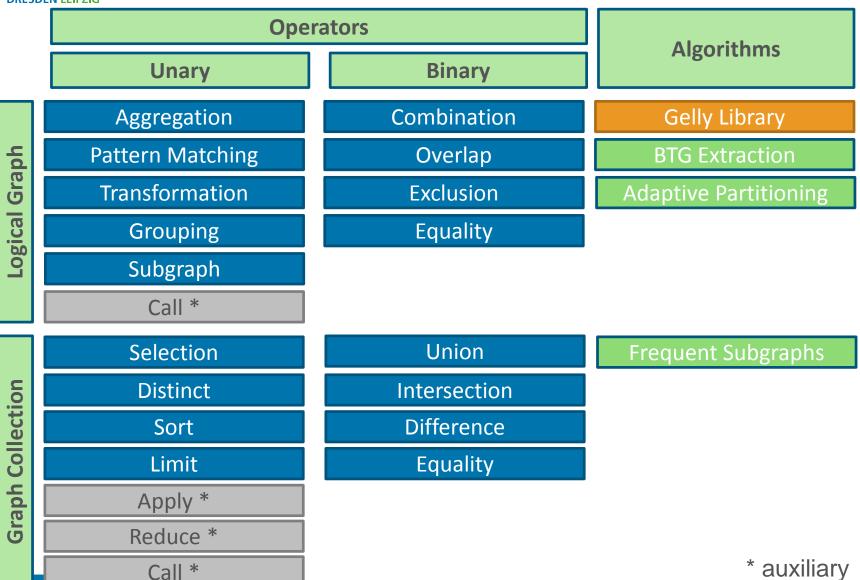




- Vertices and directed Edges
- Logical Graphs
- Identifiers
- **Type Labels**

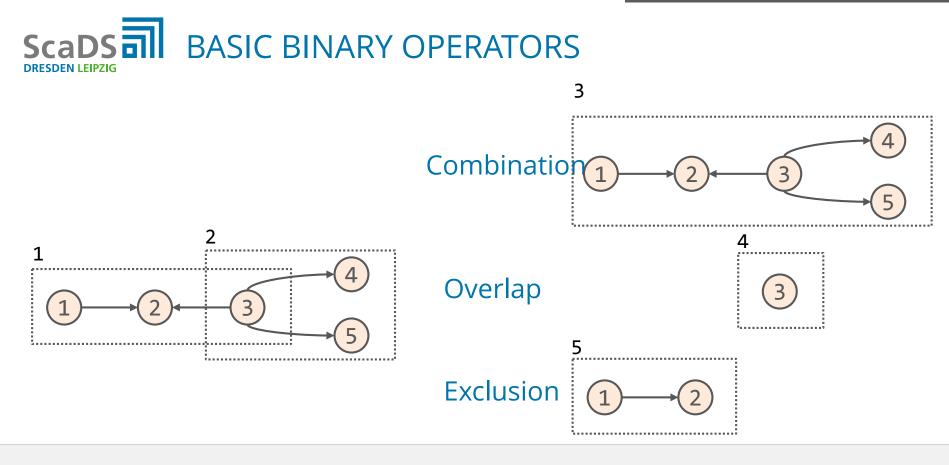


- Vertices and directed Edges
- Logical Graphs
- Identifiers
- Type Labels
- **Properties**

