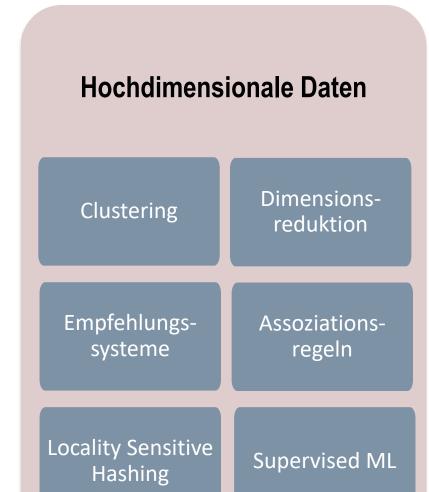
Data Mining

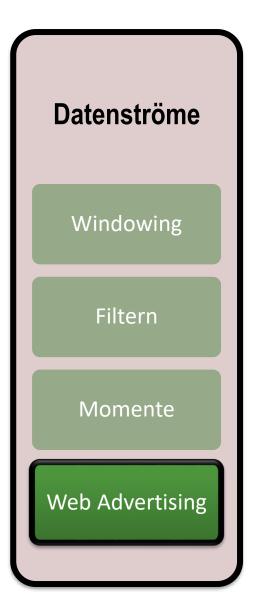
Web Advertising

Johannes Zschache Wintersemester 2019

Abteilung Datenbanken, Universität Leipzig http://dbs.uni-leipzig.de

Übersicht





Inhaltsverzeichnis

- Einführung
- Greedy Matching Algorithmus
- Balance Matching Algorithmus

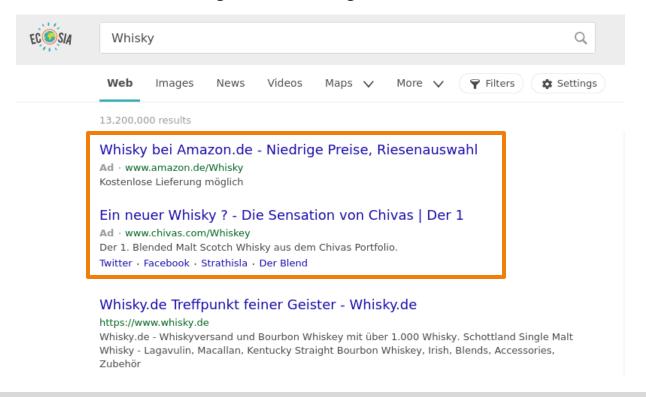
Literatur: Kapitel 8 aus "Mining of Massive Datasets": http://www.mmds.org

Werbung auf Webseiten

- Programmatic Advertising: Echtzeitauktionen
 - Webseite signalisiert: 30-35-jähriger Mann aus Leipzig mit langsamer
 Internetverbindung und Vorliebe für Whisky
 - Interessenten bieten automatisch auf Werbeplatz
- Deutschland: 835 Mio Euro Umsatz im Jahr 2017 [c't 2018/21, S.40]

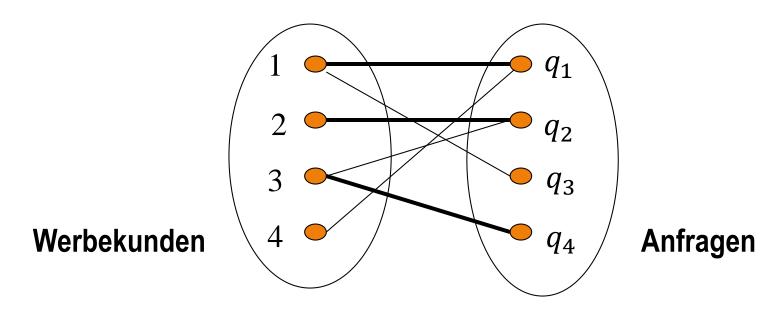
Programmatic Advertising

- Webseite eines Händlers: Zugriff auf Kaufverhalten der eigenen Kunden
- Einsatz von Cookies:
 - Verfolgung quer durchs Internet
 - Dritte Webseite kann Werbung für Händler schalten
- Suchmaschine: Verwendung der Anfragen



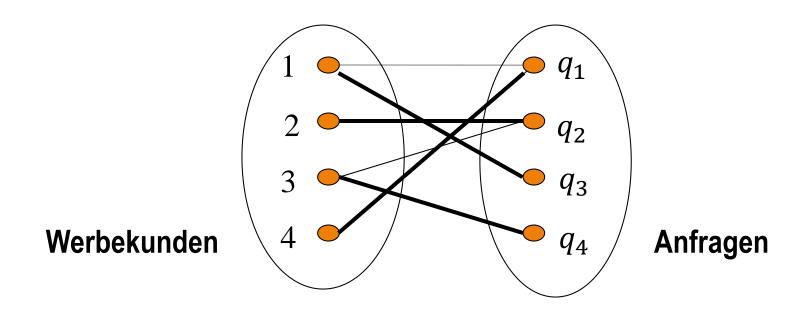
Modell

- Webseite erhält Datenstrom aus Suchanfragen q_1 , q_2 , q_3 ...
- Mehrere Werbekunden setzen Gebot je nach Suchanfrage (Kanten)
- Webseite muss Werbekunden für Anfragen auswählen (maximal eine Anfrage pro Werbekunde)



Ziel: Zuordnung von Kunden zu Anfragen, so dass eine maximale Anzahl von Kunden zufrieden sind

Beste Zuordnung



Ziel: Zuordnung von Kunden zu Anfragen, so dass eine maximale Anzahl von Kunden zufrieden sind

Matching Algorithmus

- Bipartiter Graph: Graph aus 2 Gruppen von Knoten, wobei Kanten nur zwischen den Gruppen verlaufen
 - Matching: Menge von Kanten, wobei keine zwei Kanten einen gemeinsamen Knoten betreffen
 - Maximales Matching: eine maximale Anzahl an Kanten ist Teil des Matching
- Ziel: Maximales Matching für einen gegebenen bipartiten Graphen
 - Effizienter Offline Algorithmus (Graph vollständig bekannt): Hopcroft und Karp (https://de.wikipedia.org/wiki/Algorithmus_von_Hopcroft_und_Karp)
 - Online: Graph entsteht schrittweise (liegt nicht vollständig vor)

 Online Problem: Entscheidungen müssen augenblicklich getroffen werden, ohne die Kenntnis der zukünftigen Anfragen

Inhaltsverzeichnis

- Einführung
- Greedy Matching Algorithmus
- Balance Matching Algorithmus

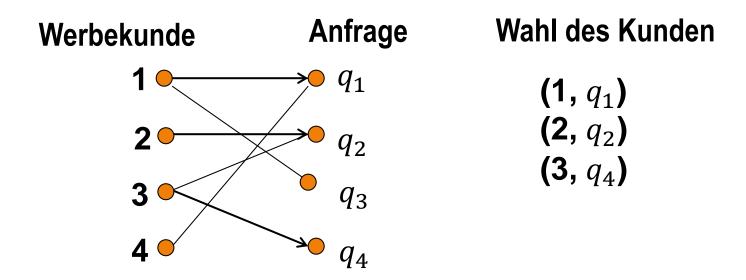
Literatur: Kapitel 8 aus "Mining of Massive Datasets": http://www.mmds.org

Greedy Matching

Ankommende Anfragen werden dem ersten verfügbaren Werbekunden zugeordnet

- Kunden sind geordnet
- Nimm ersten Kunden mit Gebot f

 ür Angebot



Data Mining

Competitive Ratio

- Wie gut ist der Greedy Algorithmus?
- Sei *I* eine Serie von Eingaben (z.B. Anfragen)
- Sei $M_{greedy}(I)$ das Matching, welches durch Greedy für I entsteht
- Sei $M_{opt}(I)$ ein maximales Matching für I
- Sei | M | die Kardinalität von M
- Competitive Ratio:

$$c_{greedy} = min_I \left(\frac{\left| M_{greedy}(I) \right|}{\left| M_{opt}(I) \right|} \right)$$

• Für jede Serie von Eingaben ist das Ergebnis von Greedy mindestens $c_{\it greedy}$ mal so gut wie das optimale Ergebnis

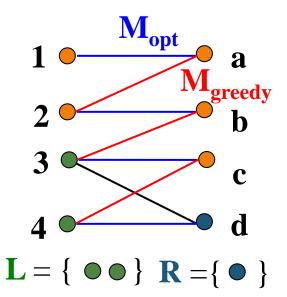
Analyse des Greedy Algorithmus

- Sei R die Menge der Knoten, die durch M_{opt} aber nicht durch M_{greedy} abgedeckt werden, d.h. $|M_{opt}(I)| \leq |M_{greedy}(I)| + |R|$
- Sei L die Menge der Knoten, die eine Kante zu Knoten aus R aufweisen und durch M_{greedy} abgedeckt werden: $|L| \leq |M_{areedy}(I)|$
- Außerdem gilt $|R| \leq |L|$
- Daraus folgt:

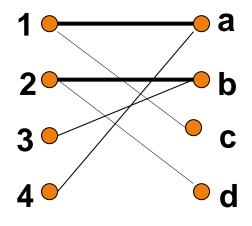
$$|M_{opt}(I)| \le |M_{greedy}(I)| + |M_{greedy}(I)|,$$
bzw.