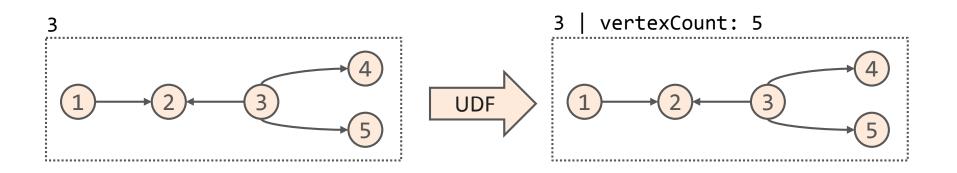


* auxiliary

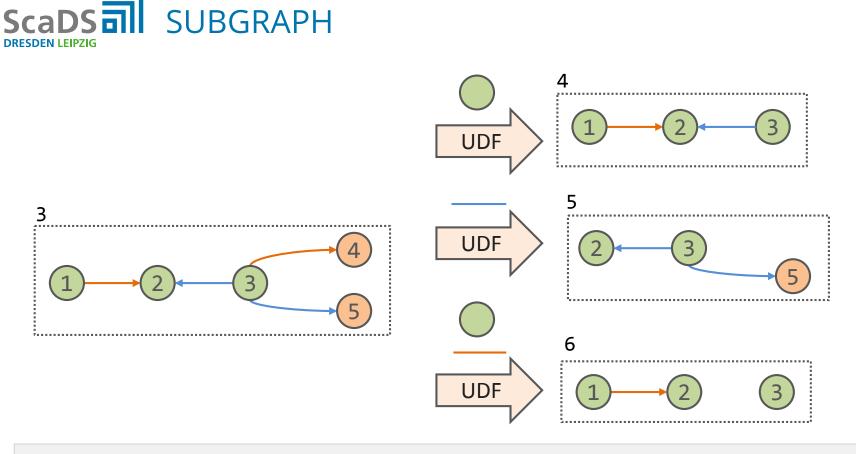
41



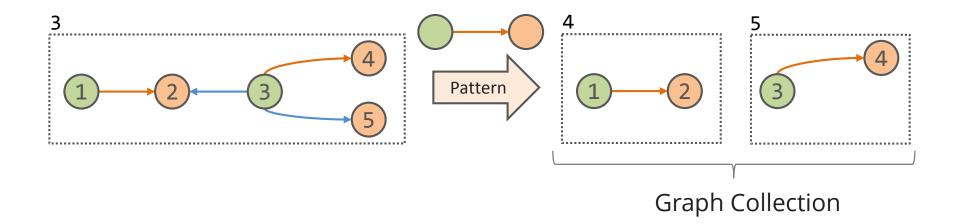
LogicalGraph graph3 = graph1.combine(graph2); LogicalGraph graph4 = graph1.overlap(graph2); LogicalGraph graph5 = graph1.exclude(graph2);



udf = (graph => graph['vertexCount'] = graph.vertices.size())
graph3 = graph3.aggregate(udf)



LogicalGraph graph4 = graph3.subgraph((vertex => vertex[:label] == 'green'))
LogicalGraph graph5 = graph3.subgraph((edge => edge[:label] == 'blue'))
LogicalGraph graph6 = graph3.subgraph(
 (vertex => vertex[:label] == 'green'),
 (edge => edge[:label] == 'orange'))



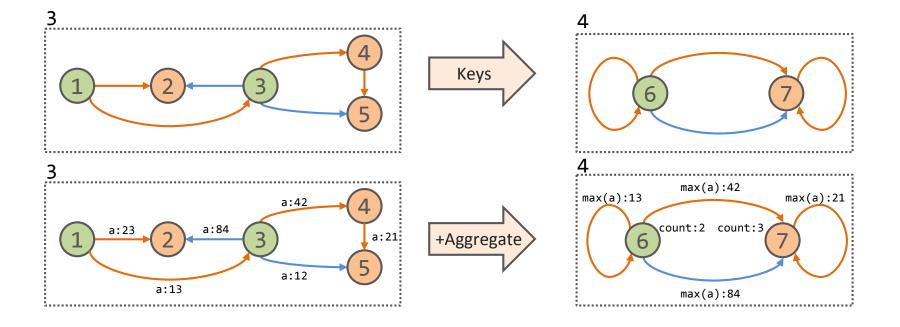
GraphCollection collection = graph3.match("(:Green)-[:orange]->(:Orange)");