$$\left| M_{greedy}(I) \right| \ge \frac{1}{2} \left| M_{opt}(I) \right|$$

d.h.
$$c_{greedy} = \frac{1}{2}$$

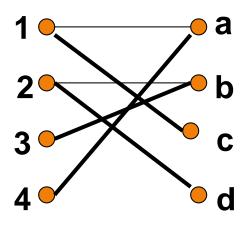


Ungünstigster Fall: Beispiel



(1,a) (2,b)

Optimum:



Inhaltsverzeichnis

- Einführung
- Greedy Matching Algorithmus
- Balance Matching Algorithmus

Literatur: Kapitel 8 aus "Mining of Massive Datasets": http://www.mmds.org

Werbekunden mit Budget

- Gegeben:
 - 1. Die Gebote von Werbekunden für Suchanfragen
 - 2. Konstantes *Budget* pro Werbekunde und Tag
 - Konstanter erwarteter Gewinn pro Zuordnung
- Suche nach Menge von Werbekunden, so dass
 - 1. Jeder Werbekunde tatsächlich auf Suchanfrage geboten hat
 - 2. Jeder Werbekunde genügend Budget hat, um Klick auf Werbebanner zu bezahlen
 - 3. Der erwartete Gewinn maximiert wird

Ungünstigster Fall für Greedy

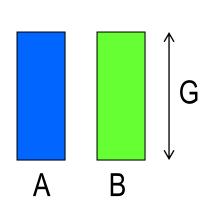
- Beispiel: Zwei Werbekunden A und B
 - A bietet auf Suchanfrage 1 und 2
 - B bietet auf Suchanfrage 1
 - Beide Werbekunden haben Budget von 4 €
 - Erwarteter Gewinn pro Zuordnung ist immer 1 €
- Reihenfolge der tatsächlichen Suchanfragen: 1 1 1 1 2 2 2 2
 - Ungünstigste Wahl durch Greedy: A A A A _ _ _ _
 - Optimal: BBBBAAAA
 - Competitive Ratio = ½

Balance Algorithmus

- Balance Algorithmus
 - Von Mehta, Saberi, Vazirani, und Vazirani (Google Ads)
 - Regel: Ankommende Anfragen werden dem Werbekunden mit dem derzeit größtem Budget zugeordnet
- Selbes Beispiel mit Suchanfragen: 1 1 1 1 2 2 2 2
 - Balance: A B A B A A _ _
 - Optimal: B B B B A A A A
- Allgemeiner Fall mit beliebigen Suchanfragen aber gleichem Budget G für alle Werbekunden und 1€ erwarteter Gewinn pro Anfrage:
 - Annahme: Optimale Lösung verbraucht Budgets beider Werbekunden (Gewinn: 2G)
 - Sei x die Anzahl der Anfragen, die zwar im optimalen Fall aber nicht durch Balance zugordnet werden können
 - Erwarteter Gewinn durch Balance: 2G x

– Wie groß ist x?

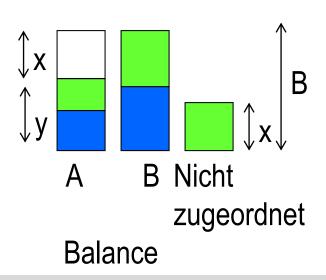
Analyse des Balance Algorithmus



- Anfragen, die im optimalen Fall dem Kunden A zugeordnet wurden
- Anfragen, die im optimalen Fall dem Kunden B zugeordnet wurden

Maximaler Gewinn: 2G

Gewinn durch Balance: 2G - x = G + y



Behauptung: $y \ge x$

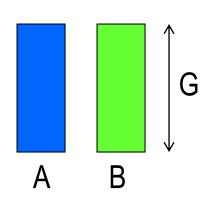
Mindestgewinn durch Balance, falls

$$x = y = \frac{G}{2}$$

Mindestgewinn: $\frac{30}{2}$

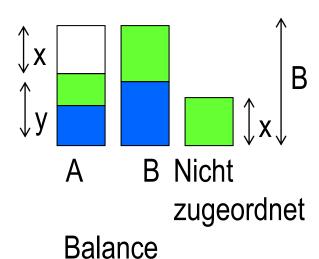
Competitive Ratio (2 Werbekunden): $\frac{3}{4}$

Analyse des Balance Algorithmus



Behauptung: $y \ge x$

- 1. Fall: Mindestens die Hälfte der blauen Anfragen werden A zugeordnet
- 2. Fall: Weniger als die Hälfte der blauen Anfragen werden A zugeordnet
 - Sei q die letzte blaue Anfrage, die B zugewiesen wurde
 - Da mehr als die Hälfte aller blauen Anfragen B
 zugeordnet wurden, war das Budget von B kleiner als $\frac{G}{2}$ zu diesem Zeitpunkt
 - Außerdem kann, zu diesem Zeitpunkt, das Budget von A nicht größer als das Budget von B gewesen sein, also auch kleiner als $\frac{G}{2}$
 - Daraus folgt: $y \ge \frac{G}{2}$ bzw. $y \ge x$