new: support of Cypher query language for pattern matching*

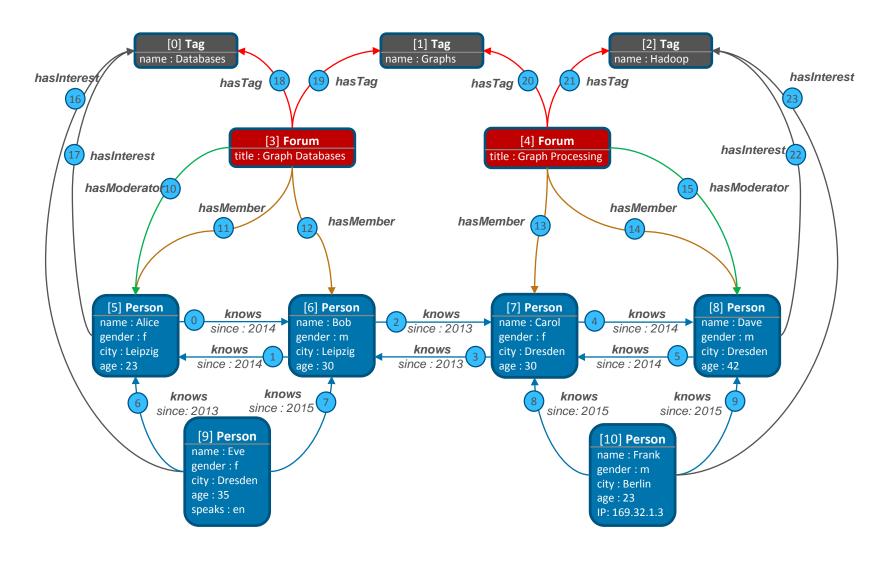
```
q = "MATCH (p1: Person ) -[e: knows *1..3] ->( p2: Person)
WHERE p1.gender <> p2 .gender RETURN *"
GraphCollection matches = g.cypher (q)
```

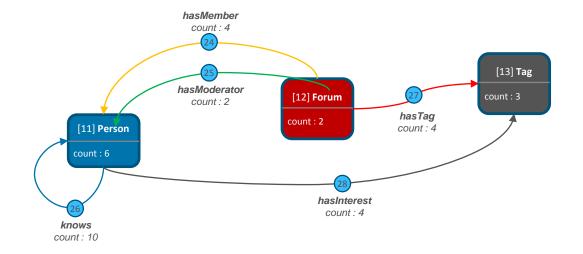
* Junghanns et al.: *Cypher-based Graph Pattern Matching in Gradoop*. Proc. GRADES 2017

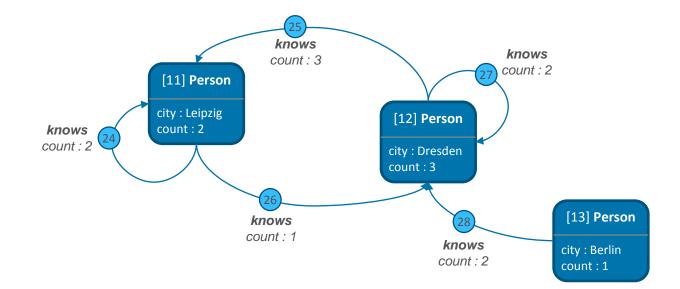
LogicalGraph grouped = graph3.groupBy([:label], // vertex keys [:label]) // edge keys LogicalGraph grouped = graph3.groupBy([:label], [COUNT()], [:label], [MAX('a')])

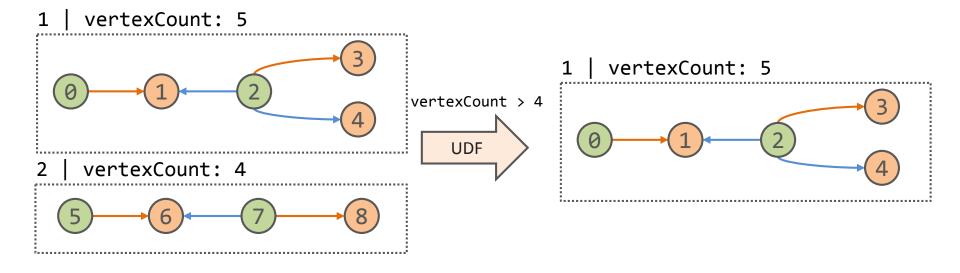


SAMPLE GRAPH

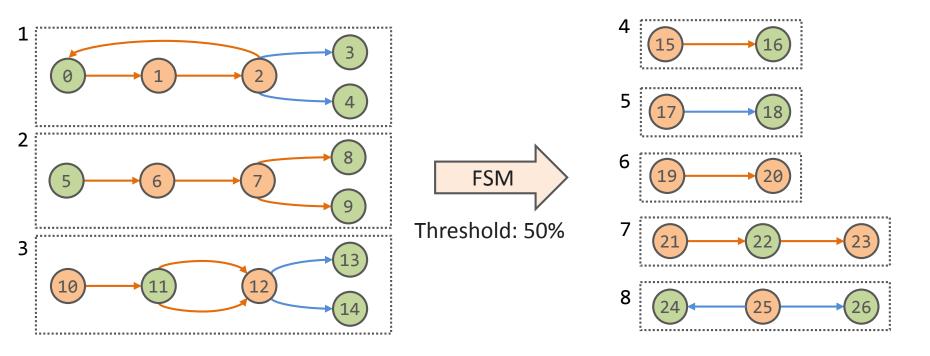






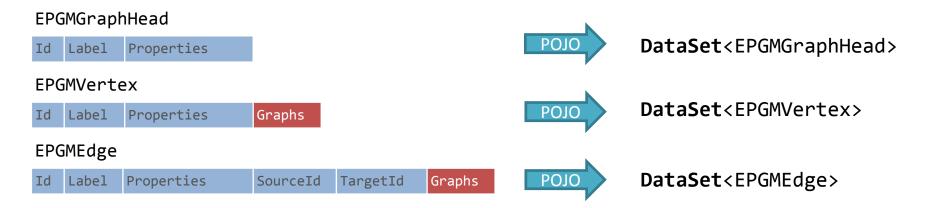


GraphCollection filtered = collection.select((graph => graph['vertexCount'] > 4));

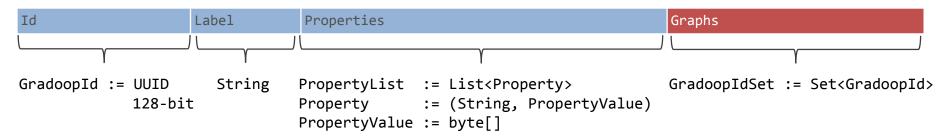


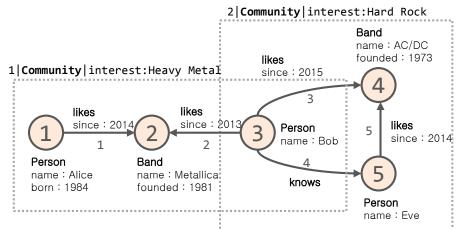
GraphCollection frequentPatterns = collection.callForCollection(new TransactionalFSM(0.5))

Implementation and evaluation



EPGMVertex





DataSet<EPGMVertex>

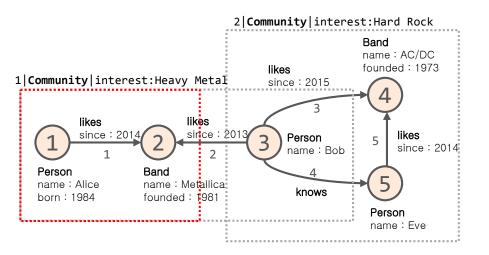
ld	Label	Properties	Graphs
1	Person	<pre>{name:Alice, born:1984}</pre>	{1}
2	Band	{name:Metallica,founded:1981}	{1}
3	Person	{name:Bob}	{1,2}
4	Band	{name:AC/DC,founded:1973}	{2}
5	Person	{name:Eve}	{2}

DataSet<EPGMGraphHead>

ld	Label	Properties
1	Community	<pre>{interest:Heavy Metal}</pre>
2	Community	<pre>{interest:Hard Rock}</pre>

DataSet<EPGMEdge>

ld	Label	Source	Target	Properties	Graphs
1	likes	1	2	{since:2014}	{1}
2	likes	3	2	{since:2013}	{1}
3	likes	3	4	{since:2015}	{2}
4	knows	3	5	{}	{2}
5	likes	5	4	{since:2014}	{2}



Exclusion

// input: firstGraph (G[1]), secondGraph (G[2])

```
1: DataSet<GradoopId> graphId = secondGraph.getGraphHead()
```

2: .map(new Id<G>());

```
3:
```

- 4: DataSet<V> newVertices = firstGraph.getVertices()
- 5: .filter(new NotInGraphBroadCast<V>())

```
6: .withBroadcastSet(graphId, GRAPH_ID);
```

```
7:
```

8: DataSet<E> newEdges = firstGraph.getEdges()