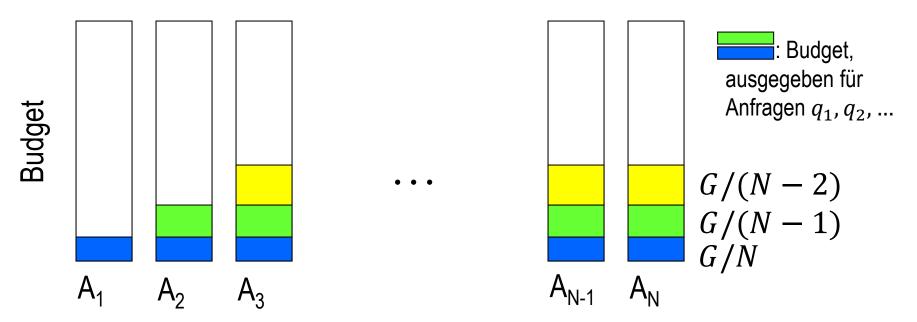
Balance Algorithmus

• Allgemein gilt (mehr als zwei Werbekunden):

$$c_{balance} = 1 - \frac{1}{e} \approx 0.63$$

- Es existiert kein Online Algorithmus mit höherem Competitive Ratio
- Ungünstigster Fall (mit $c_{balance} \approx 0.63$):
 - Werbekunden $A_1, A_2, A_3, \dots, A_N$ mit jeweils gleichem Budget G > N
 - Gebote:
 - Suchanfrage q_1 : A_1 , A_2 , A_3 , ..., A_N
 - Suchanfrage q_2 : $A_2, A_3, ..., A_N$
 - ...
 - Suchanfrage q_N : A_I
 - $\ \, \text{Reihenfolge der Suchanfragen:} \ \, \underbrace{q_1, \ldots, q_1}_{G \ \text{mal}} \, , \underbrace{q_2, \ldots, q_2}_{G \ \text{mal}} \, , \underbrace{q_3, \ldots, q_3}_{G \ \text{mal}} \, , \ldots, \underbrace{q_N, \ldots, q_N}_{G \ \text{mal}} \, \,$
 - $\quad \text{Optimale L\"osung:} \ \underbrace{A_1, \ldots, A_1}_{G \text{ mal}}, \underbrace{A_2, \ldots, A_2}_{G \text{ mal}}, \underbrace{A_3, \ldots, A_3}_{G \text{ mal}}, \ldots, \underbrace{A_N, \ldots, A_N}_{G \text{ mal}}$

Balance Algorithmus



Der Balance-Algorithmus verteilt die Suchanfragen gleichmäßig

- Für das verbrauchte Budget von A_k , S_k : = $\sum_{i=1}^k \frac{G}{N-(i-1)}$, gilt $S_k > G$ ungefähr (Approximation nach Satz von Euler), falls $k > N\left(1-\frac{1}{e}\right)$
- Alle Anfragen q_l mit $l>N\left(1-\frac{1}{e}\right)$ können nicht zugeordnet werden
- Erwarteter Gewinn durch Balance: maximal $GN\left(1-\frac{1}{e}\right)$: $c_{balance}=1-\frac{1}{e}$

Data Mining

Das Werbungsproblem

Weder Gebote noch erwarteter Gewinn ist konstant

Werbekunde	Gebot	Klickrate	Erwarteter Gewinn
A	€ 1.00	1%	1 Cent
В	€ 0.75	2%	1.5 Cent
C	€ 0.50	2.5%	1.125 Cent

Klickraten werden geschätzt aus dem vergangenen Verhalten der Nutzer

Das Werbungsproblem

- Beispiel
 - Zwei Werbekunden A und B; 10 mal die gleiche Suchanfrage q

Werbekunde i	Erwarteter Gewinn pro Zuordnung x_i	Budget G _i
Α	1€	110€
В	10€	100€

- Balance Algorithmus würde immer A auswählen (Erwarteter Gewinn: 10€)
- Erwarteter Gewinn bei optimaler Zuordnung zu B: 100€
- Erweiterung des Balance-Algorithmus
 - Verbrauchtes Budget m_i und Anteil des verbleibenden Budgets: $f_i := 1 \frac{m_i}{G_i}$
 - Ankommende Anfragen werden dem Werbekunden mit dem derzeit größten
 Wert für $x_i \cdot (1 e^{-f_i})$ zugeordnet
 - Competitive Ratio: $1 \frac{1}{e}$