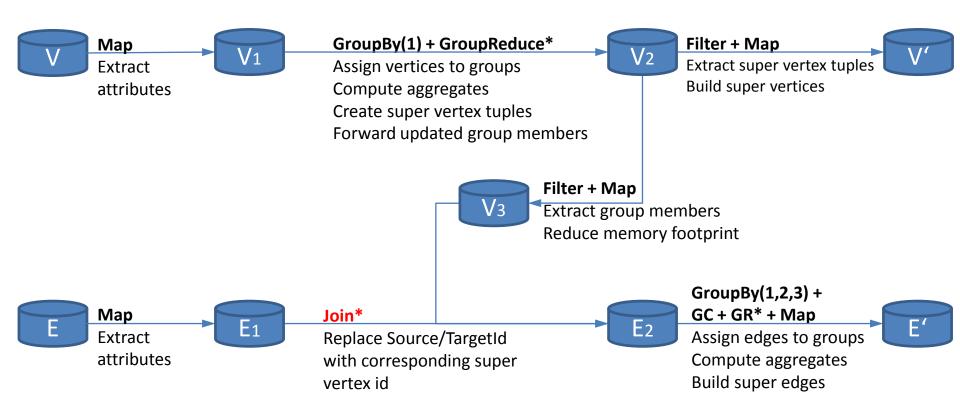
```
9: .filter(new NotInGraphBroadCast<E>())
```

```
10: .withBroadcastSet(graphId, GRAPH_ID)
```

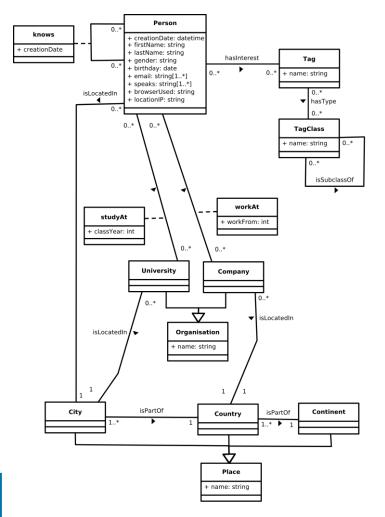
```
11: .join(newVertices)
```

- 12: .where(new SourceId<E>().equalTo(new Id<V>())
- 13: .with(new LeftSide<E, V>())
- 14: .join(newVertices)
- 15: .where(new TargetId<E>().equalTo(new Id<V>())
- 16: .with(new LeftSide<E, V>());

ScaDS IMPLEMENTATION OF GRAPH GROUPING



Scads TEST WORKFLOW: SUMMARIZED COMMUNITIES



- 1. Extract **subgraph** containing only *Persons* and *knows* relations
- 2. Transform Persons to necessary information
- 3. Find communities using Label Propagation
- 4. Aggregate vertex count for each community
- 5. Select communities with more than 50K users
- 6. **Combine** large communities to a single graph
- 7. Group graph by Persons location and gender
- 8. Aggregate vertex and edge count of grouped graph

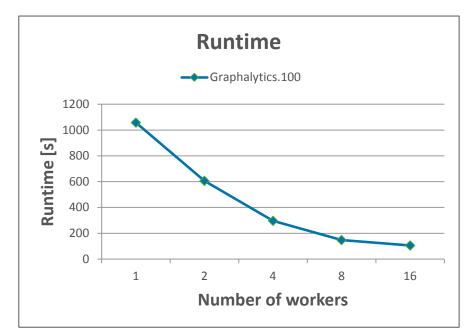
http://ldbcouncil.org/

SCADS COMMUNITIES

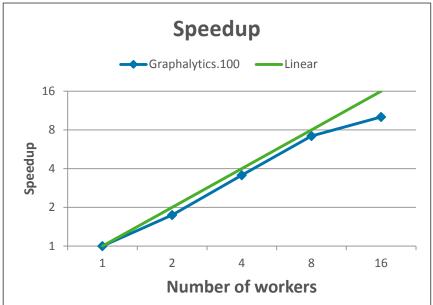
- Extract **subgraph** containing only *Persons* and *knows* relations
- 2. Transform Persons to necessary information
- 3. Find communities using Label Propagation
- 4. Aggregate vertex count for each community
- 5. Select communities with more than 50K users
- 6. **Combine** large communities to a single graph
- 7. Group graph by Persons location and gender
- 8. Aggregate vertex and edge count of grouped graph

return socialNetwork // 1) extract subgraph .subgraph((vertex) → { return vertex.getLabel().toLowerCase().equals(person); }, (edge) → { return edge.getLabel().toLowerCase().equals(knows); }) // project to necessary information .transform((current, transformed) → { return current; }, (current, transformed) → { transformed.setLabel(current.getLabel()); transformed.setProperty(city, current.getPropertyValue(city)); transformed.setProperty(gender, current.getPropertyValue(gender)); transformed.setProperty(label, current.getPropertyValue(birthday)); return transformed: }. (current. transformed) → { transformed.setLabel(current.getLabel()); return transformed; }) // 3a) compute communities .callForGraph(new GellyLabelPropagation<GraphHeadPojo, VertexPojo, EdgePojo>(maxIterations, label)) // 3b) separate communities .splitBy(label) // 4) compute vertex count per community .apply(new ApplyAggregation<>(vertexCount, new VertexCount<GraphHeadPojo, VertexPojo, EdgePojo>())) // 5) select graphs with more than minClusterSize vertices .select((g) → { return g.getPropertyValue(vertexCount).getLong() > threshold; }) // 6) reduce filtered graphs to a single graph using combination .reduce(new ReduceCombination<GraphHeadPojo, VertexPojo, EdgePojo>()) // 7) group that graph by vertex properties .groupBy(Lists.newArrayList(city, gender)) // 8a) count vertices of grouped graph .aggregate(vertexCount, new VertexCount<GraphHeadPojo, VertexPojo, EdgePojo>()) // 8b) count edges of grouped graph .aggregate(edgeCount, new EdgeCount<GraphHeadPojo, VertexPojo, EdgePojo>());

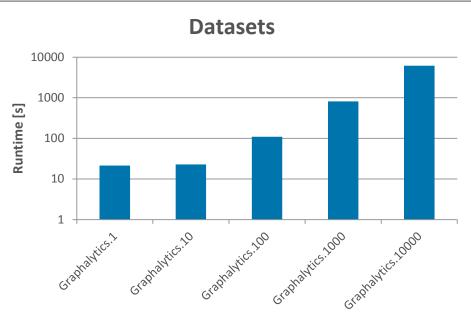
https://git.io/vgozj



Dataset	# Vertices	# Edges
Graphalytics.1	61,613	2,026,082
Graphalytics.10	260,613	16,600,778
Graphalytics.100	1,695,613	147,437,275
Graphalytics.1000	12,775,613	1,363,747,260
Graphalytics.10000	90,025,613	10,872,109,028



- 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)
- 16x 48 GB RAM
- 1 Gigabit Ethernet
- Hadoop 2.6.0
- Flink 1.0-SNAPSHOT



Dataset	# Vertices	# Edges
Graphalytics.1	61,613	2,026,082
Graphalytics.10	260,613	16,600,778
Graphalytics.100	1,695,613	147,437,275
Graphalytics.1000	12,775,613	1,363,747,260
Graphalytics.10000	90,025,613	10,872,109,028

- 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)
- 16x 48 GB RAM
- 1 Gigabit Ethernet
- Hadoop 2.6.0
- Flink 1.0-SNAPSHOT

	Graph Database Systems Neo4j, OrientDB	Graph Processing Systems (Pregel, Giraph)	Graph Dataflow Systems (Flink Gelly, Spark GraphX)	galoop
data model	rich graph models (PGM)	generic graph models	generic graph models	Extended PGM
focus	queries	analytic	analytic	analytic
query language	yes	no	no	(yes)
graph analytics	(no)	yes	yes	yes
scalability	vertical	horizontal	horizontal	horizontal
Workflows	no	no	yes	yes
persistency	yes	no	no	yes
dynamic graphs / versioning	no	no	no	no
data integration	no	no	no	(yes)
visualization	(yes)	no	no	limited

- Motivation
 - graph data
 - requirements
- Graph data systems
 - graph database systems
 - distributed graph processing systems (Pregel, etc.)
 - distributed graph dataflow systems (GraphX, Gelly)

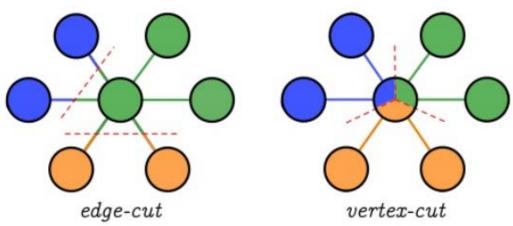
Gradoop

- architecture
- Extended Property Graph Model (EPGM)
 - implementation and performance evaluation
- Open challenges

- Graph data allocation and partitioning
- Benchmarking and evaluation of graph data systems
- Graph-based data integration and knowledge graphs
- Analysis of dynamic graphs
- Interactive graph analytics

SCADS GRAPH DATA ALLOCATION / PARTITIONING

- distributed graph processing depends on suitable graph allocation/partitioning
 - minimize communication for graph analysis
 - load balancing
- goal: balanced vertex distribution with minimal number of edges between partitions (edge cut)
 - vertex cut: balanced edge distribution with minimal replication of vertices (PowerGraph, Spark GraphX)



SCADS GRAPH DATA ALLOCATION / PARTITIONING (2)

- hash-based vertex partitioning prevalent but not optimal
 - vertex neighbors frequently in different partitions -> high communication overhead
- multilevel graph partitioning (e.g., METIS)
 - expensive to determine / static
- newer approaches for adaptive allocation
 - Stanton/Kliot (KDD2012), Mondal/Deshpande (Sigmod2012), Huang/Abadi (VLDB2016)

ScaDS BENCHMARKING AND EVALUATION

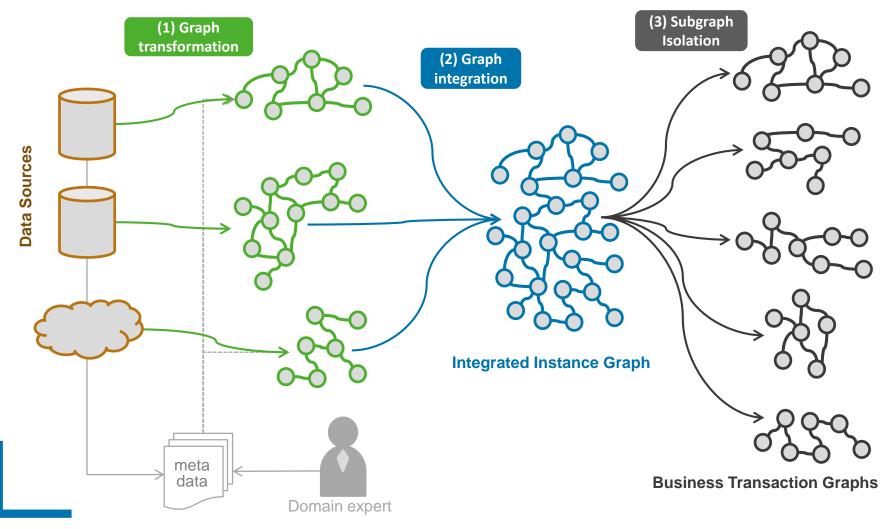
- many comparative evaluations between graph DBMS and graph processing systems (Han -VLDB14, Lu -VLDB14, ...)
 - many differences in considered systems. workloads, configurations, etc
 - early systems using Map/reduce or Giraph are outperformed by newer graph processing systems
 - few results for Spark GraphX, Flink Gelly
- Benchmark efforts for graph data analysis
 - e.g., LinkBench, LDBC, gMark
 - only few results so far

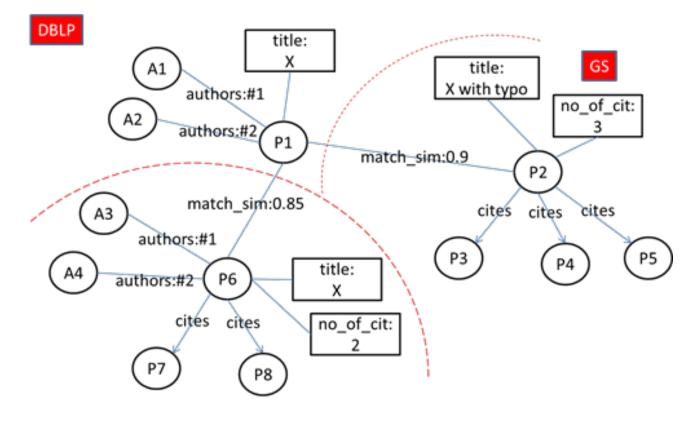
ScaDS GRAPH-BASED DATA INTEGRATION

- need to integrate diverse data from different sources (or from data lake) into semantically expressive graph representation
 - for later graph analysis
 - for representing background knowledge (knowledge graphs)
- traditional tasks for data acquisition, data transformation, data cleaning, schema / entity matching, entity fusion, data enrichment / annotation
- most previous work for RDF data, but not for property graphs

ScaDS BIIIG DATA INTEGRATION WORKFLOW

"Business Intelligence on Integrated Instance Graphs (BIIIG)" (PVLDB 2014)





source: Andreas Thor

- graphs like social networks, citation networks, road networks etc change over time
 - need to efficiently update/refresh analysis results (graph metrics, communities/clusters, ...)
 - streaming networks vs slowly evolving networks
 - fast stream analysis vs. analysis of series of graph snapshots
- many initial studies on specific aspects but no comprehensive system for analysis of dynamic graphs

ScaDS INTERACTIVE GRAPH ANALYTICS

- need to support both interactive graph queries / exploration + graph mining
- OLAP-like graph analysis functionality
 - Multi-level, multidimensional grouping and aggregation
 - need for extended (nested) graph model?
- visual analytics for big graphs
 - data reduction techniques for visualization (sampling, multi-level grouping, ...)

- Motivation
 - graph data
 - requirements
- Graph data systems
 - graph database systems

- distributed graph processing systems (Pregel, etc.)
- distributed graph dataflow systems (GraphX, Gelly)

Gradoop

- architecture
- Extended Property Graph Model (EPGM)
- implementation and performance evaluation
- Open challenges

 M. Junghanns, A. Petermann, M. Neumann, E. Rahm: Management and Analysis of Big Graph Data: Current Systems and Open Challenges. In: Big Data Handbook (eds.: S. Sakr, A. Zomaya), Springer, 2017

Gradoop

- M. Junghanns, M. Kießling, A. Averbuch, A. Petermann, E. Rahm: *Cypher-based Graph Pattern Matching in Gradoop*. Proc. ACM SIGMOD workshop on Graph Data Management Experiences and Systems (GRADES), 2017
- M. Junghanns, A. Petermann, K. Gomez, E. Rahm: *GRADOOP Scalable Graph Data Management and Analytics with Hadoop*. Tech. report (Arxiv), Univ. of Leipzig, 2015
- M. Junghanns, A. Petermann, N. Teichmann, K. Gomez, E. Rahm: *Analyzing Extended Property Graphs with Apache Flink*. Proc. ACM SIGMOD workshop on Network Data Analytics (NDA), 2016
- M. Junghanns, A. Petermann, E. Rahm: Distributed Grouping of Property Graphs with GRADOOP. Proc. BTW, 2017
- A. Petermann; M. Junghanns: *Scalable Business Intelligence with Graph Collections*. it Information Technology Special Issue: Big Data Analytics, 2016
- A. Petermann, M. Junghanns, S. Kemper, K. Gomez, N. Teichmann, E. Rahm: *Graph Mining for Complex Data Analytics.* Proc. ICDM 2016 (Demo paper)
- A. Petermann, M. Junghanns, R. Müller, E. Rahm: *BIIIG : Enabling Business Intelligence with Integrated Instance Graphs*. Proc. 5th Int. Workshop on Graph Data Management (GDM 2014)
- A. Petermann, M. Junghanns, R. Müller, E. Rahm: *Graph-based Data Integration and Business Intelligence with BIIIG.* Proc. VLDB Conf., 2014
- A. Petermann, M. Junghanns, R. Müller, E. Rahm: *FoodBroker Generating Synthetic Datasets for Graph-Based Business Analytics*. Proc. 5th Int. Workshop on Big Data Benchmarking (WBDB), 2014
- A. Petermann, M. Junghanns, E. Rahm: *DIMSpan Transactional Frequent Subgraph Mining with Distributed In-Memory Dataflow Systems.* arXiv 2017